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Abstract

Simulating pedestrian movement is important for
applications such as disaster management, robotics,
and game design. While deep learning models have
been extensively used on related problems, their
use as pedestrian simulators remains relatively un-
explored. This paper aims to encourage more re-
search in this direction in two ways. First, it pro-
poses an evaluation framework that is applicable
to both traditional and deep learning based simu-
lators. Second, it proposes and evaluates several
ideas related to input representation, choice of neu-
ral architecture, exploiting knowledge-based simu-
lators in data poor regimes, and repurposing trajec-
tory prediction models. Our extensive experiments
provide several useful insights for future research
in pedestrian simulation. The code is available at
https://github.com/vmahzoon76/DL-Crowd-Sim.

1 Introduction

Predicting and modeling human trajectories is a substantial
challenge across various domains [Rudenko et al., 2020].
It has diverse applications, including the development of
realistic crowd simulations [Zhong er al., 2022], enabling
safe navigation for self-driving cars [Lefevre et al., 2014;
Paravarzar and Mohammad, 2020], and supporting service
robots [Chik ef al., 2016]. This problem is also a topic of in-
terest in sports analysis, such as in soccer [Le et al., 2017] and
basketball [Hauri et al., 2021; Russakoff et al., 2024], thanks
to the extensive availability of tracking systems in sports.
The most common problem in this field is pedestrian tra-
Jjectory prediction [Korbmacher and Tordeux, 2022], where
we briefly observe behaviors of pedestrians in a scene and
use it to predict their short-term further movement. An exam-
ple of a typical evaluation protocol [Alahi er al., 2016] is to
observe 8 previous locations (equal to a few seconds) of the
pedestrians and to predict their next 12 locations. For model
evaluation, there are several benchmark data sets extracted
from relatively short (several minutes) videos recorded at var-
ious locations worldwide. The most common performance
metric is the distance between predicted and true trajectories.
There is a related problem called crowd simulation with
numerous practical applications, such as urban planning [As-

chwanden er al., 2008], crowd evacuation [Wong et al., 2017,
Almeida et al., 2013], simulated environments for reinforce-
ment learning in robotics [Francis and others, 2023], and
game design [Thalmann and Musse, 2012]. In case of crowd
simulation, a user can define the preferences and behaviors
of each pedestrian, including their desired destinations. The
movement of each pedestrian is determined by their current
location, current velocity, goal location, and knowledge of
the environment, such as other pedestrians and obstacles. In
a common setting of this problem, the crowd simulator in-
gests this information at time step ¢ and predicts positions of
all agents for the subsequent time step ¢ + 1. After moving all
agents to their new locations at time step ¢ + 1 with the simu-
lator, we can continue applying the simulator for an arbitrary
number of steps. This process is referred to as rollout.

Knowledge-based simulators, like the Optimal Reciprocal
Collision Avoidance (ORCA) model [Van Den Berg et al.,
2010] and the Social Force Model (SFM) [Helbing and Mol-
nar, 1995], are classic crowd simulation approaches [Zhong et
al., 2022]. The ORCA model uses a mathematical framework
to ensure collision avoidance but fails to produce realistic be-
haviors. The SFM assumes that each pedestrian is subject to
forces from other agents and obstacles, similar to how phys-
ical objects respond to forces in classical mechanics. While
SFM generates more realistic trajectories than ORCA, it re-
mains limited by quantitative metrics, as it only approximates
pedestrian behavior.

Recent interest has emerged in using deep learning in
crowd simulation [Wei e al., 2018; Yao et al., 2020; Zhang
et al., 2022; Yan et al., 2024], although the research com-
munity in this area is much smaller compared to pedestrian
trajectory prediction [Kothari er al., 2021]. Existing studies
differ widely in datasets and evaluation protocols, making it
difficult to establish reliable baselines. To address this, this
paper proposes a unified evaluation protocol, and introduces
several baselines, which are thoroughly evaluated to encour-
age further research in this field.

In this paper, we aim to bridge the gap between the crowd
simulation and trajectory prediction communities. To achieve
this, it is important to first highlight the key differences be-
tween the two tasks. Both involve predicting future trajec-
tories based on historical data, but in crowd simulation, goal
information for each pedestrian is known, whereas this in-
formation is typically unavailable in trajectory prediction. In
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trajectory prediction, observing several past locations is nec-
essary to infer a pedestrian’s walking behavior. In contrast,
only two past locations are sufficient for crowd simulation to
determine the current location and velocity, as walking be-
havior can either be predefined by the researcher or learned
from historical data. Additionally, in trajectory prediction,
the prediction horizon is limited to a few seconds because
longer-term predictions are unreliable without knowledge of
the pedestrians’ desired destinations. In crowd simulation,
however, the prediction horizon can be much longer due to
the knowledge of destination, making a rollout approach a
natural choice for generating trajectories. Despite these dif-
ferences, crowd simulation could benefit from the advanced
deep learning models, metrics, and benchmark datasets devel-
oped in trajectory prediction research. Nevertheless, adapting
these models and metrics for crowd simulation is challenging
due to the subtle distinctions between the two tasks.

Another key challenge addressed in this paper is develop-
ing deep learning crowd simulators despite the limited avail-
ability of real-world training data, which often consists of
only a few minutes of observations. To address this, we uti-
lize simulation-assisted machine learning by pretraining deep
learning models on data generated by knowledge-based sim-
ulators and fine-tuning them using real-world data.

1.1 Contributions
The contributions of this work can be summarized as follows:

* Bridge the gap between crowd simulation and pedestrian
trajectory prediction.

* Establish an evaluation framework inspired by pedes-
trian trajectory research to facilitate benchmarking in
crowd simulation.

* Address data scarcity in crowd simulation by utilizing
knowledge-based simulators.

* Thorough evaluation of several crowd simulation ap-
proaches in data-poor scenarios.

2 Related Work

2.1 Short-term trajectory Prediction

The advances in deep learning and the ability to learn
complex patterns resulted in the emergence of data-driven
pedestrian trajectory prediction approaches [Korbmacher and
Tordeux, 2022]. Proposed deep learning models for this
application include all popular architectures such as LSTM
[Alahi et al., 2016; Xue et al., 2018], RNN [Vemula et al.,
2018], CNN [Nikhil and Tran Morris, 2018; Yi et al., 20161,
and Transformers [Giuliari et al., 2021; Yu et al., 2020;
Yuan et al., 2021]. Some notable trajectory prediction mod-
els are Trajectron++ [Salzmann et al., 20201, PECNet [Man-
galam et al., 20201, STAR [Yu et al., 2020], Transformer-
TF [Giuliari et al., 2021], MemoNet [Xu et al., 2022b],
GroupNet [Xu et al., 2022al, Singular Trajectory [Bae et al.,
2024b], and LMTraj [Bae er al., 2024a]. These models have
been typically evaluated on several real pedestrian datasets
such as ETH [Pellegrini et al., 2009] and UCY [Lerner et
al., 2007] using metrics such as average displacement error

(ADE), final displacement error (FDE) and, less commonly,
collision frequency.

2.2 Knowledge-based Crowd Simulators

Knowledge-based approaches such as popular Social Force
Models [Helbing and Molnar, 1995] and Optimal Recip-
rocal Collision Avoidance (ORCA) [Van Den Berg erf al.,
2010] are collision-avoidant models grounded in mathemat-
ical rules, which contribute to their high level of generaliz-
ablity and interpretability. However, their reliance on rules
poses a challenge in replicating real-life pedestrian behaviors.
ORCA guarantees no collisions while ensuring movement to-
wards the goal. SFM [Van Den Berg ef al., 2010] consid-
ers each agent as a particle that interacts with other agents
through attracting and repulsing social forces. Both ORCA
and SFM have parameters that should be calibrated to cre-
ate realistic behaviors. Most of the papers applying ORCA
and SFM use the default values for their parameters and
there are only a few that use calibration [Kretz et al., 2018;
Tang and Jia, 2011].

2.3 Deep learning-based Crowd Simulators

A limited number of papers leverage deep learning models
for crowd simulation [Zhong et al., 2022], employing mod-
els such as FNN [Wei et al., 2018], CNN [Yao et al., 2020],
LSTM [Yu et al., 2023], Transformers [Yan et al., 2024], and
graph neural networks [Zhang er al., 2022]. Various real-life
datasets have been used such as SNU [Wei et al., 2018], ETH
[Yan et al., 2024], UCY [Zhang et al., 2022], GC [Zhang et
al., 2022], and a crowd evacuation scenario in an office envi-
ronment [Yao et al., 2020]. Evaluation metrics are varied and
can be classified into three categories: intermediate metrics,
distance-based metrics, and collision-avoidance metrics. In-
termediate metrics capture characteristics such as speed [Wei
et al., 2018; Yan et al., 2024], density, cohesiveness, and col-
lectiveness [Yao et al., 2020]. Distance-based metrics focus
on the accuracy of predicted trajectories and include Mean
Absolute Error, Optimal Transport Divergence, Maximum
Mean Discrepancy [Zhang et al., 2022], KL-Divergence, and
energy [Wei er al., 2018]. Collision-avoidance metrics in-
clude measures like collision rate [Yan et al., 2024] and the
number of collisions [Wei er al., 2018]. Each of previous pa-
pers uses a different evaluation protocol with varying combi-
nations of datasets, input-output representations, and metrics,
making it difficult to compare the approaches.

3 Methodology

3.1 Problem Formulation

Let us assume we are given a dataset covering 7" consecutive
time steps where at each time step ¢ we know the location
p;(t) of every agent ¢ in a scene. The velocity of agent 4 at
time step ¢ is vector v;(t) derived from the agent’s two previ-
ous positions. The goal of agent ¢ is represented by location
g; of a desired destination at some point in future. We assume
that agent ¢ is present for a consecutive period 7;, which is a
subset of [1,7]. We denote the positions of all NV agents at
time step ¢ by P(t) = [p1(£), p2(t), ..., pn(t)]. If agent i is
not present in a scene at time ¢ we record the value of p;(t) as
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NaN. Additionally, P (¢; : ¢2) represents the positions of all
agents from time step t1 up to to.

Given the knowledge of pedestrian locations during the last
K time steps, P(t — K + 1 : t), and knowledge w(t) about
the environment at time ¢, such as the location of obstacles,
the objective of rollout is to predict locations of pedestrians at
time ¢t +1, f’(t +1). By accepting the prediction at time ¢ + 1
as truth, it is possible to repeat the process to predict f’(t +
2), and continue it for the arbitrary number of time steps. If
the rollout is repeated L times, we denote the prediction as
P (tt+l 't L) .

The quality of the prediction can be measured in multiple
ways, and Section 3.4 describes the evaluation metrics used in
this work. In order to create the prediction, several decisions
have to be made. The first includes the choice of a predic-
tion model. The model selection impacts how the input infor-
mation (K historical locations and the environment) should
be processed to provide input to the model. Questions about
model selection and input representation are answered in Sec-
tion 3.2. Each knowledge-based and deep-learning based has
parameters that need to be fitted to training data. In pedes-
trian crowd simulation, the majority of existing benchmark
data set are very short, on the order of several minutes. Thus,
this creates an issue of learning from very limited training
data. In Section 3.3 we introduce an approach for utiliz-
ing knowledge-based models to augment the training data for
deep learning-based models. Putting all those steps together,
we obtain a workflow for development and evaluation of deep
learning crowd simulators, illustrated in Figure 1.

3.2 Modeling

Data Representation

To provide an input to a crowd simulator, we need to process
the raw data. The common input representations in the trajec-
tory prediction literature are trajectory representation [Alahi
et al., 2016] and grid representation [Guo et al., 2022]. A less
common representation is lidar representation [Van Den Berg
et al., 2010]. In this paper, we propose and evaluate models
based on trajectory and lidar representations as illustrated in
Figure 1. We do not consider grid representation appropriate
for crowd simulations because of the need to discretize the
space, which creates quantization issues with the rollout.

Trajectory Representation: In this representation, we de-
fine a center agent and place it at the origin. Using only the
last two time steps (K = 2), we record its location, velocity,
and desired destination. We also record the location, velocity,
and goal of each neighboring agent within a specified distance
relative to the center agent. Thus, neighbor agent ¢ at ¢ is rep-
resented as a 6-dimensional vector S;(t) = (p;(t), vi(t), g;).
All agent vectors are concatenated and provided as an input
to the simulation model. We note that including information
about non-pedestrian moving objects and static obstacles or
other information about the environment is not straightfor-
ward for this representation. This is why it is common in the
pedestrian trajectory prediction community to ignore the ob-
stacles. We adopt this common practice for the deep learning
models that use trajectory representation.

Lidar Representation: In this representation, we imag-

ine that a 2D laser scanner is positioned at the center agent.
The scanner has an angular resolution of 6 degrees, result-
ing in 360/0 distance measurements per scan, defined as the
distance to the nearest object in a given direction. We re-
fer to this measurement as L(t). If no obstacle is detected
within the maximum sensing range of the imagined lidar, the
distance is set to this maximum distance. With this represen-
tation, the center agent is aware both of other pedestrians and
of any moving or static obstacles. For crowd simulation, we
use L(t — 1) and L(t) as a model input. While the lidar rep-
resentation is not common in trajectory prediction, we think
it is an appealing option for crowd simulation.

Deep Learning Models
In our experiments, we employed different deep learning
model depending on input representation: (1) a transformer
model for the trajectory representation and (2) a CNN model
for the lidar representation. They will be described next. For
benchmarking, we also used a modified version of the pop-
ular Social-LSTM [Alahi et al., 2016] trajectory prediction
model with the trajectory representation in our experiments,
and we outline this model in Section 4.2.
Transformer-based model: As illustrated in Figure 1, in-
puts to the model are the 6-dimensional vector S.(t) of the
center agent and corresponding vectors of its neighbors S; (¢).
Each agent’s vector is first passed to a shared feedforward
neural network (FNN1), which transforms it into a hidden
representation of dimension nhid. Subsequently, a Trans-
former encoder [Vaswani er al., 2017], incorporating a multi-
head attention mechanism, generates embeddings that are
context-aware and capture the interactions among the agents.
The embedding associated with the center agent, denoted as
2. € R™ js extracted and passed through another feedfor-
ward neural network (FNN2) of dimension R™"4%2 to pre-
dict the next velocity of the center agent 0..(¢ + 1), which is
then used to predict its next position p.(t + 1). By repeatedly

using every agent as the center agent, we obtain f’(t +1).

CNN-based model: We developed a CNN-based model il-
lustrated in Figure 1 as a crowd simulator based on lidar rep-
resentation. The model inputs (L(t — 1), L(t)) are sufficient
to capture the locations and relative velocities of all agents as
well as the geometry and position of static obstacles. The in-
put is passed through a series of convolutional layers, which
slide over the angular dimensions, followed by an FNN layer.
This resulting embedding is concatenated with the goal des-
tination g, and current velocity v.(¢) of the center agent. The
augmented embedding is passed to an FNN to predict the next
velocity of the center agent 0. (¢ + 1), which is then used to
predict its next position p.(t + 1). By repeating the process
for every agent, we obtain P (¢ + 1).

The loss function for both deep learning models is

) 1 .
Lk (ve, Oc) = §||Uc(t +1) = 0c(t + 1) |2 (1)

3.3 Transfer Learning

One of the primary challenges associated with deep learning
models is their requirement for extensive amounts of real-
world pedestrian trajectory data for training, which is often
not readily available. In our case, the benchmark datasets
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Figure 1: Workflow for Training and Evaluating Crowd Simulation Models. We use the first 7¢, seconds of real-world pedestrian data to
calibrate SFM and ORCA, generating augmented data. A deep learning model is pretrained on this simulation data, fine-tuned on the next

Tirain seconds of real data, and evaluated on the final Tis seconds using three metrics.

Depending on the input representation, we use a

transformer-based model for trajectory representation and a CNN-based model for lidar representation.

have only minutes of data. To address this limitation, we use
knowledge-based crowd simulators to generate large quanti-
ties of augmented training data and pretrain a deep learning
model on the augmented data before fine-tuning it on real-
world data. We hypothesized that training on augmented data
will help models gain knowledge about collision avoidance
and general principles of pedestrian behavior, allowing them
to be rapidly fine-tuned on small quantities of real-life data.

Parameter Calibration: Before we generate augmented
data, we calibrate ORCA and SFM parameters on the first
Teq: seconds of real-life training data. Our experiments
showed that T,,; = 10 is sufficient because each model has
only a few parameters needing calibration. For each param-
eter in either knowledge-based model, we explored a set of
candidates. We accepted a set of parameters that resulted in
the smallest average displacement error, defined as the mean
Euclidean distance between predicted and ground truth agent
positions after rollout. Information about each calibrated pa-
rameter for ORCA and SFM is listed in the Appendix(B) '

Data Augmentation: Our process to create augmented
data was inspired by [Long et al, 2017], who used cali-
brated ORCA [Van Den Berg et al., 2010] to create a large
dataset to train a neural network. To create one augmented
data point, we place the center agent at the origin and place
up to 10 neighboring agents at random locations around the
center agent, as shown in Figure 1. We generate agents’ ve-
locities at random and set each agent’s goal at a random loca-
tion. There are no static obstacles in the generated data. Once
the scene is set, we run calibrated ORCA or SFM for a single
time step to avoid overemphasizing linear behaviors and in-
crease generalizability. We generated ORCA-augmented and
SFM-augmented datasets.

! Appendix is provided in:
https://vmahzoon76.github.io/DL-Crowd- Sim/appendix.pdf

Pretraining and Fine-tuning: Depending on the model,
we convert the augmented data into their trajectory or li-
dar representation. Then, we pretrain the model on ORCA-
or SFM-augmented data. It is followed by fine-tuning on
real-world data. This fine-tuning process adjusts the model
weights to better align with actual pedestrian behaviors and
environmental nuances present in the real-world data, thereby
enhancing the model’s accuracy and robustness.

3.4 Evaluation Metrics

Numerous metrics have been proposed in trajectory predic-
tion and crowd simulation literature [Zhong et al., 2022;
Kothari et al., 2021; Weng et al., 2023], often complicating
benchmarking efforts. We think that crowd simulation com-
munity should strive to use a small set of simple metrics. In
this paper, we propose to use only three metrics: distance-
based, goal-reaching, and collision-severity.

In order to evaluate a simulator, we can start the simulator
at any time step ¢ and roll it out for any number of steps . A
good simulator will produce trajectories that closely resemble
real trajectories from time ¢; + 1 to t5 + h for any ¢, and h.
Thus, we run simulations with different ¢, and h and average
out their performance.

Average Displacement Error (ADE): Given simulation
start time ¢, and simulation horizon h, we define

N Z S 150~ p (01 |

IJIET
where T is the set of time steps during which agent j is
present within the rollout interval [t; 4+ 1,¢5 + h], and N is
the number of agents present during the rollout. ADE(ts, h)
is the average discrepancy between the predicted and actual
positions of all agents present during the rollout.

ADE(t,, h) =
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Minimum Displacement Error (MDE): Given simulation
start time ¢t and simulation horizon h, we define

Z min 5 (1)

MDE measures how close agents get to their final position
during the rollout. We note that MDE is similar to the Final
Displacement Error (FDE), which is popular in trajectory pre-
diction [Alahi et al., 2016]. However, while FDE measures
the difference between the last predicted position and the last
actual position, MDE evaluates how close the simulator gets
to the final destination during the rollout.

Average Collision Severity (ACS): Agents in our work are
modeled as disks with radius r, with the distance between two
agents defined as the distance between the centers of their
disks. A collision is considered to occur when the disks over-
lap. Given the distance d between two agents ¢ and j at time
step t, we define soft collision severity between agents ¢ and
7 as the ramp function

MDE(t,, h) = .

—Dpj (mjax ;)

CS(i. 1) = {ST(% —d(i, ) i;(q <d(i,j) < 2r

i,7) > 2r, 2)

and hard collision severity as the step function

1 if0<d(i,j) <2r
CS(i, j,t) = {0 d(i.g) > 3)

While hard C'S counts number of collisions, soft C'S puts a
smaller weight to minor collisions. We note that C'S' metrics
do not need knowledge of ground truth positions and they
solely focus on occasions when simulated agents collide.

Given simulation start time ¢, and simulation horizon h,

we define
ACS(ts,h) = Yo > CS(i),
Zj 1 \T | teHT 4 ,jeAgents(t)
i#]
where HT = [t +1,ts+ h] and Agents(t) is a set of agents

existing at time ¢. ACS measures the average collision sever-
ity experienced by agents across all time steps during a roll-
out. In the results section, we refer to ACS using soft C'S' as
SACS and the one using hard CS as hACS.

Averaged Metrics: For a given h, we run multiple rollouts
by shifting ¢, across time steps. For example, starting from
ts = 1, we perform a rollout to obtain f’(l :h), then repeated
the process from ¢t = 2 to obtain f’(2 :h+1), continuing this
until the final rollout in which P(T' — h + 1:T') is obtained.
We then average the metrics over all rollouts for a given & to
obtain ADE(h), MDE(h) and ACS(h).

Nonlinear ADE(h): In our benchmark datasets, most
pedestrians exhibit linear behavior, allowing even the simple
simulators to achieve a low ADE(h). Consequently, we iden-
tify non-linear agents in each dataset and compute ADE(h)
on them, denoting it as nADE(h). An agent is non-linear if
the area between the ground truth trajectory and a straight
line from the pedestrian’s starting point to their goal exceeds
a threshold.

4 Results

4.1 Datasets

Real-world data: We used four datasets popular in pedes-
trian trajectory prediction research: ETH, Hotel [Pellegrini
et al., 2009], Zaral, and Zara2. They contain manually ex-
tracted trajectories from static camera videos ranging from 6
to 13 minutes. All datasets use a time step of 0.4s. Since
the datasets do not contain information about obstacles, we
manually extracted them from original data in form of poly-
gons. Appendix(D) contains more information about all four
datasets. It is interesting to note that related work [Alahi et
al., 2016] only considers pedestrians that exist during the full
prediction horizon, thus corrupting the data. In contrast, we
do not remove any pedestrians during training or simulations.

Augmented data generation: For pretraining (see Section
3.3), for both ORCA and SFM, we generated 500, 000 train-
ing, 50, 000 validation, and 50, 000 test data points.

4.2 Experimental Design

Given that there are 4 different datasets, we used two types of
evaluation. In the first, for each dataset we trained models on
the first 50% of the dataset and tested them on the last 50%.
This evaluated how a simulator behaves when applied under
known conditions. We refer to this as the within distribu-
tion evaluation. In the second, we trained the models on three
datasets and tested on the remaining dataset. This evaluated
how a simulator trained in one environment will perform in a
different environment. We refer to this as the outside distri-
bution evaluation. In either case, to calibrate ORCA and SFM
models we used only the first 10 seconds of the training data.

Crowd Simulation Models
We used the following crowd simulation models:

CVM: Constant Velocity Model (“CVM”) is a simple
baseline model that maintains the agent’s current speed and
directs it towards the goal. In our datasets, the majority
of agents exhibit linear behavior, allowing this baseline to
achieve a low ADE(h).

SFM and ORCA: These are calibrated knowledge-based
models on the first 10 seconds of training data. ORCA im-
plementation allows for inclusion of information about static
obstacles. Thus, we evaluated ORCA versions that include
obstacles (“Vis Obst”) and that ignore them (“Invis Obst”).
Our implementation of SFM was blind to obstacles.

S-LSTM: We adapted Social-LSTM [Alahi et al., 2016], a
well-known benchmark in trajectory prediction that uses tra-
jectory data representation. We modified the original model
for K = 2 time steps as input. We concatenated the resulting
LSTM embedding with the center agent’s goal location and
passed this to feedforward layers to predict the velocity.

CNN and Transformer: “CNN” refers to a CNN-based
model that inputs lidar representation, while “Transf” refers
to transformer-based model that uses trajectory representa-
tion, as described in 3.2. Suffix “Scratch” means that the
model was not pretrained on augmented data, while “Fine”
means that model was pretrained, and it is followed by suf-
fix “ORCA” or “SFM” that specifies which knowledge-based
model was used to create the pretraining data. For instance,
“Transf Fine SFM” denotes a Transformer-based model that
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Data ORCA SEM
Model CVM | Transf | CNN | CVM | Transf | CNN
Training Data | 0.359 | 0.002 | 0.055 | 0.508 | 0.000 | 0.017
Test Data 0.359 | 0.026 | 0.061 | 0.508 | 0.005 | 0.021

Table 1: MSE of velocity prdiction on Training and Test Data

Method ADE | nADE | MDE | hACS | sACS
CVM 1.44 2.83 0.11 3.57 1.08
ORCA Vis Obst 1.41 2.02 0.16 0.00 0.00
ORCA Invis Obst | 1.53 2.57 0.16 0.05 0.00
SFM Invis Obst 1.41 2.16 0.13 0.00 0.00

S-LSTM 11T 1.29 0.13 7.50 2.67

ETH Transf Scratch 1.36 2.00 0.19 7.46 2.97
Transf Fine ORCA | 1.11 1.66 0.07 3.57 1.08

Transf Fine SFM 0.85 1.19 0.05 0.41 0.10

CNN Scratch 1.21 1.53 0.12 7.05 1.97

CNN Fine ORCA | 0.87 1.09 0.06 5.33 1.02
CNN Fine SFM 0.89 1.06 0.06 3.25 0.79
CVM 1.31 221 0.08 0.72 0.24
ORCA Vis Obst 1.29 1.94 0.12 0.00 0.00
ORCA Invis Obst 1.37 2.20 0.12 0.00 0.00
SFM Invis Obst 1.36 2.10 0.10 0.00 0.00
S-LSTM 1.86 2.11 0.12 2.58 0.97
Zaral Transf Scratch 1.34 1.70 0.12 2.98 0.58
Transf Fine ORCA | 1.44 1.87 0.06 1.77 0.68
Transf Fine SFM 1.20 1.48 0.02 0.08 0.01
CNN Scratch 1.73 2.00 0.12 2.01 0.56
CNN Fine ORCA 1.32 1.78 0.04 2.01 0.37
CNN Fine SEFM 1.18 1.45 0.03 1.45 0.35

Table 2: Test metric results on ETH and Zaral datasets, within dis-
tribution at h=00. Models are evaluated on second half of the dataset.

was pretrained on the SFM-augmented dataset and fine-tuned
on real-world training data. For more details about the mod-
els, training, and lidar implementation, refer to Appendix(C).

4.3 Results

Pretraining Results

Table 1 shows the performance of our CNN and transformer
pretrained on augmented training data generated by ORCA
and SFM and tested on the augmented test data. We can see
that transformer was more accurate than CNN, and that both
deep learning models were superior to CVM. Transformer
achieved near zero error on training data, while CNN had
considerable error on the training data, possibly indicating
higher capacity of the transformer approach for overfitting.

Fine-tuning Results
Table 2 shows the performance of fine-tuned, scratch,
knowledge-based, and baseline models on ETH and Zaral in
within distribution evaluation. Table 3 compares the same
models on ETH data in outside distribution evaluation. The
time horizon for these results was set to h = oo, meaning that
the rollouts were going from ¢4 to 7. We provide results for
the same models on other test datasets in the Appendix(E).
The results show that fine-tuned models performed better
than models trained from scratch on real-world data. While
for ADE the improvement due to fine-tuning was relatively
small, it was much more pronounced for nADE. A low MDE
means that agents were able to reach their goal locations dur-
ing rollouts. While all models had relatively low MDE, fine-
tuned models had the lowest MDE. It is also notable from the
results that fine-tuned transformers had lower ADE, nADE,

Method ADE | nADE | MDE | hACS | sACS
CVM 1.38 3.16 0.11 3.46 1.14
ORCA Vis Obst 1.35 2.10 0.16 0.00 0.00
ORCA Invis Obst 1.49 2.83 0.16 0.02 0.00
SFM Invis Obst 1.62 2.44 0.14 0.00 0.00
S-LSTM 1.65 247 0.08 7.43 2.32
ETH Transf Scratch 1.71 2.50 0.08 7.23 2.23
Transf Fine ORCA | 1.62 2.32 0.06 2.76 0.88
Transf Fine SFM 1.25 1.65 0.04 1.36 0.16
CNN Scratch 1.82 2.08 0.05 6.46 1.61
CNN Fine ORCA 1.65 2.27 0.05 3.57 0.87
CNN Fine SFM 1.11 1.39 0.03 3.80 0.78

Table 3: Test metric results for ETH dataset, outside distribution at
h = oco. Models are evaluated on whole dataset.

Method Zaral | Zara2
CVM 6 7
SFM 6 6

S-LSTM 5 6

Transf Fine SFM 4 5
CNN Fine SFM 0 0

Table 4: Obstacle Collisions in within distribution

and MDE than fine-tuned CNN on within distribution eval-
uation (Table 2). Interestingly, the outcome changed on the
outside distribution evaluation in Table 3, where fine-tuned
CNN had the lowest ADE, nADE, and MDE.

Based on the collision metrics, we can see that ORCA and
SFM performed with virtually no collisions. This is due to the
nature of these knowledge-based simulators, where ORCA
guarantees no collisions and SFM has parameters that can be
tuned to make agents collision avoidant. Deep learning mod-
els result in collisions, but the numbers (expressed in percent
in the tables) are relatively small. Fine-tuned models retained
relatively low values for these metrics. sACS values were
lower than hACS, indicating that many collisions were minor.
When comparing “CNN Scratch” and “CNN Fine ORCA” on
Zaral in Table 2, we see that both had the same value of hACS
but latter had a lower sACS, indicating that “CNN Scratch”
had more severe collisions than “CNN Fine ORCA”.

When comparing models pretrained on ORCA data with
those pretrained on SEM, we found that training on SFM data
produced better results. Thus, we continue the rest of our
analysis with models pretrained on SFM data. Line plots in
Figures 2 and 3 compare performance of different models for
each metric across varying values of &, highlighting the evo-
lution of these metrics as h increases. For readability, only a
subset of representative models is shown. As h grows, pre-
dicting the trajectory of an agent becomes increasingly chal-
lenging. This trend is evident as the ADE(h), nADE(h), and
Soft Collision metrics (SACS) generally increased across all
methods with increasing h.

Fine-tuned models consistently outperformed other meth-
ods across all values of h, with the performance gap widening
notably in within-evaluation scenario as h increased. In the
ADE(h) and nADE(h) plots of Figure 2, we observe that for
small values of h, most methods performed similarly, but as
h increased particularly after h = 20, the “Scratch Trans-
former” and CVM methods exhibited a much steeper deteri-
oration compared to others.
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Figure 3: Test metrics for ETH dataset with varying values of A in outside distribution.

The soft collision metric indicates that as the horizon h
grew, the risk of collisions increased, especially for mod-
els that were not pretrained like “Social LSTM” and “Trans-
former Scratch”. Fine-tuned CNN and transformer models
pretrained on the SFM augmented data managed to keep the
soft collision metric relatively low, demonstrating their effec-
tiveness in maintaining safe and realistic simulations even as
prediction horizon increased.

Table 4 shows the number of collisions with static obstacles
for different models on Zaral and Zara2. Fine-tuned CNN
model outperformed the others, with zero collisions across
both datasets. This superior performance is attributed to the
lidar representation, which is aware of the obstacles in the
environment. In contrast, models like CVM, Social-LSTM
and Fine-tuned Transformer, which lack this environmental
awareness, exhibited a higher number of collisions with static
obstacles. Short-term trajectory prediction community typi-
cally overlooks the role of obstacles, primarily focusing on
agent location and behavior without considering the environ-
ment. In our approach, we incorporated lidar representation
with a CNN because we believe that the environment signifi-
cantly influences agent behavior and trajectories.

5 Limitations and Future Work

Our work has several limitations that warrant further research.
First, obstacles were not incorporated into the trajectory rep-
resentation, leaving the exploration of methods to integrate
obstacle and environmental information with this representa-
tion for future work. Additionally, we evaluated a limited
set of deep learning models, focusing on three representa-

tive architectures with two input representations. While we
demonstrated how existing trajectory prediction models could
be repurposed for crowd simulation, a broader exploration of
models remains an avenue for future work.

The benchmark datasets used in this study are another limi-
tation, as they are not particularly diverse or challenging. The
data predominantly feature street scenes with linear trajec-
tories in relatively uncrowded environments. Expanding the
diversity and complexity of datasets is essential for advanc-
ing benchmarking in both the trajectory prediction and crowd
simulation communities.

6 Conclusion

In this work, we presented an evaluation framework for crowd
simulation models. We leveraged results from the closely re-
lated field of pedestrian trajectory prediction. We compared
various crowd simulation models, including deep learning
models, knowledge-based models, and simulation-assisted
deep learning models. Our results indicate that pretraining
deep learning-based simulators on augmented data generated
by knowledge-based models could lead to significant per-
formance improvements when real-world datasets are small.
Agent behavior has many nuances and dimensions. While
one simulator could be good at reaching goal locations, it may
cause many collisions with agents or obstacles. Because of
this, it is important to consider an ensemble of metrics when
evaluating crowd simulators. From our results, we conclude
that using multiple metrics reveals the strengths and weak-
nesses of individual simulators, which could help practition-
ers choose the simulator that suits their needs best.
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