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Abstract
Split learning is a prominent framework for verti-
cal federated learning, where multiple clients col-
laborate with a central server for model training by
exchanging intermediate embeddings. Recently, it
is shown that an adversarial server can exploit the
intermediate embeddings to train surrogate mod-
els to replace the bottom models on the clients
(i.e., model stealing). The surrogate models can
also be used to reconstruct private training data of
the clients (i.e., data stealing). To defend against
these stealing attacks, we propose Model Rake (i.e.,
Rake), which runs two bottom models on each
client and differentiates their output spaces to make
the two models distinct. Rake hinders the steal-
ing attacks because it is difficult for a surrogate
model to approximate two distinct bottom models.
We prove that, under some assumptions, the sur-
rogate model converges to the average of the two
bottom models and thus will be inaccurate. Exten-
sive experiments show that Rake is much more ef-
fective than existing methods in defending against
both model and data stealing attacks, and the accu-
racy of normal model training is not affected.

1 Introduction
Vertical Federated Learning (VFL) [Yang et al., 2019; Zhou
et al., 2024; Zhang et al., 2025a] considers the scenario where
data is distributed across multiple clients with different fea-
ture spaces, and the clients want to train a model collabora-
tively while preserving data privacy. VFL is widely applied
in areas such as healthcare [Tang et al., 2023], finance [Yang
et al., 2023a; Zhang et al., 2025b], and Internet of Things
(IoT) [Yang et al., 2023b]. For instance, banks can use VFL
to train a model to predict customer financial risks without
sharing their financial records. Split learning [Vepakomma
et al., 2018; Thapa et al., 2022] is arguably the most preva-
lent framework for VFL due to its efficiency and general-
ity [Gupta and Raskar, 2018; Zhang et al., 2024]. In particu-
lar, split learning divides the model into two parts: a bottom

∗Corresponding authors.

Normal Noisy Pruning DPSGD Rake

ACC (%) ↑ 80.41 75.66 78.19 77.96 80.34
S-ACC (%) ↓ 78.99 72.82 76.49 78.51 36.87
AGR (%) ↓ 93.08 86.19 88.67 92.79 34.15

MSE ↑ 0.027 0.048 0.033 0.062 15.87

Table 1: Comparing defenses against model and data stealing at-
tacks on the CO dataset. Normal refers to standard training without
defense. ACC (higher is better), S-ACC (smaller is better), AGR
(smaller is better), and MSE (higher is better) are the performance
metrics. We highlight the best defense method for each metric.

model on each client and a top model on the server. Each
client processes local features using its bottom model to gen-
erate intermediate embeddings, which are sent to the server.
The server concatenates these embeddings to train the top
model and computes gradients, which are then sent back to
the clients for backward propagation.

However, a recent research [Xu et al., 2024] shows that
split learning is prone to both model and data stealing attacks.
For model stealing, an adversarial server creates auxiliary
data samples to query the system and utilizes the intermediate
embeddings generated by the bottom models to train surro-
gate models, which can replace the original bottom models.
The data stealing attack extends the model stealing attack by
training a generator model to work with the surrogate model.
The generator takes random noise as input to produce fake
data samples, which are passed to the surrogate model to pro-
duce embeddings. By aligning these fake embeddings and the
embeddings of the auxiliary samples, the generator learns to
reconstruct data samples. These vulnerabilities highlight the
urgent need for practical defense mechanisms to secure split
learning against such stealing attacks.

Several defense methods have been proposed [Xu et al.,
2024], such as adding Gaussian noise to the embeddings
(Noisy), pruning element with a small magnitude in the em-
beddings (Pruning), and injecting Gaussian noise to the gra-
dients for the bottom models during each training (DPSGD).
However, as shown in Table 1, none of these approaches si-
multaneously meet the three critical requirements for a good
defense method: ❶ Transparency: The accuracy of model
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training is not affected, i.e., matching normal training with-
out dense; ❷ Effectiveness: Makes the accuracy of model
and data stealing attacks low; ❸ Scalability: Maintains ef-
fectiveness when the number of data samples or the model’s
capacity increases. Table 1 shows that existing methods harm
the accuracy of normal training and fail to reduce the accu-
racy of the stealing attacks. Moreover, we also observe that
their effectiveness diminishes with using more data samples
or more complex models. Given the shortcomings of existing
defense methods, we pose the following research question:

Is it possible to design a defense method against stealing
attacks in split that satisfies all three requirements, i.e., trans-
parency, effectiveness, and scalability?

Our Solution: Model Rake. We propose Model Rake (i.e.,
Rake) as a novel defense method to secure split learning
against the stealing attacks. The core idea of Rake is to dis-
rupt the adversary’s ability to approximate the bottom models
by using two bottom models (instead of one) on each client.
In particular, each data sample is assigned to a fixed but ran-
dom bottom model using a hash function, and the sample-
model assignment is private for each client. Intuitively, Rake
forces the adversary to approximate the two bottom models
simultaneously when learning a surrogate model. To make
the task difficult for the adversary, we make the two models
distinct by differentiating their output spaces. Specifically,
the output embeddings of the same model are encouraged to
be similar (i.e., intra-model alignment), while the output em-
beddings of different models are encouraged to be dissimilar
(i.e., inter-model contrast). Training works as the normal split
learning procedure, and the embedding constraints are only
applied locally on each client. Technically, with some as-
sumptions, we prove that Rake forces the surrogate model to
converge to the average of the two bottom models. As the two
models are in high dimension spaces and sufficiently distinct,
averaging them will yield poor accuracy for model stealing.
Data stealing is also prevented by Rake because it depends on
accurate model stealing.

To evaluate Rake, we compare it with four baselines across
six datasets. As shown in Table 1, the training accuracy
(ACC) of Rake resembles, satisfying the transparency re-
quirement. Rake also outperforms the baselines in degrad-
ing the quality of the surrogate model, leading to signifi-
cant drops in both task accuracy (S-ACC) and output align-
ment (AGR) between the surrogate pipeline and the origi-
nal pipeline. Furthermore, the data reconstructed by the data
stealing attack shows significant differences from the original
data (as measured by MSE). Our ablation study also confirms
that Rake exhibits strong scalability, maintaining consistent
defense performance when the number of clients, data vol-
ume or model capacity increases.

To summarize, we make the following contributions:
• We introduce Model Rake to defend against stealing at-

tacks in split learning, which utilizes two bottom models
on each client and makes the bottom models distinct.

• We provide a theoretical analysis to show that Model
Rake forces the surrogate model to converge to the aver-
age of the two bottom models during stealing attacks.

• We conduct extensive experiments to demonstrate that
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Figure 1: An illustration of the split learning framework.

Model Rake satisfies all three critical requirements for
defense: transparency, effectiveness and scalability.

2 Background

Vertical federated learning and split learning. In split
learning framework, as shown in Figure 1, the complete ma-
chine learning model is divided between several clients and
a central server. Each client is responsible for processing
a portion of the sample features, while the server holds all
the labels [Xu et al., 2024]. We denote the sample identi-
fiers as [N ] = {1, . . . , N} and the set of clients as [M ] =
{1, . . . ,M}, with each participant using consistent identifiers
for all samples. The feature vector xi is partitioned across M
clients, with each client m holding a subset of the features
for all samples, i.e., Xm = {xm

i ∈ RFm : m ∈ [M ]}Ni=1,
where Fm is the number of features held by client m and∑M

m=1 Fm = F . To enable effective training, the global
model f(θ) is divided into two parts: a bottom model fb(θb)
and a top model ft(θt). Each client m is responsible for a
portion of the bottom model: fm

b (θmb ), which operates on its
local features. The loss function is defined as follows:

L(Y′,Y) := L(ft([h1, . . . , hm, . . . , hM ], θt),Y), (1)

where hm = fm
b (Xm, θmb ) represents the intermediate em-

beddings produced by client m’s bottom model. The training
process for a mini-batch proceeds as follows:

• Clients process local features Xm using their bottom
models fm

b (θmb ) to generate embeddings hm.

• The server concatenates the forward embeddings h =
[h1, . . . , hM ], and processes them with the top model
ft(h, θt) to generate the final output predictions Y′.

• The server then calculates the loss L(Y′,Y) with Y
(i.e., {yi}Ni=1) and generates the gradient ∇Y′L(Y′,Y).

• The server updates the top model with the gradient and
computes the gradients ∇hm

L(Y′,Y) for each client to
update their local models.
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Transparency Effectiveness Scalability

Noisy � � �

Pruning � � �

DPSGD � � �

Rake (Ours) � � �

Table 2: Requirements addressed by the defense methods. We use
� to show the degree to which each method satisfies the require-
ments, where � means do not satisfy while � means fully satisfy.

Model and data stealing attacks. Model stealing attack in
split learning focuses on replicating the transformation func-
tion of the bottom model. In this context, we assume an
honest-but-curious server as the adversary. By querying the
system with auxiliary samples Xaux

m during the testing phase,
the adversary collects the corresponding feature embeddings
fm
b (Xaux

m , θmb ) from each client m. The adversary then uses
these pairs of inputs and embeddings (Xaux

m , haux
m ) to train a

surrogate model f̂m
b (θ̂mb ), aiming to approximate the bottom

model’s transformation function. This is achieved by mini-
mizing the ℓ2 distance between the surrogate model’s output
and the actual embeddings produced by the bottom model:

argmin
θ̂m
b

∥∥∥f̂m
b (Xaux

m , θ̂mb )− fm
b (Xaux

m , θmb )
∥∥∥
2
. (2)

Once the surrogate model f̂m
b (θ̂mb ) is trained, it can repli-

cate the bottom model’s functionality. When combined with
the server’s top model, the adversary can effectively recreate
the entire split learning pipeline.

To facilitate data stealing attack, a generator model fG is
introduced. The generator takes random noise Z as input and
produces vectors fG(Z) with the same dimensionality as the
training samples. The adversary then passes fG(Z) through
the surrogate bottom model to obtain the generated embed-
dings f̂m

b (fG(Z), θ̂
m
b ). The objective is to minimize the ℓ2

distance between these generated embeddings and the true
embeddings fm

b (Xm, θmb ) of the original samples Xm:

argmin
θG

∥∥∥f̂m
b (fG(Z, θG), θ̂

m
b )− fm

b (Xm, θmb )
∥∥∥
2
. (3)

By optimizing this loss function, the generator produces
reconstructed samples X̂m = fG(Z, θG), which are approx-
imations of the original samples, as their output embeddings
closely align with those of the original samples.
Defense methods and requirements. Effective defense
methods against stealing attacks in split learning must bal-
ance transparency, effectiveness, and scalability. Trans-
parency ensures high training accuracy with minimal inter-
ference in normal workflows. Effectiveness focuses on sig-
nificantly reducing the adversary’s ability to exploit interme-
diate embeddings for model and data stealing. Scalability en-
sures the defense remains robust as data volume or model ca-
pacity increases. There are several existing methods: Noisy,
which injects Gaussian noise into feature embeddings; Prun-
ing, which removes the smallest elements from feature em-
beddings; and DPSGD, which adds Gaussian noise to bottom

Figure 2: An illustration of our Model Rake. We only show one
client for simplicity, and all clients adopt the same defense.

model gradients during training. However, as shown in Ta-
ble 2, our experiments demonstrate that none of these meth-
ods effectively balance all three requirements. In contrast, our
proposed Model Rake (Rake) satisfies all three criteria.

3 Model Rake Framework
In this section, we propose the Model Rake framework to de-
fend against stealing attacks in split learning. As shown in
Figure 2, each client is assigned two bottom models, with
samples distributed between them using a fixed hash function
during training. To further differentiate the output embed-
ding space, we introduce two extra losses: minimizing cosine
similarity between embeddings from the two models to cre-
ate distinct output spaces and maximizing cosine similarity
within each model’s embeddings to strengthen internal con-
sistency. This setup forces the adversary’s surrogate model to
approximate both models’ transformation functions simulta-
neously, increasing the complexity of attacks.

3.1 Defense Design
In split learning, stealing attacks exploit the mapping be-
tween inputs and intermediate embeddings through auxiliary
queries. Model stealing replicates the client’s bottom model
using this mapping, while data stealing extends it by employ-
ing the surrogate model to link a generator’s output to true
embeddings, enabling precise reconstruction of the original
feature space. Therefore, the core defense strategy is to dis-
rupt the adversary’s ability to learn this mapping.
Bottom model setup. The training process of the surrogate
model requires the adversary to approximate the transforma-
tion function of the bottom model. In a typical setting, each
client has a single bottom model that generates feature em-
beddings within a unified space. From a defense perspective,
an effective strategy is to increase complexity by diversify-
ing the feature spaces the surrogate model must learn. To
achieve this, we draw inspiration from the classic principle
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of The Power of Two Random Choices [Sitaraman, 2001] in
the field of databases and assign two distinct bottom models
fm
b,1(θ

m
b,1), f

m
b,2(θ

m
b,2) to each client m.

Sample distribution. To facilitate training, we ensure a con-
sistent and fixed mapping of client samples to the two bot-
tom models. Specifically, the local dataset Xm for client
m is randomly divided into two disjoint subsets Xm,1 =
{xm

i |i ∈ I1}, Xm,2 = {xm
i |i ∈ I2}, where I1 ∩ I2 = ∅

and I1 ∪ I2 = [N ]. This mapping is determined by a client-
specific hash function h(x), which assigns each sample xm

i to
one of the subsets, ensuring the allocation remains consistent
across all training iterations.
Basic training. Each subset is processed by the corre-
sponding bottom model to generate intermediate embed-
dings: hm,1 = fm

b,1(Xm,1, θ
m
b,1), hm,2 = fm

b,2(Xm,1, θ
m
b,2).

These embeddings are then combined and rearranged as Hm,
ensuring alignment with the original ordering of Xm, as split
learning relies on maintaining this order for accurate server-
side processing. Based on that, the basic training loss func-
tion Lbase for our Model Rake framework under split learning
routine can be written as:

Lbase = L(ft([H1, . . . ,Hm, . . . ,HM ], θt),Y) (4)

Inter-model contrast. To further diversify the roles of the
two bottom models, we introduce an inter model contrast loss
during training. The goal is to encourage the two models to
generate embeddings in distinct spaces, ensuring their out-
puts represent different transformations. This distinction in-
creases the difficulty for the adversary’s surrogate model to
approximate both transformations simultaneously. To imple-
ment this, we use cosine similarity to measure the angular
relationship between the embeddings generated by the two
models, applying a penalty to reduce their similarity. For a
mini-batch B of samples from client m, let B1 and B2 be the
subsets of B processed by bottom model 1 and 2, respectively,
where B1 ∩ B2 = ∅ and B1 ∪ B2 = B . The embeddings are
normalized to unit vectors, {hi|i ∈ B1} and {hj |j ∈ B2}.
The inter model contrast loss for client m is defined as:

Linter =
∑
i∈B1

∑
j∈B2

hi
⊺hj , (5)

Intra-model alignment. While the inter model contrast
loss promotes distinctness between the output spaces of the
two bottom models, the intra model alignment loss focuses
on maintaining consistency and compactness within each
model’s output space by maximizing cosine similarity within
each set of embeddings. This alignment prevents the model
from producing highly variable or scattered embeddings for
its assigned sample subset. If the embeddings within a
model’s output space are too spread out, it could lead to over-
lapping between the two models’ output spaces, thus violat-
ing their distinctness. For a mini-batch B of samples from
client m and its disjoint subsets B1 and B2, the embeddings
are normalized to unit vectors before computing the loss. The
intra model alignment loss for client m is defined as:

Lintra = −(
∑

i,j∈B1
i̸=j

hi
⊺hj +

∑
i,j∈B2
i̸=j

hi
⊺hj) (6)

Loss composition. The total loss function for the Model
Rake framework is composed of three key components: the
base loss, inter model contrast loss, and intra model align-
ment loss. The base loss ensures that the output of the top
model aligns with the true labels, while the inter and intra
losses enforce the desired separation between the two bot-
tom models’ output spaces. Thus, the final loss function is a
weighted sum of the base loss and the inter and intra losses:

Ltotal = Lbase + βLinter + γLintra, (7)

where β + γ = 1. By combining these losses, we ensure that
the adversary’s surrogate model is forced to approximate two
distinct transformations, with embeddings that remain con-
sistent within each model’s output space. This significantly
complicates the task for the adversary to construct an accu-
rate model while preserving the original task’s accuracy.

3.2 Theoretical Analysis
Theorem 1. Let the two bottom models A1 and A2 be linear
models trained with the loss function Ltotal. Assume the data
subsets assigned to the two models have identical covariance
matrices: Σ1 = Σ2. If an adversary applies the model steal-
ing attack routine in Equation 2, the surrogate model A will
converge to the average of the two bottom models.

Here, we give the theoretical proof of Theorem 1. For con-
venience, we rewrite the problem setting as follows: ❶ Two
bottom models A1 and A2, surrogate model A; ❷ Disjoint
datasets S1 and S2; ❸ The adversary attempts to learn a sur-
rogate model A by minimizing embedding differences:

L(A) =
∑
x∈S1

∥Ax−A1x∥2 +
∑
x∈S2

∥Ax−A2x∥2. (8)

Based on these settings, the loss L(A) can be expanded as:

L(A) =
∑
x∈S1

(x⊺A⊺Ax− 2x⊺A⊺A1x+ x⊺A⊺
1A1x)

+
∑
x∈S2

(x⊺A⊺Ax− 2x⊺A⊺A2x+ x⊺A⊺
2A2x) .

(9)

For x⊺A⊺Ax (similar to other components in L(A)), by ap-
plying the matrix trace property, we have: tr(x⊺A⊺Ax) =
tr(A⊺Axx⊺), Let Σ1 =

∑
x∈S1

xx⊺, Σ2 =
∑

x∈S2
xx⊺.

Then the loss function L(A) becomes:

L(A) = tr(A⊺A(Σ1 +Σ2))− 2 tr(A⊺(A1Σ1 +A2Σ2)). (10)

To find the convergence point, we take the derivative of the
loss function with respect to A:

∂L(A)

∂A
= 2A(Σ1 +Σ2)− 2(A1Σ1 +A2Σ2), (11)

and set the gradient to zero, we have:

A(Σ1 +Σ2) = A1Σ1 +A2Σ2. (12)

Assuming ❶ (Σ1 + Σ2) is invertible and ❷ Σ1 = Σ2, we
have: A = A1+A2

2 , which means that by performing embed-
ding matching to align the two models, the resulting surrogate
model will converge to the average of the two models.
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Dataset CO SU RI BA HP YP

# samples 600K 500K 18K 10K 500k 500k
# features 54 18 11 11 11 90
# classes 7 2 2 2 / /

Table 3: Statistics of the datasets used in our experiments.

4 Experimental Evaluation
We conduct extensive experiments on diverse datasets stored
in Oceanbase [Yang et al., 2023c; Yang et al., 2022].

4.1 Experiment Settings

Datasets. Table 3 provides an overview of the datasets used
in our experiments. Among them, CO [Blackard, 1998] is
designed for seven-class classification, while SU [Whiteson,
2014], RI [MsSmartyPants, 2021], and BA [Topre, 2022] are
tailored for binary classification tasks. For the SU dataset, we
randomly selected 500,000 samples from the original dataset.
HP [Sleem, 2018] and YP [Bertin-Mahieux, 2011] are regres-
sion datasets. Note that, due to page limits, the results of the
regression task are provided in the Appendix. We also pre-
processed the data by normalizing numeric attributes to the
range [0, 1] and converting categorical features into one-hot
encoded representations. For each dataset, we partitioned the
samples into three subsets: a training set (70%) for model
training, an auxiliary set (10%) for conducting stealing at-
tacks, and a test set (20%) for performance evaluation.
Models. For all datasets, the default configuration employs a
3-layer fully connected neural network as the bottom model
and a non-linear fully connected network, as described in [Fu
et al., 2022], as the top model. The surrogate model adopts
the same structure as the bottom model. Models in split
learning tend to have lower complexity [Khan et al., 2022;
Gu et al., 2021], as both data the model are divided into
multiple parts. In real-world scenarios, it is uncommon for
separate organizations to possess different portion of images.
Moreover, advanced architectures such as CNNs are rarely
used because there are no effective methods to perform con-
volution operations in distributed setting [Yang et al., 2019].
Baselines. Based on [Xu et al., 2024], we compare our pro-
posed Model Rake (Rake) with the following baselines:

• Normal: No countermeasures were used under the stan-
dard split learning framework.

• Noisy: It injects Gaussian noise with a mean of 0 and
a standard deviation from 1e − 4 to 10 into the feature
embeddings generated by the target client.

• Pruning: It removes some smallest elements from the
feature embeddings produced by the target client with
the pruning ratio from 0.1 to 0.9.

• DPSGD: Each client adds Gaussian noise to its own bot-
tom model gradients at each training round with a mean
of 0 and a standard deviation from 1e− 4 to 1e− 1.

• Rake-Reveal: The adversarial server is aware of Rake’s
dual-model defense mechanism but lacks knowledge of

how clients allocate their data. It adopts a two-surrogate-
model approach to carry out its attacks.

Evaluation protocol. We deploy a cluster consisting of four
clients and one central server. The dataset is equally par-
titioned into four vertical splits, with each client holding
one split. Meanwhile, the server has all the labels of the
dataset [Xu et al., 2024]. For all experiments, we set the batch
size to 1% of the original dataset size and use cross-entropy
as the loss function. We use Adam [Kingma and Ba, 2014] as
the optimization protocol with a learning rate of 1e− 3. Each
model is trained for 100 epochs to ensure convergence. For
the weights of the loss function components, we set β = 0.6,
γ = 0.4, as this configuration yields effective results.
Metrics. We use accuracy (ACC) to evaluate the perfor-
mance of the main learning task. For the model stealing at-
tack, we employ two metrics: ❶ Stealing Accuracy (S-ACC):
The accuracy of the surrogate pipeline (surrogate model + top
model) on the main learning task. ❷ Agreement (AGR): The
proportion of test samples for which the surrogate pipeline
and the true pipeline (bottom model (s) + top model) trained
by split learning produce identical predictions. For the de-
fense mechanism, higher ACC is desirable, while lower S-
ACC and AGR indicate better protection against the attack.
For data stealing attack, we use the mean square error (MSE)
between the original data and the reconstructed data to mea-
sure the attack’s effectiveness. A higher MSE indicates better
data protection ability.
Implementation. We run our experiments on a cluster, where
each machine has a Intel-i9 CPU and 24GB memory, and the
machines are connected via 10GBps Ethernet. The machine
communication is implemented using distributed tools avail-
able in PyTorch, specifically torch.distributed. Each machine
serves as a client, and one machine serves as the server.

4.2 Main Results
Note that, for all defense methods other than Rake (Noisy,
Pruning, and DPSGD), we carefully tuned their parameters
to ensure optimal performance on each dataset.
Model stealing attack. The results in Table 4 demonstrate
that Rake is the best defense approach, offering superior
protection against model stealing attack while maintaining
high main learning task performance. First, Rake’s accuracy
matches the Normal setting, confirming that it has no neg-
ative impact on main task performance. At the same time,
Rake significantly reduces S-ACC to as low as 36.87% and
AGR to as low as 34.15% on the CO dataset, showcasing its
strong defensive capabilities. On average, Rake reduces S-
ACC by 37.23% and AGR by 48.24% compared to the Nor-
mal setting. Importantly, Rake remains effective even when
the adversarial server is aware of its defense strategy, demon-
strating its robustness. In contrast, other defenses like Noisy,
Pruning, and DPSGD either fail to sufficiently reduce S-ACC
and AGR or negatively impact the performance of the main
task. These results clearly highlight that Rake effectively dis-
rupts the server’s ability to learn an accurate surrogate model.
Data stealing attack. As the data stealing attack is an ex-
tension of model stealing attack, we evaluate Rake’s defense
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Method
ACC (%) ↑ S-ACC (%) ↓ AGR (%) ↓

CO SU RI BA CO SU RI BA CO SU RI BA

Normal 80.41±0.19 79.97±0.05 98.98±0.14 86.72±0.09 78.99±0.11 79.84±0.17 98.72±0.13 86.29±0.14 93.08±0.52 97.67±0.72 99.23±0.24 97.14±1.05

Noisy 75.66±0.12 78.55±0.18 95.16±0.08 84.35±0.11 72.82±0.15 74.65±0.23 94.26±0.17 81.76±0.23 86.19±1.32 87.27±2.58 98.04±0.13 91.85±2.32

Pruning 78.19±0.23 79.78±0.11 94.01±0.15 83.32±0.17 76.49±0.13 79.34±0.21 93.76±0.26 80.95±0.18 88.67±1.02 92.38±1.26 98.31±0.74 93.81±2.21

DPSGD 77.96±0.06 79.47±0.06 94.24±0.09 84.78±0.13 78.51±0.16 78.31±0.19 93.93±0.18 82.13±0.15 92.79±1.06 95.44±1.19 98.94±1.01 97.05±0.94

Rake (Ours) 80.34±0.09 79.57±0.13 98.85±0.12 86.69±0.08 36.87±0.11 52.78±0.16 53.63±0.14 48.66±0.15 34.15±0.86 58.65±1.43 55.07±0.46 46.28±1.48

Rake-Reveal 80.34±0.09 79.57±0.13 98.85±0.12 86.69±0.08 33.32±0.21 51.03±0.16 58.83±0.24 57.02±0.24 30.53±1.76 58.36±2.48 60.27±1.12 53.77±2.98

Table 4: Performance comparison in defending against model stealing attack. ACC (higher is better), S-ACC (smaller is better) and AGR
(smaller is better) are adopted as performance metrics. We highlight the best defense method for each dataset.

Method
MSE ↑

CO RI

Normal (10−2) 2.7±0.14 6.5±0.18

Noisy (10−2) 4.8±0.84 8.6±0.73

Pruning (10−2) 3.3±0.32 6.8±0.43

DPSGD (10−2) 6.2±0.24 7.3±0.29

Rake (Ours) 15.87±0.58 10.73±0.43

Rake-reveal 15.41±0.42 9.84±0.35

Table 5: Performance comparison in defending against data stealing
attack. MSE (higher is better) is used as the evaluation metric. We
highlight the best defense method for each dataset.

against this attack on two representative datasets, CO and RI.
As shown in Table 5, Rake significantly reduces reconstruc-
tion accuracy, increasing the MSE by 580× on CO compared
to the Normal setting, demonstrating strong defense capabil-
ities. In contrast, other defense methods show only marginal
improvements, with MSE values close to the Normal set-
ting. Furthermore, the Rake-reveal, which simulates a sce-
nario where the adversary is aware of Rake’s defense mech-
anism, still achieves high MSE values, indicating that Rake
remains robust even under more challenging conditions.

4.3 Ablation Study and Micro Results
Here, we select the CO dataset and two of the best-performing
baseline defenses Noisy and Pruning for further analysis.

Number of clients. We evaluate the stability of Rake and
other methods under varying client numbers. As shown in
Figure 3, Rake consistently maintains main task accuracy
comparable to the Normal setting across all client numbers.
In contrast, Noisy and Pruning show reduced defense effec-
tiveness, with increasing S-ACC and AGR values as the client
numbers grow. A potential reason is that fewer features are
allocated to each client, simplifying the surrogate model’s
fitting process. Meanwhile, Rake’s defense performance re-
mains stable and unaffected by the increase in client numbers,
demonstrating its robustness in dynamic environments.

Number of dataset samples. We also examine how Rake
and other methods perform with varying scales of the origi-
nal dataset. Notably, as the total sample number increases,
the number of samples available for model stealing attack

also grows. As shown in Figure 4, Rake consistently outper-
forms Noisy and Pruning on the main learning task. While
the defense effectiveness of Noisy and Pruning diminishes as
the dataset size increases, Rake’s performance remains sta-
ble and unaffected by the number of samples. This difference
arises because Noisy and Pruning rely on perturbing feature
embeddings, and larger datasets provide the surrogate model
with more opportunities to learn and counteract these pertur-
bations, reducing their effectiveness.

Depth of bottom models. We test the performance of differ-
ent methods under varying numbers of bottom model layers.
As shown in Figure 5, as layers increase, all methods im-
prove on the main learning task. Noisy and Pruning show an
initial rise in S-ACC, which eventually stabilizes, while their
AGR values gradually increase, indicating that they struggle
to protect deeper bottom models. This occurs because deeper
models provide more complex feature representations, mak-
ing it harder for them to maintain effective perturbations. In
contrast, Rake provides consistent defense performance, ef-
fectively protecting against attacks even on deeper models.

Different surrogate model structure. We evaluate the de-
fense performance of all methods using a 5-layer surrogate
model, with the bottom model as a 3-layer network. As
shown in Table 6, all methods show reduced effectiveness
against the stronger surrogate. Noisy, Pruning, and DPSGD
have AGR values over 95%, indicating limited defense. In
contrast, Rake’s S-ACC and AGR values increase slightly but
stay below 40%, ensuring the bottom model’s security.

Effect of inter and intra losses. We evaluate the effect of
inter model contrast and intra model alignment losses dur-
ing the defense process. As shown in Table 7, the defense
performance without these losses already reaches a relatively
ideal level. By further applying them to the output embedding
space, the defense effectiveness is significantly enhanced.
The individual impact of each loss can be referred to in the
experiment: Different weights of inter and intra losses.

Different weights of inter and intra losses. Here, we ana-
lyze the impact of the inter and intra loss weights by varying
β from 0 to 1, under the constraint β + γ = 1. As shown
in Figure 6, the accuracy of the main task tends to stabilize
and is largely unaffected by β. In addition, S-ACC and AGR
are lower when β takes a middle value (β = 0.6) and high-
est when β is 0 or 1. This not only further demonstrates the
effectiveness of the two losses, but also confirms that the role
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Figure 3: The influence of the number of clients.
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Figure 4: The influence of varying the size of the dataset.
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Figure 5: The effect of the number of bottom model layers.
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Figure 6: The influence of inter model contrast loss and intra model
alignment loss weights by tuning the parameter β.

of either loss cannot be replaced by the other.
Time efficiency. We measured the time to complete the main
task training when using no defense method and using Rake
as defense. As shown in Table 8, using Rake as the defense
method takes only about 8.25% more time than the Normal
setting. The reason is that clients need to compute the extra
losses and gradients to optimize both two bottom models so
as to meet all the requirements.

5 Related Work
The split learning framework introduces privacy and secu-
rity challenges due to its collaborative nature, where adver-
saries can exploit shared gradients or feature embeddings to

Method
CO

ACC (%) ↑ S-ACC (%) ↓ AGR (%) ↓

Normal 80.41 79.46 98.69
Noisy 75.66 75.46 95.12

Pruning 78.19 77.09 98.19
Rake (Ours) 80.34 38.42 37.32
Rake-Reveal 80.34 37.27 37.68

Table 6: Performance in defending against model stealing attack
with a 5-layer surrogate model. The best defense is highlighted.

Method
CO

ACC (%) ↑ S-ACC (%) ↓ AGR (%) ↓

w/o inter-intra 80.39 59.95 58.24
inter-intra 80.34 36.87 34.15

Table 7: Effect of the inter-model and intra-model losses in defend-
ing against model stealing attack under default experiment settings.

Method
Time (s)

CO SU RI BA

Normal 851 763 69 47
Rake 917 (+7%) 825 (+8%) 75 (+8%) 52 (+10%)

Table 8: Running time for normal training and using Rake.

infer sensitive information from other parties. Several studies
have examined privacy attacks in split learning. Luo [2021]
proposes a feature inference attack, where adversaries ex-
ploit publicly available model predictions and apply gradient-
based optimization to infer sensitive data. Pasquini [2021] in-
vestigates inference attacks, demonstrating how adversaries
can recover private data by manipulating the training pro-
cess and forging gradients. Jin [2021] explores catastrophic
data leakage, showing how adversaries can uncover sensitive
information by analyzing gradients and model parameters.
Xu [2024] highlights the risks of revealing feature embed-
dings of the bottom model to a malicious server, which can
lead to both model and data privacy leaks when combined
with appropriate attack methods.

6 Conclusions
In this paper, we propose Model Rake as a defense method
against model and data stealing attacks in split learning.
Model Rake uses a dual model setup on each client with in-
ter model contrast and intra model alignment losses to further
differentiate the embedding spaces of the two bottom models.
Theoretically, we prove that, under mild assumptions, the sur-
rogate model will converge to the average of the two bottom
models. Extensive experiments demonstrate that Model Rake
significantly outperforms the baselines in defending stealing
attacks and satisfies all key defense requirements.
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