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Abstract
We consider the computation of allocations for in-
divisible chores that are approximately EFX and
fractional Pareto optimal (fPO). It has been shown
that 3-EFX and fPO allocations for bi-valued in-
stances always exist, where the cost of an item to
an agent is either 1 or k (where k > 1), by round-
ing the (fractional) earning restricted equilibrium.
In this work, we improve the approximation ra-
tio to (2 − 1/k), while preserving the fractional
Pareto optimality. Instead of rounding fractional
equilibrium, our algorithm starts with the integral
EF1 equilibrium for bi-valued chores and reallo-
cates items until approximate EFX is achieved. We
further improve our result for the case when k = 2
and devise an algorithm that computes EFX and
fPO allocations.

1 Introduction
Fair allocation has received significant attention over the past
few decades in the fields of computer science, economics, and
mathematics. The problem focuses on allocating a set M of
m items among a group N of n agents, where agents have
heterogeneous valuation functions for the items. When the
valuation functions assign positive values, the items are con-
sidered as goods, such as resources; when the valuation func-
tions assign negative values, the items are regarded as chores,
such as tasks. The goal is to compute an allocation of the
items that is fair to all agents. In this work, we focus on the
allocation of chores, where each agent has an additive cost
function that assigns a non-negative cost to every item, and
explore the existence of allocations that are fair and efficient.

Envy-freeness (EF) is one of the most well-studied fair-
ness notions. An allocation is envy-free if no agent wants
to exchange her bundle of items with any other agent. Un-
fortunately, envy-free allocations are not guaranteed to ex-
ist for indivisible items. Consequently, researchers have fo-
cused on the relaxations of envy-freeness. Envy-freeness up
to one item (EF1) and envy-freeness up to any item (EFX) are
two widely studied relaxations. Generally speaking, EF1 al-
locations require that the envy between any two agents can

∗The authors are ordered alphabetically.

be eliminated by removing some item, while EFX alloca-
tions require that the envy can be eliminated by removing
any item. In addition to fairness, efficiency is another im-
portant measure of the quality of allocations. The existence of
fair and efficient allocations has recently drawn significant at-
tention. Unfortunately, efficiency and fairness often compete
with each other, and many fair allocations exhibit poor effi-
ciency guarantees. Pareto optimality (PO) is one of the most
widely used measures for efficiency. An allocation is called
PO if no other allocation can improve the outcome for one
agent without making another agent worse off. A stronger no-
tion called fractional Pareto optimality (fPO) requires that no
other fractional allocation can improve the outcome without
making someone else worse off. Note that any fPO allocation
also satisfies PO but not vice-versa.

It has been shown that EF1 allocations always exist for
goods [Lipton et al., 2004], chores, and the mixture of goods
and chores [Aziz et al., 2022a; Bhaskar et al., 2021]. There
are several simple polynomial-time algorithms for computing
EF1 allocations such as envy-cycle elimination and round-
robin [Lipton et al., 2004; Bhaskar et al., 2021]. Compared to
the well-established results for EF1 allocations, the existence
of EFX allocations remains a major open problem. For gen-
eral cost functions, the divide-and-choose algorithm can be
applied to compute EFX allocations when n = 2. However,
it is still unknown whether EFX allocations exist for chore
instances with more than two agents. So far, EFX allocations
for chores are shown to exist for two types of chore [Aziz
et al., 2023], the case of m ≤ 2n [Garg et al., 2024;
Kobayashi et al., 2023], and agents with leveled prefer-
ences [Gafni et al., 2023]. Aziz et al. [2024] show that EFX
allocations can be computed for identical ordering (IDO) in-
stances, which is extended by Kobayashi et al. [2023] to
the case when the cost functions of all but one agent are
IDO. For bi-valued instances (where the cost of any item to
any agent can only take one of two fixed values), Zhou and
Wu [2024] propose a polynomial-time algorithm that com-
putes EFX allocations for three agents. The result is gener-
alized by Kobayashi et al. [2023] to the case of three agents
with personalized bi-valued cost functions and improved by
Garg et al. [2023], who show the existence of EFX and fPO
allocations for three bi-valued agents.

Given the challenges in computing EFX allocations,
many studies focus on the approximations of EFX allo-
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cations. Zhou and Wu [2024] demonstrate the existence
of a polynomial-time algorithm that computes (2 +

√
6)-

approximate EFX ((2 +
√
6)-EFX) allocations for three

agents. Recently, Afshinmehr et al. [2024] and Christoforidis
et al. [2024] improve this result, showing that 2-EFX allo-
cations can be computed in polynomial time for three agents.
For a general number of agents, the state-of-the-art results are
by Garg et al. [2024], who show the existence of 4-EFX al-
locations for general additive instances, and 3-EFX and fPO
allocations for bi-valued instances.

1.1 Our Results and Techniques
In this work, we consider the allocation of chores for bi-
valued instances, where the cost of any item on any agent
is either 1 or k, where k > 1. We call them {1, k}-instances.
In our first result, we improve the state-of-the-art approxima-
tion ratio for EFX and fPO allocations for bi-valued chores to
(2− 1/k).

Result 1 (Theorem 3.14). For {1, k}-instances of indivisible
chores, there exists an algorithm that computes (2−1/k)-EFX
and fPO allocations in polynomial time.

As in recent works [Ebadian et al., 2022; Garg et al., 2022;
Wu et al., 2023], our analysis follows the Fisher market
analysis framework, a classic and widely used approach for
computing allocations that are both fair and fPO. By asso-
ciating a payment to every chore and computing an equilib-
rium, we can focus on achieving fairness, where the Pareto
optimality will be implied by the equilibrium. Following
this framework, Garg et al. [2024] start with an envy-free
fractional earning restricted equilibrium (where the earn-
ing of an agent from any item is bounded) and devise a
rounding scheme that computes a 3-EFX and fPO alloca-
tion 1. Instead, in this work we start with the pEF1 inte-
gral equilibrium 2 for bi-valued chores [Garg et al., 2022;
Wu et al., 2023], and design an algorithm that executes a se-
quence of item reallocations and returns a (2−1/k)-EFX and
fPO allocation in polynomial time. A crucial difference be-
tween our analysis and that of Garg et al. [2024] is that since
we start with a pEF1 equilibrium, to compute a (2 − 1/k)-
EFX and fPO allocation, it suffices to consider the case when
every agent possesses at most one high payment item. There-
fore, by partitioning the agents into two groups depending on
whether they have high payment items, we show that it suf-
fices to reallocate items across the two groups. Since our al-
gorithm and analysis do not require rounding fractional items,
it is much simpler than that of Garg et al. [2024].

Moreover, we show that better results can be obtained for
the case when k = 2.

Result 2 (Theorem 4.1). For {1, 2}-instances of indivisible
chores, there exists an algorithm that computes EFX and fPO
allocations in polynomial time.

We note that very few results are known for EFX and fPO
allocations for chores. In fact, even the existence of EF1

1As an intermediate step, they first round the equilibrium to a
2-EF2 and fPO allocation.

2See the definition of pEF1 equilibrium in the Preliminaries.

and PO allocations for chores remains a major open problem,
which is in sharp contrast to the allocation of goods [Cara-
giannis et al., 2019]. The existence of EFX and fPO alloca-
tions for chores has only been established for some special
cases, e.g., for three bi-valued agents [Garg et al., 2023], for
bi-valued instances with m ≤ 2n [Garg et al., 2024] and
for binary instances ({0, 1}-instances) [Tao et al., 2025]. For
some slightly more general cases, it has been shown that EFX
is incompatible with (fractional) Pareto optimality. For exam-
ple, Garg et al. [2023] show that EFX and fPO allocations do
not always exist for the case with two agents, and the case
with two types of chores. Tao et al. [2025] demonstrate that
EFX and PO allocations do not always exist for ternary in-
stances, where the cost of any item on any agent can only
take values in {0, 1, 2}.

Our algorithm and analysis follow a similar framework
as our first result, e.g., we start with the pEF1 equilib-
rium and reallocate items to strengthen the fairness guaran-
tee. However, to improve the approximation ratio further, we
need a finer classification of the agents into groups. Fortu-
nately, for the pEF1 equilibrium for {1, 2}-instances, it can
be shown that the earning of agents can only take values in
{z, z + 1, z + 2}, for some integer z. Therefore, it suffices to
reallocate items between agents with earning z and those with
earning z + 2, until one of the two groups becomes empty,
or the allocation becomes EFX. By proving that every agent
with earning z will participate in item reallocation at most
once, we show that our algorithm returns an EFX and fPO
allocation in polynomial time.

1.2 Other Related Work
Due to the vast literature on the fair allocation problem, in the
following we only review the results regarding the approxi-
mation and computation of EFX allocations. For a compre-
hensive overview of other related works, please refer to the
surveys by Aziz et al. [2022b], Amanatidis et al. [2023].

EFX Allocations for Goods. Compared to the allocation
of chores, the case of goods admits more fruitful results. The
EFX allocations are shown to exist for two agents with arbi-
trary valuations or any number of agents with identical valu-
ations by Plaut et al. [2020]; for three agents by Chaudhury
et al. [2024] and Akrami et al. [2025]; and for two types of
agents by Mahara [2023]. For bi-valued instances, Amana-
tidis et al. [2021] establish the existence of EFX and PO allo-
cations. Furthermore, Garg and Murhekar [2023] introduce a
polynomial-time algorithm for the computation of EFX and
fPO allocations. Regarding the approximation of EFX al-
locations, Chan et al. [2019] demonstrate the existence of
0.5-EFX allocations, while Amanatidis et al. [2020] improve
the approximation ratio to 0.618. Recently, Amanatidis et
al. [2024] improve this ratio further to 2/3 for some special
cases, e.g., seven agents or tri-valued goods.

EFX Allocations with Unallocated Items. For the alloca-
tion of goods, Chaudhury et al. [2021] show that EFX al-
locations exist if we are allowed to leave at most (n − 1)
items unallocated. The result is improved to (n − 2) items
by Berger et al. [2022], who also show that EFX allocations
with at most one unallocated item can be computed for four
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agents. For the allocation of chores, EFX allocations with at
most (n − 1) unallocated items have been shown to exist for
bi-valued instances by Zhou and Wu [2024].

2 Preliminaries
We consider how to fairly allocate a set of m indivisible items
(chores) M to a group of n agents N . We call a subset of
items, e.g. X ⊆ M , a bundle. Each agent i ∈ N has an
additive cost function ci : 2M → R+ ∪ {0} that assigns
a cost to every bundle of items. For convenience, we use
ci(e) to denote ci({e}), the cost of agent i ∈ N on item
e ∈ M , thus ci(X) =

∑
e∈X ci(e) for all X ⊆ M . We use

c = (c1, . . . , cn) to denote the cost functions of agents. For
any subset of items X ⊆ M and item e ∈ M , we use X + e
and X − e to denote X ∪ {e} and X \ {e}, respectively. An
allocation X = (X1, . . . , Xn) is an n-partition of the items
M such that Xi ∩ Xj = ∅ for all i ̸= j and ∪i∈NXi = M ,
where agent i receives bundle Xi. Given an instance I =
(N,M, c), our goal is to find an allocation X that is fair to all
agents and also efficient.
Definition 2.1 (EF). An allocation X is envy-free (EF) if for
any i, j ∈ N we have ci(Xi) ≤ ci(Xj).
Definition 2.2 (EF1). An allocation X is called envy-free up
to one item (EF1) if for any agents i, j ∈ N , either Xi = ∅,
or there exists an item e ∈ Xi such that ci(Xi−e) ≤ ci(Xj).
Definition 2.3 (β-EFX). For any β ≥ 1, an allocation X is
β-approximate envy-free up to any item (β-EFX) if for any
agents i, j ∈ N , either Xi = ∅, or for any e ∈ Xi, we have
ci(Xi− e) ≤ β · ci(Xj). When β = 1, the allocation is EFX.

Notice that all the fairness notions mentioned above are
scale-free, i.e., if an allocation satisfies one of these notions,
then it remains to satisfy the same notion if we rescale any
cost function.
Definition 2.4 (fPO). A (fractional) allocation X′ Pareto
dominates another allocation X if ci(X ′

i) ≤ ci(Xi) for all
i ∈ N and the inequality is strict for at least one agent. An
allocation X is fractional Pareto optimal (fPO) if X is not
dominated by any other fractional allocation.
Definition 2.5 (Bi-valued Instances). An instance is called
bi-valued if there exist constants a, b ≥ 0 such that for any
agent i ∈ N and item e ∈M , we have ci(e) ∈ {a, b}.

We remark that when a = 0 or b = 0, such instances
reduce to binary instances, for which EFX and PO alloca-
tions exist and can be computed in polynomial time [Tao et
al., 2025]. Hence, in the following, we assume w.l.o.g. that
a ̸= 0 and b ̸= 0. Additionally, we can rescale all the cost
functions such that ci(e) ∈ {1, k}, where k > 1 can be ar-
bitrary number and does not have to be an integer. Note that
for all i ∈ N , there exists at least one item e ∈ M with cost
ci(e) = 1 as otherwise we can rescale the cost functions so
that ci(e) = 1 for all e ∈ M . For convenience, we refer to
bi-valued instances mentioned above as {1, k}-instances.
Fisher Market. In the Fisher market, there is a payment
vector p that assigns each chore e ∈M a payment p(e) > 0.
For any subset X ⊆ M , let p(X) =

∑
e∈X p(e). Given

the payment vector p, we define the pain-per-buck ratio

αi,e of agent i for chore e as αi,e = ci(e)
p(e) , and the mini-

mum pain-per-buck (MPB) ratio αi of agent i to be αi =
mine∈M{αi,e}. Intuitively, when agent i receives chore e,
she needs to perform ci(e) units of work and receives p(e)
units of payment in return. Therefore every agent would like
to receive items with low cost and high payment. Note that
while the costs are subjective, the payments are objective. For
each agent i, we define MPBi = {e ∈M : αi,e = αi} as the
set of items with the minimum pain-per-buck ratios and we
call each item e ∈ MPBi an MPB item of agent i. An alloca-
tion X with payment p forms a (Fisher market) equilibrium
(X,p) if each agent only receives her MPB items.

Following the First Welfare Theorem [Mas-Colell et al.,
1995], for any market equilibrium (X,p), the allocation X is
fPO. For completeness, we provide a short proof here.

Lemma 2.6. For any market equilibrium (X,p), the alloca-
tion X is fPO.

Proof. If the allocation X with payment p is an equilibrium,
then for any agent i ∈ N , any item e ∈ Xi and any agent
j ̸= i we have

ci(e)

αi
=

ci(e)

αi,e
= p(e) =

cj(e)

αj,e
≤ cj(e)

αj
.

Thus, the allocation minimizes the objective
∑

i∈N
ci(Xi)

αi
.

Suppose that there exists another allocation Y with payment
p that fractionally Pareto dominates X; this would strictly de-
crease the objective, i.e.,

∑
i∈N

ci(Yi)
αi

<
∑

i∈N
ci(Xi)

αi
, lead-

ing to a contradiction. Therefore, the allocation X is fPO.

Definition 2.7 (pEF1). An equilibrium (X,p) is called pay-
ment envy-free up to one item (pEF1) if for any i, j ∈ N ,
either Xi = ∅, or there exists an item e ∈ Xi, such that
p(Xi − e) ≤ p(Xj).
Definition 2.8 (β-pEFX). For any β ≥ 1, an equilibrium
(X,p) is called β-approximate envy-free up to any item (β-
EFX), if for any two agents i, j ∈ N either Xi = ∅ or for any
item e ∈ Xi, we have

p(Xi − e) ≤ β · p(Xj).

when β = 1, the equilibrium is pEFX.

Next, we establish a few lemmas showing that the ap-
proximate payment envy-freeness implies approximate envy-
freeness. Note that vice-versa is not true, e.g., it is possible
that an allocation is EFX but not pEFX. In other words, the
payment envy-freeness is strictly stronger than envy-freeness.

Lemma 2.9. If an equilibrium (X,p) is pEF1, then the allo-
cation X is EF1.

Proof. Since (X,p) is pEF1, for any i, j ∈ N , there exists
an item e ∈ Xi, such that p(Xi − e) ≤ p(Xj). Therefore,
according to the definition of MPB allocation, we have:

ci(Xi − e) = αi · p(Xi − e) ≤ αi · p(Xj) ≤ ci(Xj),

where the last inequality holds since the pain-per-buck ratio
of agent i on any item is at least αi.

Lemma 2.10. Given any equilibrium (X,p), if agent i ∈ N
is β-pEFX towards agent j ∈ N , then i is β-EFX towards j.
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Proof. Since i is β-pEFX towards j, for any e ∈ Xi, we have
p(Xi − e) ≤ β · p(Xj). Given that (X,p) is an equilibrium,
we have:

ci(Xi − e) = αi · p(Xi − e) ≤ β · αi · p(Xj) ≤ β · ci(Xj).

Corollary 2.10.1. Given any equilibrium (X,p), if agent i is
not β-EFX towards j, then i is not β-pEFX towards j.

3 (2− 1/k)-EFX and fPO for {1, k}-Instances
In this section we present a polynomial-time algorithm for
computing (2 − 1/k)-EFX and fPO allocations for {1, k}-
valued instances. For bi-valued instances, several works
showed that EF1 and fPO allocations exist and can be com-
puted in polynomial time [Ebadian et al., 2022; Garg et al.,
2022; Wu et al., 2023] based on the Fisher market framework.
For any given bi-valued instance, they compute a pEF1 equi-
librium, which implies an EF1 and fPO allocation. Specifi-
cally, the equilibrium has the following properties.

Lemma 3.1 ([Garg et al., 2022; Ebadian et al., 2022]). There
exists an algorithm that given any {1, k}-instance (N,M, c)
computes an equilibrium (X,p) that is pEF1, and satisfies
p(e) ∈ {1, k} for all e ∈M in polynomial time.

For an equilibrium satisfying p(e) ∈ {1, k} for all e ∈ M ,
we call it a {1, k}-payment equilibrium.

3.1 Properties of {1, k}-Payment Equilibrium
Depending on the payment vector p, we divide the items into
two groups L and H , where L contains all items with low
payment and H contains all items with high payment. We
further categorize agents according to whether they receive
high payment items.
Definition 3.2. Chores are categorized as:

• L = {e ∈ M : p(e) = 1},

• H = {e ∈ M : p(e) = k}.

Agents are categorized as:
• NL = {i ∈ N : Xi ⊆ L},

• NH = {i ∈ N : |Xi ∩H| ≥ 1}.

We can assume that both L and H are non-empty; oth-
erwise, all items will have the same payment, and the equi-
librium will already be pEFX. Therefore, NH is non-empty.
We can further assume that NL is non-empty because oth-
erwise the equilibrium is (2 − 1/k)-pEFX: for all agents
i, j ∈ N = NH and any e ∈ Xi, we have

p(Xi − e) ≤ p(Xj) + k − 1 =

(
1 +

k − 1

p(Xj)

)
· p(Xj)

≤ (2− 1

k
) · p(Xj),

where the first inequality holds since (X, p) is pEF1 and
the second inequality holds since Xj ∩ H ̸= ∅. Next we
establish some useful properties for {1, k}-payment equilib-
rium (X,p). Note that these properties hold for any {1, k}-
payment equilibrium, regardless of whether it is pEF1 or not.

Lemma 3.3. For any {1, k}-payment equilibrium (X,p), we
have the following properties:

1. For any agent i ∈ N , we have αi ∈ {1, 1
k};

2. For any agent i ∈ NL, we have αi = 1;

3. For any agent i ∈ NL and item e ∈ H , we have ci(e) =
k and e ∈ MPBi.

Proof. We prove these properties one by one.

• Fix any agent i ∈ N . Since ci(e) ∈ {1, k} and p(e) ∈
{1, k} for all e ∈ M , we have αi,e ∈ {k, 1, 1

k}. As
there exists at least one item e with ci(e) = 1, we have
αi ≤ αi,e =

1
p(e) ≤ 1, which implies the first property.

• Fix any i ∈ NL. Since p(e) = 1 for all e ∈ Xi, we have
αi =

ci(e)
p(e) = ci(e) ≥ 1. Combining this with the first

property, we have αi = 1.

• Fix any agent i ∈ NL and item e ∈ H , we have ci(e) =
αi,e · p(e) ≥ αi · k = k. Therefore we have ci(e) = k
and αi,e = 1 = αi, which implies e ∈ MPBi.

Note that while it is possible that αi =
1
k for some i ∈ NH ,

it happens only if ci(e) = 1 and p(e) = k for all e ∈ Xi.
Moreover, all low payment items are not in MPBi.

Next, we establish more properties for pEF1 {1, k}-
payment equilibrium.

Lemma 3.4. For any {1, k}-payment equilibrium (X,p), if
(X,p) is pEF1 for agent i ∈ NH (i.e., i is pEF1 towards all
other agents), then we have |Xi ∩ L| ≤ minj∈NL

{|Xj |}.

Proof. Assume otherwise that |Xi ∩ L| > |Xj | for some j ∈
NL. Since |Xi ∩H| > 0, we have

min
e∈Xi

{p(Xi − e)} = p(Xi)− k ≥ |Xi ∩ L| > |Xj | = p(Xj),

which implies that agent i is not pEF1 towards agent j and is
a contradiction.

Lemma 3.5. For any {1, k}-payment equilibrium (X,p), if
there exists an agent i that is pEF1 but not (2 − 1/k)-pEFX
towards another agent j, then we have p(Xj) < k.

Proof. Since i is pEF1 towards j, we have p(Xi) ≤ p(Xj)+
k. Suppose that p(Xj) ≥ k. We have

p(Xi)− 1 ≤ p(Xj) + k − 1 ≤ p(Xj) + (1− 1

k
) · p(Xj)

= (2− 1

k
) · p(Xj).

In other words, i is (2− 1/k)-pEFX towards agent j, which
leads to a contradiction.

3.2 The Reallocation Algorithm
Now we are ready to introduce our algorithm. We begin with
the {1, k}-payment pEF1 equilibrium (X0,p) as described
in Lemma 3.1. As long as the allocation is not (2 − 1/k)-
EFX, we find an agent i that is not (2−1/k)-EFX towards an
agent j, and reallocate some items between i and j (see Al-
gorithm 1). During these reallocations, we do not change the
payment of any item. Throughout the execution of the algo-
rithm, we maintain the property that (X,p) is an equilibrium.
Specifically, we ensure that when we reallocate an item e to
agent i, we have e ∈ MPBi.
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Note that if X0 is not (2 − 1/k)-EFX, then (X0,p) is
not (2 − 1/k)-pEFX. We first show that if (X0,p) is not
(2 − 1/k)-pEFX, we have some useful properties regarding
the earnings of agents.

Lemma 3.6. If the equilibrium (X0,p) is not (2 − 1/k)-
pEFX, then we have mini∈NL

{p(X0
i )} < k.

Proof. Since (X0,p) is pEF1 and not (2−1/k)-pEFX, there
exist i, j ∈ N such that agent i is not (2−1/k)-pEFX towards
j. Following Lemma 3.5, we have p(X0

j ) < k. Recall that
every agent in NH has at least one high payment item. Hence
we have j ∈ NL and mini∈NL

{p(X0
i )} ≤ p(X0

j ) < k.

Given the above lemma and that (X0,p) is pEF1, we have
the following property for (X0,p).

Corollary 3.6.1. If (X0,p) is not (2−1/k)-pEFX, then there
exists an integer z < k such that

• for all agent j ∈ NL, p(Xj) ∈ {z, z + 1};
• for all agent i ∈ NH , p(Xi) ∈ [k, k + z].

Proof. By Lemma 3.6, let z = minl∈NL
p(X0

l ) < k. For
agents j ∈ NL, since they only receive low payment items, z
must be an integer. Combined with the fact that X0 is pEF1,
we have p(Xj) ∈ {z, z + 1}. Moreover, for every agent
i ∈ NH , since i possesses at least one high payment item, we
have p(Xi) ∈ [k, k + z] by the pEF1 property.

Corollary 3.6.1 highlights that our starting point, the pEF1
equilibrium, possesses several useful properties, e.g., agents
in NL are pEFX towards each other and agents in NH are
(2 − 1/k)-pEFX towards each other. Therefore, to compute
an allocation that is (2 − 1/k)-EFX and fPO, it suffices to
eliminate the strong envy from agents in NH to agents in NL.

High Level Idea. The most natural idea is to reallocate
items from agents in NH to those in NL, until the allocation
is (2 − 1/k)-pEFX (which implies (2 − 1/k)-EFX and fPO,
by Lemma 2.10). However, such reallocation must be “MPB-
feasible”, i.e., whenever we allocate an item e to agent i, we
need to ensure that e ∈ MPBi, as otherwise the equilibrium
property ceases to hold. As we have shown in Lemma 3.3,
all high payment items are MPB to agents in NL. However,
reallocating these items does not help achieving (2 − 1/k)-
pEFX. On the other hand, there might not be sufficient low
payment items from NH that can be reallocated to NL, and it
is difficult to maintain (2−1/k)-pEFX between agents in NL.
To get around these difficulties, we instead focus on ensuring
(2 − 1/k)-EFX, while guaranteeing that all reallocations are
MPB-feasible (which maintains the equilibrium and the fPO
property). We establish a useful property in Lemma 3.11 that
if agent i is not (2−1/k)-EFX towards agent j, then we have
Xj ⊆ MPBi. That means, while we cannot guarantee the
MPB-feasibility for allocating the low payment items from
Xi to Xj , we can instead exchange all low payment items
in Xj with the high payment item in Xi, which preserves
the equilibrium property and balances the earning between
agents i and j. Note that throughout the whole execution of
the algorithm, we do not change the payment of any item.

Algorithm 1: Computation of (2−1/k)-EFX and fPO
allocations for {1, k}-instances
Input: A pEF1 {1, k}-payment equilibrium (X,p)

for {1, k}-instances
1 while exists agent i that is not (2− 1/k)-EFX towards

agent j do
2 j ← argmin{p(Xj′) : i strongly envies j′};

// i ∈ NH, j ∈ NL, by Lemma 3.11
3 let e ∈ Xi ∩H be the high payment item in Xi;
4 update Xi ← Xi ∪Xj − e;

// Xj ⊆ MPBi, by Lemma 3.11
5 update Xj ← {e};

// e ∈ MPBj, by Lemma 3.3
6 NH ← NH \ {i} ∪ {j};
7 NL ← NL \ {j} ∪ {i};

Output: Allocation X

In the following, we say that agent i strongly envies agent
j if i is not (2− 1/k)-EFX towards j.

We use Xt to denote the allocation at the beginning of
round t. During the item reallocations, we may reallocate
high-payment items, and thus agents may shift between NL

and NH . We use N t
H and N t

L to denote the set of agents with
and without high payment items at the beginning of round
t, respectively. Specifically, N0

L, N
0
H denote the responding

agent sets in the initial equilibrium (X0,p). As an illustra-
tion, we give an example of the execution of Algorithm 1.

Example 3.7. Consider the following {1, k}-instance with
seven agents and k = 6. At the beginning of round t, p(Xt

1) =
2, p(Xt

2) = 2, p(Xt
3) = 3, p(Xt

4) = 6, p(Xt
5) = 7, p(Xt

6) =
8, and p(Xt

7) = 8. In this instance, agents 1, 2, and 3 are in
group N t

L while agents 4, 5, 6, and 7 are in group N t
H . Agent

7 is not (2 − 1/k)-EFX towards some agents, with agent 1
having the minimum earning among them. Then, following
Algorithm 1, agent 1 receives Xt

7 ∩ H and agent 7 receives
all items in Xt

1. See the illustration of the example in Figure 1.

3.3 Invariants and Analysis of Algorithm
Note that Xt+1, N t+1

H , N t+1
L denote the allocation, the set

of agents with and without high payment items at the end of
round t, respectively. Before analyzing the algorithm, we first
introduce several invariants that will be useful for our subse-
quent analysis. In our algorithm, we ensure that the equilib-
rium property is never violated, i.e., (Xt,p) is an equilibrium
for all t, which guarantees that the allocation is fPO.

Invariant 3.8 (Equilibrium Invariant). For all t ≥ 0, (Xt,p)
is a {1, k}-payment equilibrium.

In addition, our algorithm maintains the invariant that
agents within the same group are always (2 − 1/k)-EFX
towards each other. This means that we can focus solely
on eliminating envy between different groups. Furthermore,
their earnings are always bounded within the specified ranges.

Invariant 3.9 (Low Group Invariant). For all t ≥ 0, agents
in N t

L are (2− 1/k)-EFX towards each other. Moreover, for
all j ∈ NL, we have p(Xt

j) ∈ [z, k + z].
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Figure 1: The illustration of Example 3.7. (a) The earning status of
agents at the beginning of round t. (b) The earning status of agents
after the swap operation.

Invariant 3.10 (High Group Invariant). For all t ≥ 0, i ∈
N t

H , we have p(Xt
i ) ∈ [k, k + z].

Note that Invariant 3.10 implies that the allocation is pEF1
for agents in N t

H . Moreover, agents in N t
H are (2 − 1/k)-

pEFX towards each other (which is stronger than being (2 −
1/k)-EFX), because for any two agents i, j ∈ N t

H we have
(recall that z < k)

p(Xt
i )− 1 ≤ k + z − 1 < 2k − 1 ≤ (2− 1

k
) · p(Xt

j).

In the following, we show that if the invariants are main-
tained (for (Xt,p), N t

L and N t
H ) when round t begins, then

they remain to hold when round t ends. Particularly, all in-
variants hold when round 1 begins, for (X0,p), N0

L and N0
H .

Lemma 3.11. If there exists an agent i that is not (2− 1/k)-
EFX towards another agent j in round t, then we have i ∈
N t

H , j ∈ N t
L, αi = 1, and Xt

j ⊆ MPBi.

Proof. By Invariant 3.9 and 3.10, if i is not (2−1/k)-EFX to-
wards j, then they must be from different groups. Moreover,
if i ∈ N t

L and j ∈ N t
H , then we have

p(Xt
i )− 1 ≤ k + z − 1 < 2k − 1 ≤ (2− 1

k
) · p(Xt

j),

where the first inequality holds since p(Xt
i ) ∈ [z, k + z]

by Invariant 3.9 and the last inequality holds since p(Xt
j) ∈

[k, k + z] by Invariant 3.10. Therefore we must have i ∈ N t
H

and j ∈ N t
L.

Next we show that Xt
j ⊆ MPBi. First, observe that we

must have αi = 1, as otherwise αi = 1/k and we have
ci(e) = 1 and p(e) = k for all e ∈ Xt

i . It implies that
|Xt

i | = 1, which is a contradiction with i being not (2−1/k)-
EFX towards j. Second, we show that ci(e) = 1 for all
e ∈ Xt

j . Suppose otherwise, then we have

ci(X
t
i )− 1 = αi · p(Xt

i )− 1 ≤ k + z − 1

< 2k − 1 ≤ (2− 1

k
) · ci(Xt

j),

where the last inequality holds from the fact that ci(Xt
j) ≥ k.

It’s a contradiction with i being not (2 − 1/k)-EFX towards
j. Therefore we have αi,e = 1 for all e ∈ Xt

j , which implies
Xt

j ⊆ MPBi.

Lemma 3.12. Invariants 3.8, 3.9 and 3.10 are maintained at
the end of round t.

Proof. In round t, we identify two agents i ∈ N t
H , j ∈ N t

L,
and exchange some items. By Lemma 3.11 and 3.3, we can
guarantee that both agents receive items that are in their MPB
set. Hence (Xt,p) is an equilibrium. As our algorithm does
not change the payment of any item, the equilibrium remains
{1, k}-payment. Hence Invariant 3.8 is maintained.

Next, we show that Invariant 3.9 is maintained. We re-
mark that there is only one high payment item in Xt

i since
p(Xt

i ) ≤ k + z < 2k, which implies that agent i only
holds low payment items at the end of round t. Since in
round t only i and j exchange items, it suffices to show
that at the end of round t, (1) agent i (who joins N t+1

L ) is
(2 − 1/k)-EFX towards all other agents in N t+1

L ; (2) all
other agents in N t+1

L \ {i} is (2 − 1/k)-EFX towards i; (3)
p(Xt+1

i ) ∈ [z, k + z].

(1) For any agent l ∈ N t+1
L \ {i}, if agent i is (2 − 1/k)-

EFX towards agent l in allocation Xt, then we have
ci(X

t
i ) − 1 ≤ (2 − 1/k) · ci(Xt

l ). Since αi = 1
and Xt

j ⊆ MPBi by Lemma 3.11, we have ci(X
t
j) =

αi · p(Xt
j) < k by Lemma 3.5. Hence after exchanging

a high payment item with Xt
j , the bundle cost of agent i

does not increase, and therefore agent i is still (2−1/k)-
EFX towards l (whose bundle does not change) at the
end of round t.
Suppose that agent i is not (2−1/k)-EFX towards agent
l in allocation Xt. By Lemma 3.5 we have p(Xt

l ) < k.
Recall that j is the agent with the minimum earning such
that i is not (2 − 1/k)-EFX towards. Hence p(Xt

j) ≤
p(Xt

l ) = p(Xt+1
l ). Following Lemma 3.4, we have

p(Xt+1
i )− 1 = p(Xt

i ∩ L) + p(Xt
j)− 1

≤ 2 · p(Xt
j)− 1 ≤ 2 · p(Xt+1

l )− 1

< (2− 1

k
) · p(Xt+1

l ),

where the first inequality holds since the allocation Xt

is pEF1 for agent i and the last inequality holds from the
fact that p(Xt+1

l ) = p(Xt
l ) < k.
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(2) Following Invariant 3.9, any agent l ∈ N t+1
L \{i} is (2−

1/k)-EFX towards agent j in the allocation Xt. Since
Xt

j ⊆ Xt+1
i , agent l is also (2− 1/k)-EFX towards i at

the end of round t.
(3) At the end of round t we have

p(Xt+1
i ) = p(Xt

i \H) + p(Xt
j)

≤ (k + z − k) + p(Xt
j) < z + k,

where the first inequality holds following p(Xt
i ) ≤ k+z

and |Xt
i ∩ H| = 1, the second inequality holds from

the fact that p(Xt
j) < k by Lemma 3.5. On the other

hand, we have p(Xt+1
i ) ≥ p(Xt

j) ≥ z. In conclusion,
p(Xt+1

i ) ∈ [z, k + z].

Finally, we show that Invariant 3.10 is maintained. It’s
clear that at the end of round t, Xt+1

j only contains an item
with high payment, i.e., p(Xt+1

j ) = k ∈ [k, k + z]. For any
l ∈ N t+1

H \ {j}, we have p(Xt
l ) = p(Xt+1

l ), which implies
that Invariant 3.10 is maintained at the end of round t.

Next, we will analyze the time complexity of the algorithm
and demonstrate that it terminates in polynomial time.

Lemma 3.13. The algorithm computes a (2−1/k)-EFX and
fPO allocation in O(n2m) time.

Proof. By the above analysis, in each while-loop of the algo-
rithm, an agent i ∈ N t

H and an agent j ∈ N t
L will be selected,

and after item reallocations, agent j receives one item with
payment k and agent i receives all other low payment items.
Therefore the number of agents in NH that receive at least
one low payment item will decrease by one after each while-
loop, which implies that the total number of while-loops is at
most n. Given agent i, finding the agent j that is most en-
vied by agent i can be done in O(m) time. Moreover, check-
ing whether the allocation is (2 − 1/k)-EFX can be done in
O(nm) time. Hence the algorithm runs in O(n2m) time.

In conclusion, for any given {1, k}-instance, we first com-
pute the pEF1 {1, k}-payment equilibrium in O(kn2m2)
time [Wu et al., 2023]. Subsequently, we apply Algo-
rithm 1 to iteratively reallocate the items until the allocation
is (2 − 1/k)-EFX. Since we maintain an equilibrium, fPO is
guaranteed. As demonstrated in the previous sections, our al-
gorithm guarantees this outcome in polynomial time, leading
to the following main result.

Theorem 3.14. There exists a polynomial-time algorithm
that computes a (2 − 1/k)-EFX and fPO allocation for ev-
ery given bi-valued instance.

4 EFX and fPO for {1, 2}-Instances
In this section, we consider the case that k = 2 and propose
an algorithm that computes EFX and fPO allocations. The
main result of this section is summarized as follows.

Theorem 4.1. For any {1, 2}-instance of indivisible chores,
we can compute EFX and fPO allocations in polynomial time.

Due to the page limit, the algorithm and analysis are de-
ferred to the full version of the paper3. In the following, we
provide a sketch of the algorithm and main ideas.

As in Section 3, our algorithm begins with the pEF1 {1, k}-
payment equilibrium (X,p) for {1, k}-instances by existing
works4. Note that for k = 2, we have |p(Xi) − p(Xj)| ≤ 2
for any two agents i, j ∈ N since the equilibrium (X,p) is
pEF1. Hence, we can partition the agents into three groups
Nz, Nz+1 and Nz+2 for some integer z, where an agent i
is contained in N t if p(Xi) = t. Moreover, if Nz = ∅ or
Nz+2 = ∅, then the allocation is already pEFX (thus EFX
and fPO). Therefore, a natural idea is to reallocate items be-
tween agents in Nz and Nz+2 until one of the two groups is
empty. However, due to similar difficulties we mentioned in
the previous section, achieving pEFX could be very difficult.
We therefore focus on achieving EFX while maintaining the
equilibrium property. However, in order to further improve
the approximation guarantee (regarding EFX), we need more
structural properties. Remark that the algorithm presented
by [Wu et al., 2023] divides agents into two groups, unraised
agents U and raised agents N \ U . For any i ∈ U , we have
αi = 1 while for j ∈ N \ U we have αj = 1

k . We show
that as long as the allocation is not EFX, we can find an agent
i ∈ Nz+2 that is not EFX towards an agent j ∈ Nz , where
both agents i, j are unraised. Therefore we can reallocate
items between the two agents without violating the MPB fea-
sibility. We show that by reallocating at most two items be-
tween agent i and agent j, we can ensure that either both of
them join Nz+1, or one of them receives only high payment
items and will never participate in any item reallocation in the
future. Therefore, such reallocation can happen at most O(n)
times, and an EFX and fPO allocation will be returned.

5 Conclusion and Open Problems
In this work, we present a polynomial-time algorithm that
computes (2 − 1/k)-EFX and fPO allocations for {1, k}-
instances, improving the state-of-the-art approximation ratio
for EFX allocations for bi-valued instances. We also present
a polynomial-time algorithm for the computation of EFX and
fPO allocations for {1, 2}-instances. Our results enrich and
expand the growing literature on the computation and approx-
imation of EFX allocations for chores. However, it remains
a fascinating open problem whether EFX allocations (even
without the fPO requirement) exist for bi-valued instances.
Our algorithm and analysis framework (and that of Garg et
al. [2024]) start from an equilibrium for chores and reallo-
cate items maintaining MPB feasibility, which seem to have a
great potential in improving other results regarding EF1/EFX
and fPO allocations for chores. It would be an interesting
open question to study which type of equilibrium and which
specific properties of the equilibrium would be most helpful
for approximating EF1/EFX and fPO allocations.

3See the full version at https://arxiv.org/abs/2501.04550.
4In this paper, we mainly follow the algorithm of [Wu et al.,

2023], which originally works for the weighted setting in which each
agent has a non-negative weight wi > 0 and returns a pWEF1 equi-
librium. Here we let all agents’ weight be 1/n.
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