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Abstract
This paper introduces a game-theoretic framework
for restoring consistency in propositional bases.
The process is modeled as an interactive dialogue
between two agents: a Proponent, who seeks to iso-
late a unique, consistent subset by posing strategic
questions, and an Opponent, who aims to obstruct
that goal through adversarial responses. We show
that this framework provides a foundation for quan-
tifying the effort involved in restoring consistency,
revealing a connection between this effort and en-
tropy in information theory. Focusing on the case
where consistency is achieved by isolating a sin-
gle maximal consistent subset, we establish links
between the structure and number of such subsets
and the existence of winning strategies. Finally, we
demonstrate how the quantified restoration effort
can serve as a basis for measuring inconsistency.

1 Introduction
Inconsistencies in knowledge-based applications stem from
multiple factors, such as conflicting information sources,
noisy data, context dependency, and dynamic changes. These
inconsistencies cause important challenges for reasoning pro-
cesses in artificial intelligence, especially in the field of
knowledge representation and reasoning. To address these
challenges, a variety of concepts, approaches, and tools have
been developed to analyze and handle inconsistency, includ-
ing argumentation frameworks (e.g. [Besnard and Hunter,
2008]), inconsistency measures (e.g. [Hunter and Konieczny,
2010; Thimm, 2018]), and non-explosive inference relations
(e.g. [Rescher and Manor, 1970; Priest, 1991]).

A common approach to dealing with inconsistencies is
to modify the initial knowledge base to obtain a consistent
one that can be used with classical reasoning; a process
we call consistency restoration. This modification can in-
volve forgetting variables [Lin and Reiter, 1994; Lang and
Marquis, 2002], ignoring pieces of knowledge [Rescher and
Manor, 1970; Benferhat et al., 1995], or applying belief
revision and updating operators [Alchourrón et al., 1985;
Gärdenfors, 1992; Fermé and Hansson, 2011].

In this work, we model the process of restoring consis-
tency in propositional logic as a dialogue between two play-

ers: the Proponent and the Opponent. The Proponent’s goal
is to achieve consistency by identifying a unique, consistent
propositional base. To do this, she asks questions to gather
necessary information. Conversely, the Opponent, who con-
trols the responses to these questions, aims to prevent her
from achieving her goal.

Our game-theoretic framework is inspired by two key
sources in the literature. The first is the work of Loren-
zen [Lorenzen, 1960] on dialogue games in logic, which
provides a semantics grounded in interactive dialogues (see
also [Blass, 1992; Pitts and Dybjer, 1997; Fermüller and Cia-
battoni, 2003]). In many formulations of game semantics, a
game involves two players: the Proponent, whose goal is to
prove statements, and the Opponent, who challenges the ap-
plication of proof rules.

The second source of inspiration is the question-based
interpretation of entropy in information theory [Shannon,
1948a; Shannon, 1948b]. This interpretation links the num-
ber of questions needed to solve a search problem with the
amount of information. For instance, the entropy of a system
reflects the minimal number of binary (yes/no) questions re-
quired to determine an outcome [van der Lubbe and Hoeve,
1997; Cover and Thomas, 2001].

Dealing with inconsistency through our game-theoretic ap-
proach brings several advantages. By considering the prob-
lem as a game, we can analyze and develop optimal strategies
for agents to resolve conflicts, such as decisions about which
pieces of information to question and how to allocate limited
resources. Furthermore, introducing the Opponent adds an
adversarial dimension that captures uncertainty. This allows
us to study how agents can overcome this obstacle to restore
consistency.

Our main contributions are as follows. We first intro-
duce a general game-theoretic framework in which consis-
tency restoration is modeled as a series of questions posed
by the Proponent and answered by the Opponent. We then
define a measure that quantifies the expected cost associated
with a Proponent’s strategy for achieving consistency. This
provides a quantitative perspective to the process of consis-
tency restoration. Next, we focus on a specific scenario where
restoring consistency involves identifying a single maximal
consistent subset of the base. In this context, we establish re-
sults that link winning strategies to the number and structure
of these subsets. Finally, we show how the quantified restora-
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tion effort can serve as the basis for defining an inconsistency
measure, a function that assesses the severity of conflicts in
propositional bases. We study the properties of this measure
and examine several related computational aspects.

2 Preliminaries
Let us start by defining the language of classical propositional
logic. We begin with a constant ⊥, denoting false, and a
countably infinite set of propositional variables, denoted by
Prop. The set of well-formed formulas (wffs), denoted WFF,
is the smallest set that satisfies:

• ⊥ is a wff.

• Every propositional variable p ∈ Prop is a wff.

• If φ and ψ are wffs, then (¬φ) and (φ ∧ ψ) are wffs.

The additional connectives ∨, →, and ↔ are defined, as
usual, using ∧ and ¬.

We use p, q, r (with possible subscripts) to denote propo-
sitional variables, and we use Greek letters such as φ, ψ, χ
to denote formulas. For any syntactic entity X (e.g., a for-
mula or a set of formulas), the set of propositional variables
occurring in X is denoted by var(X).

Given a set of formulas Q, we use Q̂ to denote the set Q ∪
{¬φ : φ ∈ Q}.

A propositional base (PB) is a finite subset of WFF.
A Boolean interpretation, or simply interpretation, is a

function ω that assigns a truth value in {0, 1} to each formula
in WFF such that: ω(¬φ) = 1− ω(φ) and ω(φ∧ψ) =
ω(φ) × ω(ψ). An interpretation ω is called a model of a for-
mula φ, written ω |= φ, if and only if ω(φ) = 1.

A formula is consistent if it has at least one model; other-
wise, it is inconsistent.

Given a PB K and a formula φ, we say that K entails φ,
written K ` φ, if, for every interpretation ω, whenever ω |=∧
K (the conjunction of all formulas in K), it follows that

ω |= φ. Note that ω |=
∧
∅ holds for every interpretation

ω. When K = {ψ} contains a single formula, we may write
ψ ` φ instead of {ψ} ` φ. Two formulas φ and ψ are said
to be logically equivalent, written φ ≡ ψ, if both φ ` ψ and
ψ ` φ hold.

Using the compactness theorem, we obtain the following
properties: a countable set of formulas S is consistent iff for
every finite subset S′ of S,

∧
S′ is consistent; S ` φ if and

only if there exists a finite subset S′ of S such that S′ ` φ.
To indicate that a set of formulas S is consistent (resp. in-

consistent), we sometimes write S 0 ⊥ (resp. S ` ⊥).
A minimal inconsistent subset (MIS) of a PB K is a subset

M ⊆ K that is inconsistent, and such that for every φ ∈ M ,
the set M \ {φ} is consistent.

A maximal consistent subset (MCS) of K is a subset
M ⊆ K that is consistent, and such that for every φ ∈ K\M ,
the set M ∪ {φ} is inconsistent. We use MCS(K) to denote
the set of all MCSes of K.

A formula in a PB K is called free if it does not belong to
any MIS of K. We denote the set of all free formulas in K
by free(K). Conversely, a formula that is not free is referred
to as problematic. In particular, the inconsistent formulas in a

PB are always problematic. We use Inc(K) to denote the set
of inconsistent formulas in K.

We define the equivalence relation ∼b on formulas as fol-
lows: φ ∼b ψ iff φ ≡ ψ or φ ≡ ¬ψ.

We use R+
∞ to denote the set of positive real numbers

equipped with the usual order ≤ and extended by an addi-
tional greatest element∞.

A binary tree is a rooted, ordered tree where each node can
have at most two children, referred to as the left child and
right child. A binary tree is considered full if every node has
either 0 or 2 children.

The set of leaf nodes of a tree T is denoted Lv(T ).
The depth of a node v is defined as the length (i.e., the

number of edges) in the path from the root of the tree to v.
We denote the depth of the node v in the binary tree T as
d(v, T ). Further, we use d(T ) to denote the depth of T .

3 Consistency-Restoration Game
3.1 Informal Description
In this work, we represent the process of restoring consistency
in a PB as a dialogue between two players: the Proponent and
the Opponent. The game is as follows: the Proponent aims to
restore consistency by identifying a unique, consistent PB;
she does this by asking questions to gather information. The
Opponent controls the responses to the Proponent’s questions
and tries to prevent the Proponent from achieving her goal.

The Proponent should choose questions that will most ef-
fectively eliminate uncertainties. Additionally, with a limited
effort budget, the Proponent needs to prioritize the most infor-
mative questions. The Opponent’s consistent responses shape
the Proponent’s deductions. Indeed, we consider that the Op-
ponent cannot contradict herself.

To illustrate our framework, consider a medical researcher
(Proponent) investigating a patient’s condition. The re-
searcher’s PB initially contains conflicting information about
the patient’s symptoms, possible diseases, and test results.
This inconsistency arises due to contradictory patient data.
The researcher conducts medical tests (questions) to resolve
these conflicts. The Opponent provides consistent test results
grounded in the true state of the patient’s condition. We in-
terpret the test answers as originating from the Opponent to
emphasize that these responses may present difficulties for
the Proponent.

However, what happens if the Proponent cannot access the
results of all these tests due to constraints such as a limited
laboratory budget? In our framework, we refer to this con-
straint as the effort budget, where each question is assigned a
specific weight representing its cost or effort required.

In addition, what are the potential consistent PBs associ-
ated with the responses provided by the Opponent? To ad-
dress this question, we introduce the concept of a possibility
function, denoted as Λ. This function captures the range of
possible outcomes and their corresponding consistent PBs de-
rived from the Opponent’s answers.

A winning strategy for the Proponent is a systematic plan
that outlines how to handle every possible response from the
Opponent, ensuring the achievement of a single consistent PB
without exceeding the allocated effort budget.
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3.2 Formal Description
Game Input. We define a game input (GI) as a tuple
(K,Q,E, b), where: K is the considered PB, Q is a count-
able set of possible questions, each being a wff,E : Q→ R+

∞
is a weight function assigning a number in R+

∞ to each ques-
tion in Q (E(q) corresponds to the effort required to answer
q), and b ∈ R+

∞ is the effort budget: an upper bound on the
total weight of the questions that the Proponent can ask.

Game. A consistency-restoration game, or simply a game,
associated with the GI (K,Q,E, b) involves two players: the
Proponent (P) and the Opponent (O). The player P tries to
identify a unique consistent PB by asking questions from Q,
while O tries to prevent P from succeeding. At each step:
(1) P selects a formula φ from Q, and (2) O responds by
choosing either φ or its negation ¬φ.

More precisely, a game G of (K,Q,E, b) is a possibly in-
finite alternating sequence of moves of the form: P→ φ1 →
O → ψ1 → P → φ2 → O → ψ2 → · · · → P →
φk → O → ψk → · · · , where for each index i, φi ∈ Q
and ψi ∈ {φi,¬φi}.

In the sequel, we use the following notational conventions
for a game G:

• α(G) denotes the set of O’s answers ψi,
• κ(G) denotes the set of P’s questions φi,
• Ξ(G) denotes the total effort

∑
iE(φi).

We impose the following condition on all games:
• Opponent’s Consistency (OC): For any game G, the set

of responses from O is consistent; that is, α(G) is con-
sistent.

Possibility Function. A player’s success in the game is de-
termined by a mechanism called theQ-possibility function Λ.
This function associates each PB K and each consistent set
of formulas A ⊆ Q̂ with a set of consistent PBs. In essence,
Λ(K,A) identifies all possible consistent PBs that P can have
and that are compatible with O’s responses A. This function
is crucial because it helps P determines which beliefs she can
have without conflicts in light of O’s responses. It guides her
toward strategies that lead to a successful outcome.

We require the following rationality postulate on Q-
possibility functions:

• Consistency With Responses (CWR): For every PB K

and every consistent set of responses A ⊆ Q̂, S ∪ A is
consistent for any S ∈ Λ(K,A).

• Identity on Consistent Propositional Bases (ICPB): For
every consistent PB K, Λ(K, ∅) = {K}.

• Dominance Between Answers (DBA): For every PB K,
every pair of consistent sets A,A′ ⊆ Q̂, if

∧
A `

∧
A′,

then Λ(K,A) ⊆ Λ(K,A′).
CWR ensures that O’s answers do not contradict any con-

sistent subset that P considers possible. ICPB says that if K
itself is already consistent, asking no questions must leave K
unchanged as the unique possibility. DBA states that having
more conclusive answers (

∧
A `

∧
A′) cannot enlarge the

set of possibilities. In other words, stronger sets of answers
reduce or maintain, but never expand, the set of possible con-
sistent bases.

P

O

P P

O O

φ
1

¬φ
1 φ

1

φ
2

φ
3

φ1

φ3φ2

. . . . . . . . . . . .

φ1¬φ1

¬φ2 φ2 ¬φ3 φ3

(a) (b)

Figure 1: A P-Strategy of a Consistency-Restoration Game

Proponent Λ-Wins. The player P Λ-wins the game G of
(K,Q,E, b) if the game is finite, adheres to the effort budget,
and enables P to reduce the possible consistent PBs that are
compatible with O’s responses to exactly one, according to
the Q-possibility function Λ. Formally, P Λ-wins G when G
is finite, Ξ(G) ≤ b and |Λ(K,α(G))| = 1.

Example 1. Consider the PB K = {p, q,¬p ∨ ¬q, r} and
the set of questions Q = K. The effort function E is simply
defined by E(φ) = 1 for every φ ∈ Q, and the effort budget
is b = 2. The following sequence is a game for (K,Q,E, b):

P→ ¬p ∨ ¬q → O→ ¬p ∨ ¬q → P→ p→ O→ ¬p

If we define a Q-possibility function Λ for any set of O’s re-
sponses by Λ(K,A) = {M ∈ MCS(K) : M ∪ A 0 ⊥},
we find that the only MCS of K that is consistent with the re-
sponses {¬p∨¬q,¬p} is {q,¬p∨¬q, r}. This means that P
Λ-wins this game.

3.3 Winning Strategies
To develop a strategy for player P, we must consider how
P reacts to each possible response from O. More precisely,
for each question φ that P selects, we need to consider both
scenarios: when O affirms φ and when O negates φ. This
explains why we represent P’s strategy as a full binary tree.

Definition 1 (P-Strategy). A P-strategy of a tuple
(K,Q,E, b) is a pair σ = 〈T ,Φ〉, where:

• T is a full binary tree in which every branch is finite;

• Φ is a function that assigns to each internal node of T a
formula from Q;

• for each complete branch (i.e., path from the root to a
leaf) (v1, . . . , vk) in T , it holds that

∑k−1
i=1 E(Φ(vi)) ≤

b.

We then define a context function that captures the O’s re-
sponses accumulated along each branch of the tree.

Definition 2 (Context Function Cσ). Given a P-strategy σ =
〈T ,Φ〉, the function Cσ(v) is defined recursively for each
node v in T as follows:

• If v is the root node, then Cσ(v) = ∅;
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• If v is the left child of a node v′, then Cσ(v) = Cσ(v′) ∪
{¬Φ(v′)};

• If v is the right child of a node v′, then Cσ(v) = Cσ(v′)∪
{Φ(v′)}.

Definition 3 (Λ-Winning P-Strategy). Given a Q-possibility
function Λ, a Λ-winning P-strategy is a P-strategy σ where
for any leaf node l, |Λ(K, Cσ(l))| = 1 or Cσ(l) is inconsis-
tent. A Λ-winning P-strategy σ is said to be pure if, for any
leaf node l, |Λ(K, Cσ(l))| = 1.

Note that a Λ-winning P-strategy cannot consist of a single
node: if no questions are needed, the corresponding strategy
tree must be empty.

Given a P-strategy σ, we use questions(σ) to denote the
set of questions occurring in σ.

In Figure 1, Subfigure (b) on the right illustrates a tree rep-
resenting a P-strategy, while Subfigure (a) on the left displays
the corresponding player moves.

To visually represent a P-strategy σ = 〈T ,Φ〉, we depict
each internal node of the tree T with its associated formula;
each leaf nodes l is labeled with the number |Λ(K, Cσ(l))| or
⊥, depending on whether Cσ(l) is consistent or not.
Example 2. Consider again the GI g = (K,Q,E, b) and
the Q-possibility function Λ described in Example 1. In what
follows, some P-strategies of g:

¬p ∨ ¬q

1 2

¬p ∨ ¬q

p

⊥ 1

p

1 1

¬p ∨ ¬q

1 p

1 1

(a) (b) (c)
The trees (b) and (c) correspond to Λ-winning P-strategies,

with tree (c) being the unique pure strategy.
Whether the tree in a P-strategy necessarily contains a fi-

nite number of nodes is a natural consideration. This result is,
in fact, ensured by König’s Lemma: every finitely branching
infinite tree contains at least one infinite branch [Rival, 2012].

The following theorem establishes that reasoning about the
effort required for consistency restoration can be limited to
pure Λ-winning P-strategies.
Theorem 1. For every GI g and every Q-possibility function
Λ, if g admits a Λ-winning P-strategy σ = (T ,Φ), then g
also admits a pure Λ-winning P-strategy σ′ = (T ′,Φ′), such
that there exists an injective function f from Lv(T ′) to Lv(T )
satisfying the following condition: for every l ∈ Lv(T ′),
Cσ′(l) ⊆ Cσ(f(l)).

The next proposition shows that in a pure Λ-winning P-
strategy, internal nodes on the same branch have distinct, non-
equivalent labels (w.r.t. ∼b), and each label is both consistent
and not a tautology.
Proposition 1. Let g = (K,Q,E, b) be a game input, Λ a
Q-possibility function, and σ = (T ,Φ) a pure Λ-winning P-
strategy for g. Then, the following properties hold:

1. For any two distinct internal nodes v and v′ on the same
branch in T , we have Φ(v) 6∼b Φ(v′).

2. For every internal node v in T , Φ(v) is both consistent
and not a tautology.

In the sequel, Λ-PWS will refer to pure Λ-winning P-
strategy.

4 Quantifying Consistency-Restoration Effort
In this section, we show how to quantify the consistency
restoration effort associated with a given strategy by inter-
preting it as the proponent’s expected cost to secure a win. We
focus on GIs with an unbounded effort budget, i.e., b =∞.

Consider a GI g = (K,Q,E,∞) and a Λ-PWS σ =
(T ,Φ) for g. For each node v in the strategy tree T , we
define E(v) ∈ R+

∞ inductively as follows:
• If v is the only node in T , then E(v) = 0.
• If v is the root node of T , then E(v) = E(Φ(v)).
• Otherwise, if v is a child of v′, then E(v) = E(Φ(v)) +
E(v′).

In particular, for any leaf node l in T , the value E(l) corre-
sponds to Ξ(G), where G is the game defined by the complete
path from the root to l. Intuitively, E(l) is the total effort
expended along the branch leading to l.

To compute the expected effort of the strategy σ, assume
each question is equally likely to receive an affirmative or a
negative response from O. Thus, each binary choice leads to
two equally probable outcomes, and the probability of fol-
lowing any particular branch of depth d(l, T ) is 1/2d(l,T ).

Thus, the expected effort value of σ is then given by:

EV(σ) =
∑

l∈Lv(T )

1

2d(l,T )
E(l).

This expected effort EV(σ) can be interpreted as the aver-
age cost to ensure a P’s victory, taking into account all possi-
ble response patterns from O.

Quantifying the effort required to restore consistency of-
fers several practical benefits. For example, it enables a direct
comparison between different sets of questions. This helps
to identify and select those that are most effective in achiev-
ing consistency with minimal cost. It also facilitates resource
management: the effort budget can be adjusted based on the
expected effort value. Furthermore, this approach provides
a foundation for defining inconsistency measures, as we will
illustrate later.

It is noteworthy that the effort value (EV) can be linked
to the concept of entropy in information theory [Shannon,
1948a; Shannon, 1948b]. Recall that, if p1, p2, . . . , pn
are probabilities such that

∑n
i=1 pi = 1, the entropy

H(p1, p2, . . . , pn) is defined as:
H(p1, p2, . . . , pn) =

∑n
i=1 pi log

(
1
pi

)
,

where the base of the logarithm is chosen based on the appli-
cation; here, we adopt base 2.

Now, if E is defined such that E(φ) = 1 for each question
φ, we can express the effort value as:

EV(σ) = H

(
1

2d(l1,T )
, . . . ,

1

2d(ln,T )

)
,

where Lv(T ) = {l1, . . . , ln}.
The connection between EV and entropy arises from view-

ing each question as analogous to a bit of information. This
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perspective aligns the notion of effort required for consistency
restoration with the quantification of information: each ques-
tion reduces uncertainty about the consistent knowledge base
that P should consider. Notably, this view resonates with
existing interpretations of entropy in the literature, where
entropy is seen as the minimal number of binary questions
needed to identify an outcome (e.g., see [van der Lubbe and
Hoeve, 1997; Cover and Thomas, 2001]).

5 Identifying the Appropriate MCS
In this section, we further simplify our setting by imposing
two restrictions:

1. We restrict P’s questions to the elements initially present
in the given possibility base K, i.e., Q = K.

2. We adopt the uniform effort function E1, defined as
E1(φ) = 1 for every φ ∈ K. Assigning a uniform cost of 1
means that the effort in a game corresponds to the number of
asked questions.

Considering these restrictions, we use (K, b) to denote a
GI instead of (K,K,E1, b).

Additionally, we focus on a specificK-possibility function
Λmc defined as:

Λmc(K,A) = {M ∈ MCS(K) : M ∪A 0 ⊥}.

It is straightforward to see that Λmc satisfies the properties
CWR, ICPB and DBA.

By focusing on these simplified conditions, we achieve a
baseline scenario that is conceptually clear. Since all ques-
tions come from K and have the same cost, we remove ex-
traneous variables that could complicate the analysis. More-
over, using the K-possibility function Λmc links our game-
theoretic framework to well-known inconsistency handling
approaches based on MCSes [Rescher and Manor, 1970;
Brewka, 1989; Konieczny et al., 2019]. Several results devel-
oped in this section will serve for the analysis of our proposed
inconsistency measure.

Theorem 2. For every Λmc-PWS σ = (T ,Φ) of a GI (K, b),
the number of leaf nodes of T is equal to |MCS(K)|.

Proof. We first show that for every M ∈ MCS(K), there
exists a leaf node l in T such that M is the unique MCS sat-
isfying Cσ(l) ∪M 0 ⊥. This implies that the number of leaf
nodes in T is at least |MCS(K)|.

Let M be an MCS of K and ω a model of M . Define
R = {φ ∈ K̂ : ω |= φ}. Since ω is a model of both M and
R, we have M ∪ R 0 ⊥. Furthermore, we know that there
exists a leaf node l such that Cσ(l) ⊆ R. Because |S| = 1
with S = {M ′ ∈ MCS(K) : M ′ ∪ Cσ(l) 0 ⊥}, it follows
that S = {M}.

Next, assume, for the sake of contradiction, that there ex-
ists an MCS M of K and two distinct leaf nodes l and l′ such
that both Cσ(l)∪M 0 ⊥ and Cσ(l′)∪M 0 ⊥. By definition,
there must exist a formula φ ∈ K such that φ ∈ Cσ(l)∪Cσ(l′)
and ¬φ ∈ Cσ(l)∪ Cσ(l′). Consequently, we have φ ∈M and
φ /∈M , leading to a contradiction.

Since T is a full binary tree in every Λmc-PWS σ =
(T ,Φ), we derive the next corollary.

Corollary 1. For every Λmc-PWS σ = (T ,Φ) of a GI (K, b),
the following properties hold:

1. The number of nodes of T is equal to 2×|MCS(K)|−1.
2. d(T ) ≥ dlog2(|MCS(K)|)e.
Using the foregoing corollary, we obtain the following re-

sult.
Theorem 3. For every GI g = (K, b) with b <
dlog2(|MCS(K)|)e, g does not admit any Λmc-PWS.

The next proposition states that in any Λmc-PWS, no ques-
tion asked during the strategy corresponds to a free formula.
Proposition 2. Let g = (K, b) be a GI. For every Λmc-PWS
σ = (T ,Φ) of g, it holds that questions(σ) ∩ free(K) = ∅.

Proof. Let σ = (T ,Φ) be a Λmc-PWS of g. Assume, for the
sake of contradiction, that there exists an internal node v in
T such that Φ(v) = φ is free in K. Knowing that φ is free,
φ ∈ M holds for every M ∈ MCS(K). Thus, no MCS M
satisfies M ∪ {¬φ} 0 ⊥. However, as v is an internal node
associated with φ, there exists a leaf l such that ¬φ ∈ Cσ(l).
Consequently, |{M ′ ∈ MCS(K) : M ′ ∪ Cσ(l)}| = 0 holds.
This contradicts the fact that σ is pure.

Now, we present a theorem that characterize types of game
inputs that always admit a Λmc-PWS.
Theorem 4. For every GI g = (K, b) with b ≥ |(K\S)/ ∼b |
such that S = free(K) ∪ Inc(K), g admits a pure Λmc-
wining P-strategy.

In particular, Λmc-PWS always exists when there is no
budget limit, i.e., b =∞.

The theorem below describes the common structure of
Λmc-PWSes for MISes.
Theorem 5. Let K be an MIS. Then, (K, b) admits a pure
Λmc-PWS σ = (T ,Φ) iff b ≥ |K| − 1 and σ satisfies the
following properties:

1. The left child of every internal node in T is a leaf node.
2. The depth of T is |K| − 1.
3. For every two distinct internal nodes v and v′ in T ,

Φ(v) 6= Φ(v′).

6 Inconsistency Measurement
Inconsistency measures are designed to quantify the amount
of contradiction present in a knowledge base. Widely stud-
ied in the literature, these measures often use postulate-based
frameworks to capture different aspects of inconsistency (e.g.,
see [Hunter and Konieczny, 2010; Ammoura et al., 2017;
Thimm, 2018; Bona et al., 2019; Besnard and Grant, 2020;
Corea et al., 2021]).
Definition 4 (Inconsistency Measure). An inconsistency
measure is a mapping I from PBs to R+

∞ that satisfies the
following property for every PB K:
CONSISTENCY: I(K) = 0 if and only if K is consistent.

Beyond CONSISTENCY, the literature proposes various
other postulates (e.g., [Besnard, 2014; Thimm, 2018]) to fur-
ther characterize inconsistency measures. Among these, we
focus on:
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• FREE FORMULA: If φ ∈ Free(K), then I(K \ {φ}) =
I(K).

• MONOTONICITY: If K ⊆ K ′, then I(K) ≤ I(K ′).

• EQUIVALENCE: If φ ≡ ψ, then I(K ∪ {φ}) = I(K ∪
{ψ}).

• EQUAL CONFLICT: If M and M ′ are MISes of K with
|M | = |M ′|, then I(M) = I(M ′).

• ATTENUATION: If M and M ′ are MISes such that
|M | > |M ′|, then I(M) < I(M ′).

6.1 A Game-based Measure
Building on the restriction described in Section 5, we define
the inconsistency measure Iwmc as follows:

Iwmc(K) = min{EV(σ) | σ ∈ PWinS(g,Λmc)}+|Inc(K)|

where g = (K,∞) and PWinS(g,Λmc) denotes the set of all
Λmc-PWS for g.

This function mainly represents the minimal expected ef-
fort required to restore consistency. Additionally, assigning
a cost of 1 to each inconsistent formula aligns with the ap-
proach used in the MCS-based measure introduced in [Grant
and Hunter, 2011].

By mainly observing that every inconsistent PB either con-
tains at least one inconsistent formula or has at least two
MCSs, we obtain the following result.

Proposition 3. The function Iwmc is an inconsistency mea-
sure.

In the proposition below, we focus on the specific case
where the PB is an MIS. This result primarily follows from
the structure of Λmc-PWSes described in Theorem 5.

Proposition 4. If K is an MIS, then the following holds:

Iwmc(K) = 2− 1

2n−2

where n = |K|.
In addition to satisfying CONSISTENCY, the measure Iwmc

inherits various properties from our game framework:

• FREE FORMULA and EQUIVALENCE: It follow from the
fact that no winning strategy needs to query free formu-
las (Proposition 2).

• EQUIVALENCE: It follow from the fact that logically
equivalent formulas can be substituted without changing
the set of consistent subsets.

• EQUAL CONFLICT: If two MISes M and M ′ have the
same cardinality, Iwmc(M) = Iwmc(M ′) (Proposition 4).
This reflects the equal cost of resolving conflicts of the
same size.

Note that MONOTONICITY does not hold in general be-
cause adding formulas to K changes both the base itself and
the question set, which can reduce the cost of restoring con-
sistency.

For example, let K = {p,¬p, q,¬q}. Any Λmc-PWS for
(K,∞) must ask at least two questions in each branch, lead-
ing to Iwmc(K) = 2. However, if we extend K by adding

S = { p ∧ q, p ∧ ¬q, ¬p ∧ q, ¬p ∧ ¬q}, then Iwmc
can actually decrease. Indeed, a strategy that exclusively
queries these newly added formulas achieves: Iwmc

(
K∪S) =

1
2 + 2

4 + 2× 3
8 = 1.75. Thus, extending K has reduced the

minimal expected effort from 2 to 1.75, showing the failure
of MONOTONICITY.

Moreover, by applying Proposition 4, we observe that Iwmc
exhibits a property opposite to ATTENUATION: if M and M ′
are two MISes such that |M | > |M ′|, then Iwmc(M) >
Iwmc(M ′). Intuitively, resolving larger MISes requires identi-
fying the correct MCS among a greater number of conflicting
formulas, which increases the expected effort.

6.2 Computational Aspects
To compute Iwmc, the restoration effort value of a strategy
can be determined from the shape of its associated tree and
the number of inconsistent formulas. In what follows, for a
given full binary tree T , we use EV(T ) to denote the value∑
l∈Lv(T )

d(l,T )
2d(l,T ) .

Now, we identify the tree structure that minimizes the ef-
fort value.
Theorem 6. Let T be a finite full binary tree such that each
internal node has a child that is a leaf node. Then, for every
tree T ′ with |Lv(T ′)| = |Lv(T )|, it holds that EV(T ′) ≥
EV(T ).

Proof (Sketch). The proof proceeds by induction on k =
|Lv(T )|:

Base Case (k = 1): Straightforward (there is only one pos-
sible binary tree shape that consists of a single node).

Inductive Step: Assume the property holds for all k ≤ m.
Consider k = m + 1. Let T ′ be a full binary tree such that
|Lv(T ′)| = |Lv(T )|. Define Tr as the tree obtained by re-
moving the two leaves of depth m from T . Similarly, define
T ′r as the tree obtained from T ′ by removing any two leaves
having the same parent.

By the induction hypothesis, EV(T ′r ) ≥ EV(Tr). Now,
note that:

EV(T ) = EV(Tr) +
1

2m−1
, EV(T ′) = EV(T ′r ) +

1

2d−1
,

where d is the depth of the removed leaves in T ′. Since d ≤
m and EV(T ′r ) ≥ EV(Tr), it follows that EV(T ′) ≥ EV(T ).

The following corollary is mainly a consequence of the
foregoing theorem and Theorem 2.
Corollary 2. Let K be a PB. Then, the following holds:

Iwmc(K) ≥ 2− 1

2n−2
+ |Inc(K)|

where n = |MCS(K)|.
The proposition below outlines a scenario where the previ-

ously established bound is achieved.
Proposition 5. Let K be a PB such that for every M ∈
MCS(K), M \(

⋃
(MCS(K)\M)) 6= ∅. Then, the following

holds:
Iwmc(K) = 2− 1

2n−2
+ |Inc(K)|

where n = |MCS(K)|.
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Algorithm 1 Greedy Algorithm for Approximating Iwmc
Require: A PB K and the set of its MCSes S = MCS(K)

1: function BUILDTREE(S)
2: if |S| = 1 then
3: return a leaf node identifying the single MCS in S
4: end if
5: Let φ = arg minφ∈

⋃
S\

⋂
S G(φ, S)

6: Recursively build left and right subtrees:
• Tl ← BUILDTREE(S¬φ)

• Tr ← BUILDTREE(Sφ)

7: return the tree (φ, Tl, Tr)
8: end function
9: BUILDTREE(S)

Proof. To prove the result, we construct a Λmc-PWS σ =
(T ,Φ) such that each internal node has a child that is a leaf
node.

Let MCS(K) = {M1, . . . ,Mn}. For each Mi, pick φi ∈
Mi \

(⋃
(MCS(K ′) \ {Mi})

)
. We define T as a full binary

tree of depth n− 1 where each right child of an internal node
is a leaf. Then, we define Φ as follows: for every internal
node v of depth k, Φ(v) = φk+1.

We can easily check σ = (T ,Φ) is a Λmc-PWS. In partic-
ular, for every internal node v, knowing that there exists ex-
actly one MCS containing Φ(v) explains why its right child
is a leaf.

Since we use the effort function E1 and due to the con-
nection between the consistency restoration effort and en-
tropy, the following relationship holds for every Λmc-PWS
σ = (T ,Φ):

EV(σ) = H

(
1

2d(l1,T )
, . . . ,

1

2d(ln,T )

)
,

where Lv(T ) = {l1, . . . , ln}.
Recall that the maximum value of H(p1, p2, . . . , pn) is

achieved when p1 = p2 = · · · = pn (e.g., see [Cover and
Thomas, 2001]). Consequently, the maximum value of EV
occurs when d(l, T ) = log2(n) for each leaf node l ∈ Lv(T ).
Thus, the tree shape that maximizes the effort value corre-
sponds to a balanced tree. Based on this observation, we de-
rive the following proposition:

Proposition 6. Let K be a PB. Then, the inequality
Iwmc(K) ≤ log2

(
|MCS(K)|

)
+ |Inc(K)| holds.

Finding the optimal strategy to compute Iwmc is a chal-
lenging problem. By leveraging the connection between this
problem, decision trees, and information theory, we propose
a greedy approach to approximate the inconsistency value.
This approach is inspired by the decision tree learning algo-
rithm ID3 [Quinlan, 1986; Mitchell, 1997]. Intuitively, each
MCS can be viewed as a distinct class, while the formulas of
the propositional base serve as the features.

To define our algorithm, we first introduce the concept of
information gain, which quantifies the reduction in entropy
when the set of MCSes is split using a given formula φ. The

entropy associated with a set of MCSes S is defined as:

H(S) = |S|
(

1

|S|
log2(|S|)

)
= log2(|S|),

where we assume that all elements of S are equally probable.
Note that H(S) is only defined for non-empty S.

Given a formula φ and a set of MCSes S, the information
gain G(φ, S) is defined as:

G(φ, S) = H(S)−
(
|Sφ|
|S|

H(Sφ) +
|S¬φ|
|S|

H(S¬φ)

)
,

where Sφ = {M ∈ S : φ ∈ M} and S¬φ = {M ∈ S :
φ /∈M}.

Consider the function f(i) = (n−i) log2(n−i)+i log2(i)
(1 < i < n−1) which is strictly concave and attains its global
minimum at i = n

2 . Thus, maximizing G(φ, S) rewards bal-
anced splits (exactly the goal of the classical ID3 algorithm).
In our setting balanced partitions are not desirable; we instead
seek highly unbalanced splits. Consequently, we choose to
minimize G(φ, S) when selecting the next formula.

The greedy approach used in Algorithm 1 can be summa-
rized as follows:

• At each step, select φ that minimizes the G.
• Partition S = MCS(K) into two subsets, Sφ and S¬φ.
• Recursively repeat this process for the subsets Sφ and
S¬φ until each leaf of the tree corresponds to a single
MCS.

Observe that, since the selected formula φ at each step be-
longs to

⋃
S \

⋂
S, it holds that S¬φ 6= ∅ and Sφ 6= ∅.

In the next proposition, we identify a scenario in which
Algorithm 1 allows us to compute the exact value of Iwmc.
Proposition 7. Suppose

(
K,∞

)
admits a Λmc-PWS σ whose

tree T ensures that each internal node has at least one child
that is a leaf. Then Algorithm 1 computes one of the optimal
Λmc-PWSes.

A notable drawback of the greedy algorithm is its reliance
on having all MCSes, which is generally recognized as a
highly challenging task.

7 Conclusion and Perspectives
We developed a game-theoretic framework to restore consis-
tency in propositional bases. It represents the process as a
strategic interaction between a Proponent, who aims to isolate
a unique consistent base, and an Opponent, who controls the
responses. By assigning a cost to each question, the frame-
work reflects the concept of limited resources. This facilitates
the definition of measures that evaluate the expected effort re-
quired to restore consistency. Drawing on the quantification
of consistency restoration effort, we showed how to derive a
new inconsistency measure.

This framework provides numerous opportunities for fu-
ture work. First, analyzing the complexity of identifying op-
timal strategies and quantifying restoration effort represents
a critical direction for future research. Second, the founda-
tional concepts could be adapted to more expressive logics,
such as description logics and modal logics. Third, exploring
variants that incorporate non-binary questions presents inter-
esting possibilities for further study.
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Sven Ove Hansson. AGM 25 Years - Twenty-Five
Years of Research in Belief Change. Journal of Philo-
sophical Logic, 40(2):295–331, 2011.

[Fermüller and Ciabattoni, 2003] Christian G. Fermüller and
Agata Ciabattoni. From Intuitionistic Logic to Gödel-
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