Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

BTPG: A Platform and Benchmark for Behavior Tree Planning
in Everyday Service Robots

Xinglin Chen, Yishuai Cai*, Minglong Li*, Yunxin Mao, Zhou Yang,
Wenjing Yang, Weixia Xu and Ji Wang

College of Computer Science and Technology, National University of Defense Technology
{chenxinglin, caiyishuai, liminglong10, maoyunxin, yangzhou,
wenjing.yang, xuweixia, wj} @nudt.edu.cn

Abstract

Behavior Trees (BTs) are a widely used control ar-
chitecture in robotics, renowned for their robust-
ness and safety, which are especially crucial for
everyday service robots. Recently, several meth-
ods have been proposed to automatically plan BTs
to accomplish specific tasks. However, existing
research in BT planning lacks two main aspects:
(1) the absence of a standard platform for model-
ing and planning BTs, along with testing bench-
marks; and (2) insufficient metrics for a compre-
hensive evaluation of BT planning algorithms. In
this paper, we propose Behavior Tree Planning
Gym (BTPG), the first platform and benchmark
for BT planning in everyday service robots. In
BTPG, behavior nodes are represented by predi-
cate logic, and objects are categorized to better
define the predicate domains and action models.
The BT planning problem is then formulated in
the STRIPS style. We support four environments
and three simulators with different action mod-
els, which cover most of the needs of everyday
service activities. We design a dataset generator
for each environment and test three state-of-the-
art BT planning algorithms, as well as one pro-
posed by us, using various common metrics. In
addition, we design three advanced metrics, plan-
ning progress, region distance, and execution ro-
bustness, to gain deeper insights into these BT plan-
ning algorithms. With a standard test benchmark,
we hope BTPG can inspire and accelerate progress
in the field of BT planning. Our codes are available
at https://github.com/DIDS-EI/BTPG.

1 Introduction

One of the main goals of robotics and Al is to develop in-
telligent robots capable of autonomously making decisions
and executing behaviors to accomplish various tasks. This re-
quires not only intelligent planning algorithms, but also a safe
and robust control architecture, which is particularly crucial
for everyday service robots. Behavior Trees (BTs) have be-
come a popular control architecture for robots exactly due to
their ability to ensure safety and robustness [Colledanchise

and Ogren, 2018; Ogren and Sprague, 2022]. Because of
their modular and adaptable tree structure, BTs can effec-
tively perform various tasks and handle uncertain environ-
ments [Colledanchise et al., 2019al. In addition, their clear
and interpretable control flows enhance the reliability and
predictability of robot behavior, making BT systems easy for
humans to design, deploy, and scale.

However, despite the advantages of BTs, researches on au-
tomatic BT generation has been relatively slow to progress
and yet far from practical application. Recently, BT plan-
ning [Cai et al., 2021; Chen et al., 2024; Cai et al., 2025b;
Colledanchise et al., 2019a; Cai er al., 2025a] has emerged
as a popular approach to automatically construct BTs to-
ward specific goals (as illustrated in Figure 1). This ap-
proach is based on easily designed action models and can
theoretically guarantee the success of planned BTs. Typi-
cally, when using interpretable representations of BT nodes,
such as predicate logic, the goal conditions and heuristics
for BT planning can be well interpreted and reasoned about
using Large Language Models (LLMs) [Chen et al., 2024;
Cai et al., 2025b]. These advantages make BT planning a
promising approach for automatic BT generation in everyday
service robots.

However, to the best of our knowledge, existing BT plan-
ning methods mainly face two significant challenges: (1)
Prior BT planning research constructs experiments on vari-
ous platforms, and their simulation environments are quite
naive. This makes it difficult to conduct a unified evaluation
of existing BT algorithms. Therefore, a standard platform
for real-life environments and evaluation datasets is urgently
needed for this field to progress. (2) Current performance
evaluation metrics focus primarily on planning efficiency and
execution efficiency. However, some important attributes of
the planned BTs, such as the attraction region and robustness,
are less emphasized.

To address these two issues, we propose Behavior Tree
Planning Gym (BTPG), the first platform and benchmark for
BT planning in everyday service robots. To establish BTPG
as a standard for different BT planning methods, we focus on
the following three efforts: (1) We unify the BT representa-
tion by adopting the popular predicate logic form [Chen et
al., 2024] for BT nodes. To efficiently define the domain of
each action and condition predicate, we group objects into
categories based on their attributes. Subsequently, the BT

https://github.com/DIDS-EI/BTPG

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

1
]
Condition |
>y
i

Current |
State |
i

1

1

ey

BT Planning

BT Execution

.

1
1
1
1
1
1
1
(]
1
1
1
1
1
1
1
1
-

4
Behavior Nodes O Condition |:| Action = Control Nodes Sequence Fallback

Figure 1: BT planning often searches from the goal condition backward to the current state using the action model. The explored condition

and action nodes ultimately form the BT that achieves the goal.

planning problems are formulated using STRIPS-style action
models, which are general enough to model common environ-
ments in everyday service scenarios. (2) We build BT systems
in four environments: RoboWaiter [Chen et al., 20241, Virtu-
alHome [Puig et al., 2018], OmniGibson [Li et al., 2023], and
RobotHow [Liao et al., 2019]. The first three environments
each include a simulator with which the robot can actually
interact, while the last one is used for large-scale computa-
tional tests. We design action models in each environment for
BT planning respectively. (3) We design a dataset generator
for each environment that can automatically generate random
task goals while guaranteeing their reasonableness. Then we
perform comprehensive evaluations of three state-of-the-art
BT planning algorithms, as well as one proposed by us, us-
ing various common metrics. Furthermore, we design three
advanced metrics — planning progress, region distance, and
execution robustness — to gain deeper insights into these BT
planning algorithms. Through the efforts described above,
we hope BTPG can become a standard platform and bench-
mark that can inspire and accelerate progress in BT planning
research.

2 Background

A BT is a directed rooted tree where the behavior nodes
(leaves) manage the robot’s perception and execution, while
control nodes (internals) manage the ticking logic flow to de-
termine which action should be executed in the current state
[Colledanchise and Ogren, 2018]. Current BT planning ap-
proaches focus mainly on four types of BT nodes:

» Condition. A behavior node that checks whether the spec-
ified condition holds in the current state, and returns either
success or failure.

* Action. A behavior node that controls the robot to per-
form the specified action, and returns either success,
failure, or running.

* Sequence. A control node that ticks its children from left to
right and returns success when all its children succeed.
Otherwise, it returns failure or running according to
the first non—success status it encounters.

* Fallback. A control node with opposite return logic to the
sequence node, which means it ticks its children from left
to right and returns failure when all its children fail.
Otherwise, it returns success or running according to
the first non—-failure status it encounters. The typical
structure of the BT is illustrated in Figure 1.

Predicate Logic for Node Representation. In the pred-
icate logic representation [Chen er al, 2024; Cai er al.,
2025b], condition and action nodes are represented by a tu-
ple < R,Q,0O >, where R is the condition predicate set,
Q is the action predicate set, and O is the object set. In
this formulation, a condition node can be denoted as ¢ =
r(o1,...,0;),7 € R while an action node can be denoted as
a=gq(o1,...,05),q € Q.

STRIPS-style Action Model. In the STRIPS-style plan-
ning formulation [Fikes and Nilsson, 1971]. S is the finite
set of environment states, A is the finite set of actions, M
is the action model. Both the state s € S and the condi-
tion c are represented by a set of atom conditions. ¢ C s
means condition ¢ holds in the state s. The state transition af-
fected by action a € A can be defined as a triplet M(a) =<
pre(a), add(a), del(a) >, consisting of the precondition, add
effects, and delete effects of the action. After the action’s ex-
ecution, the subsequent state s’ = s U add(a) \ del(a).

Problem Formalization. The BT planning problem is a tu-
ple: < S, A, M,D,sq,g >, where D : A+ RT is the cost
function, s is the initial state, g is the goal condition. For
each BT 7T includes a path p € T,p = (a1, az, ..., a,) that
achieves g from sg, BT planning aims to find the optimal BT
T. with minimal execution cost: 7, = argmin ¢ o D(7T) =

argming¢ 7 3,y D(a;).

3 Related Work

3.1 Behavior Tree Planning

Current studies on automatic BT generation generally have
certain limitations. Evolutionary computing [Neupane and
Goodrich, 2019; Colledanchise et al., 2019b; Lim et al.,
2010], reinforcement learning [Banerjee, 2018], imitation
learning [French er al., 2019], and MCTS [Scheide et al.,

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

2021] require implicit goals of BT, such as fitness functions
or reward functions, which are difficult to translate from hu-
man instructions. Formal synthesis [Tadewos et al., 2022;
Neupane and Goodrich, 2023] requires complex environ-
ment modeling and has rather high computational complex-
ity. BT generation directly using LLMs [Izzo er al., 2024;
Li et al., 2024; Lykov and Tsetserukou, 2023; Lykov et al.,
2023] is adaptable to the diversity of human instructions but
cannot guarantee the reliability of BTs.

In contrast, BT planning has explicit goal conditions, eas-
ily designed action models, and the theoretical guarantee of
the success and reliability of planned BTs. The state-of-the-
art BT planning methods mainly include: (1) BT Expansion
[Cai ef al., 2021], a sound and complete algorithm for BT
planning where planned BTs are guaranteed to be finite time
successful. (2) OBTEA [Chen er al., 2024], Optimal Behav-
ior Tree Expansion Algorithm. It is based on BT Expansion
but designed to plan optimal BTs with minimal execution
cost. However, the computation complexity is high when the
action space becomes large. (3) HBTP [Cai et al., 2025b],
Heuristic Optimal Behavior Tree Expansion Algorithm. It
uses LLMs to provide action space pruning and planning
heuristics through commonsense reasoning. This approach
has advantages in both planning and execution efficiency, but
places high demands on the task understanding and heuristics
generation capabilities of LLMs.

3.2 Benchmark Environments for Robot Planning

The most common benchmarks for robot planning are de-
signed for low-level control tasks. For path planning, there
are Plannie [Rocha and Vivaldini, 2022], MRPB 1.0 [Wen et
al., 2021], and PathBench [Toma er al., 2021]. For manip-
ulation planning, there are MotionBenchMaker [Chamzas et
al., 2022], the motion planning pipeline [Liu and Liu, 2022],
and the grasp planning benchmark [Bekiroglu ef al., 2020].
In recent years, learning methods like reinforcement learn-
ing [Bai et al., 2023; Bai et al., 2025b; Bai et al., 2025a]
have become popular approaches for robot control planning,
with many benchmark environments proposed, such as Safety
Gymnasium [Ji et al., 2023] and RLBench [Ning et al.,
2023]. For high-level behavior planning tasks, existing works
are mostly in the field of embodied intelligence, and LLMs
are often used to generate plans [Valmeekam et al., 2023;
Singh et al., 2022; Chen et al., 2023]. However, the lack
of reliability is a critical flaw when LLMs directly generate
plans, not to mention the safety and robustness during the ex-
ecution of these plans. BTPG fills this gap by providing a
platform and benchmark for BT planning, where reliable and
robust BTs for high-level behavior control can be automati-
cally generated, without needing to access low-level control
of the robots.

4 Behavior Tree Planning Gym

In this section, we first briefly introduce the object catego-
rization that assists in modeling the BT planning problem.
We then provide detailed information on the BT simulation
platforms and the BT planning benchmarks. The framework
of BTPG is illustrated in Figure 2.

Object Categorization. In BTPG, behavior nodes are rep-
resented using predicate logic, and action models are repre-
sented in the STRIPS style. Consequently, defining the do-
mains of predicates and the state transitions for each action
instance becomes more challenging as the number of avail-
able objects in the environment increases. Object categoriza-
tion [Puig et al., 2018] is a useful technique to improve the
reusability of predicate and action model templates, based on
the shared attributes of objects. This approach utilizes the ab-
straction of the world through human common sense. One
inspiration from it is that conditions and actions can also be
categorized, potentially leading to the development of more
efficient BT planning algorithms based on this hierarchical
representation in the future.

4.1 Behavior Tree Simulation Platform

The BT systems in BTPG are all built in Python, which can
communicate with external simulators such as Unity or Un-
real Engine to implement low-level robot control. We design
four environments in which various BT planning tasks can be
tested. These environments have different themes and prob-
lem scales. Detailed information on these environments is
listed in the Appendix.

RoboWaiter (RW). In this environment, the robot acts as a
waiter to perform tasks according to customer needs, such as
delivering coffee or cleaning tables. The planned BTs can be
executed in a simulator developed based on Unreal Engine 5
by Dataa [Chen er al., 2024]. The low-level robot control for
action nodes is based on scripted APIs. The task difficulty in
this environment is relatively low.

VirtualHome (VH). In this environment, the robot needs to
accomplish various household tasks, such as washing fruits
or turning on the TV. The planned BTs can be executed in
the VirtualHome [Puig et al., 2018] simulator. The low-level
robot control is implemented using programmed scripts in
a specific format. The task difficulty in this environment is
medium.

OmniGibson (OG). In this environment, the robot exe-
cutes everyday household activities in IsaacSim, a more re-
alistic simulator developed by Nvidia. The robot and object
sources are from the BEHAVIOR-1K dataset distributed with
OmniGibson [Li ef al., 2023] platform. The low-level robot
control for action nodes is implemented using rule-based nav-
igation and manipulation algorithms. The task difficulty in
this environment is medium.

RobotHow (RH). This environment is inspired by the
RobotHow knowledge base [Liao er al., 2019] which includes
a number of activity programs for household robots. This en-
vironment is designed for large-scale computational tests, and
the planned BTs can be executed in a headless environment
without simulation deployment for now. The task difficulty
in this environment is high.

In BTPG, we propose the Behavior Tree Markup Language
(BTML) to represent BTs, which is more concise and read-
able than XML in terms of BT representation. Details about
BTML can be found in Appendix.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

VirtualHome

RoboWaiter

Environments

OmniGibson

RobotHow BT Planning Benchmark

e | QD D
a

Dataset Generator

[Single-Goal][Multi-Goal]

Metrics

([Common]

[Success Rate

O Planning Efficiency

Symbolic

‘ Goal ‘Current ‘
Representation

State

O Execution Efficiency

[Robustness

O Progress Rate

[Region Distance

: L
BT Planning ' [BT Expansion] [OBTEA J [HBTP] { UHBTP] [HBTP-Oracle J Lo
H [|

Figure 2: Overview of the BTPG architecture. We support four environments and five BT planning algorithms. The tasks are represented
using symbolic representation for BT planning, and the produced BTs are converted to BTML format for execution. For benchmarking, we
design a dataset generator for each environment and use common and advanced metrics to evaluate the performance of the planned BTs.

Items RW VH OG RH
Conditions 8 11 13 13

Predicates =4 ions 6 11 16 16
. Categories 3 5 10 10
Objseg Total 31 36 17 126
Instances Conditions 306 293 122 4914
Actions 174 480 155 7329

Table 1: The detailed problem scales of four environments.

4.2 Behavior Tree Planning Benchmark

Universal Heuristic Behavior Tree Planning

We implement all three state-of-the-art BT planning algo-
rithms in BTPG as mentioned in Section 3.1. Addition-
ally, we further propose a new BT planning algorithm in-
spired by classical planning. We notice that current heuris-
tic BT planning algorithms [Cai ef al., 2025b] mainly use
domain-dependent heuristics produced by LLMs. However,
domain-independent heuristics have been widely studied in
the field of classical planning [Hoffmann and Nebel, 2001]
but are lacking in BT planning algorithms. In this paper,
we simply replace the heuristics used in HBTP with domain-
independent heuristics and propose Universal Heuristic Be-
havior Tree Planning (UHBTP).

We start with the delete relaxation used in GRAPHPLAN
[Hoffmann and Nebel, 2001]. Consider a relaxed problem
where, for each action, del(a) = (). In this case, we start
from the initial state and apply all actions whose precondi-
tions are satisfied in the current state at each step, resulting
in a sequence of literal sets L1, Lo, ..., L,, where L1 = sg
and g C L,,. Welet £,,11 = L, then we subtract these lit-
eral sets layer-by-layer to form heuristic plan layers: £ =
L1,L; 1 = Liy1 \ Liyi = 1,2,...,n. For these heuristic

plan layers, we have:

n+1 n+1
Nci=0 (JLi=c (1)
i=1 i=1
The heuristic for each literal can be defined as:
h(l) =il € L, 2)

The heuristic for conditions is the sum of their literals:

h(c) = > h(l) 3)

lec

Although the above heuristics are simple, they are efficient
in guiding BT planning by prioritizing the exploration of po-
tentially shorter action paths, thereby accelerating the plan-
ning process. The comparison results of the performance
of UHBTP with other existing BT planning algorithms are
shown in the Experiment section.

Dataset Generator

Given an action model and human prior knowledge, plan-
ning tasks within the environments can be automatically gen-
erated. In BTPG, we designed a dataset generator for each
environment to randomly generate batches of tasks to test the
performance of planning algorithms. Typically, the dataset
generator first randomly generates the environment state and
goal conditions according to certain distributions to form the
planning task. These distributions can be set to uniform dis-
tributions if there are no special requirements. Then, the op-
timal path is obtained using OBTEA as a reference for eval-
uating other planning algorithms. The final task goals can
include a single goal condition or a combination of multiple
goals, with the number of goal conditions controlling the dif-
ficulty of the planning tasks. Details of the dataset generator
and the data format are provided in the Appendix.

Metrics Design
Common Metrics. Our benchmark includes the following
common evaluation metrics to evaluate the performance of

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Planning Timeout Actions Costs Tree

Time(ms) Rate Sizes Ticks

Algorithms

Environment: RoboWaiter

BT Expansion 18.0 0.8% 1.9 17.1 50.6 1835

OBTEA 0.6 0.0% 20 178 56 49.1
HBTP 0.6 0.0% 20 178 52 50.0
UHBTP 0.7 0.0% 20 18.0 8.7 60.4

HBTP-Oracle 0.5 0.0% 20 17.8 42 431

Environment: VirtualHome

BT Expansion 406.5 335% 29 31.7 1582.1 797.4
OBTEA 923 1.5% 3.8 39.6 191.0 2245.2
HBTP 70.4 2.0% 39 407 89.8 799.9
UHBTP 18.9 0.5% 4.0 44.0 1543 406.6

HBTP-Oracle 7.5 0.0% 40 433 72 1303

Environment: OmniGibson

BT Expansion 3714 27.0% 3.6 39.7 719.0 2203.6
OBTEA 483 0.0% 44 46.5 1379 2168.1
HBTP 28.7 0.0% 46 494 713 9176
UHBTP 222 0.0% 45 494 81.7 3345

HBTP-Oracle 4.6 0.0% 46 51.6 103 199.5

Environment: RobotHow

BT Expansion 729.7 685% 23 26.7 35153 714.4
OBTEA 505.7 47.0% 29 314 1534 11438
HBTP 4694 39.0% 3.6 393 634 110.7
UHBTP 3813 22.0% 43 46.4 3078.86261.7
HBTP-Oracle 336.6 18.0% 44 499 135 169.6

Table 2: The comparison of BT planning algorithms in common
metrics. The results are averaged over 5 seeds.

BTs: (1) Planning efficiency, including planning time and
timeout rate; (2) Execution efficiency, including executed ac-
tions, costs, tree sizes, and the number of ticks during execu-
tion.

In addition to the above common metrics, we propose the
following three advanced metrics in this paper. These metrics
aim to provide deeper insights into BT planning algorithms
and enable a more comprehensive evaluation.

Planning Progress (PP). For the planning efficiency of BT
planning algorithms, simple metrics like planning time and
the timeout rate may be insufficient. It would be helpful if
we could understand the specific advance of BT planning
at each exploration and estimate the overall progress of the
whole planning procedure. Therefore, we propose the Plan-
ning Progress metric. This metric is based on the optimal
paths provided in the datasets. Assuming we have an optimal
path set P* for a given task, the planning progress at time ¢
can be calculated as follows:

ZaEA(p*) maX(I(pt, (1), I(p*a a))
ZQGA(p*) I(p*7 CL)

where T is the BT planned at the current time, A(p*) is the
set of actions shown in path p*, I(p, a) is the action count that
shows how many times action a appears in the path p.

With this metric, we can estimate the ability of the planning
algorithm to finish the task before it completes the search.
This is especially helpful when the problem scale is large and
the algorithm cannot finish within the expected time limit.

PP, = max max
p*EP* p €Ty

“

However, since it is impossible to maintain all optimal paths
in the datasets, this estimation could be inaccurate when mul-
tiple optimal paths are available.

Region Distance (RD). It is also helpful to know the dis-
tribution of path lengths starting from each condition within
the attraction region of the planned BT, which we refer to as
Region Distance. This metric provides two main insights: it
allows us to understand the depths on which the search pro-
cess primarily focuses, and it gives us a rough idea of which
tasks the final planned BT can accomplish. Given an inter-
val [aq, @2), we can count the number of conditions whose
corresponding path lengths fall within it:

RD(a,,05) = [{a1 < [p(T, ¢)| <zl € C(T)} (5

where p(7T, c) is the path from condition ¢ to goal g within
the BT 7, and C(T') is the set of conditions in the attraction
region of 7.

With the same number of explorations, shorter path lengths
within the attraction region indicate that the BT primarily ex-
plores the region near the goal, making it more likely to fail in
long-horizontal tasks. Therefore, we generally expect a larger
Region Distance for the planned BTs.

Execution Robustness (ER). Robustness is one of the most
important advantages that distinguish BTs from other con-
trol architectures. However, it is rarely addressed in current
BT planning literature. In this paper, we test the robustness
of planned BTs by introducing noise into the environment.
We first define a noise function A with a noise parameter
e € [0, 1], which indicates the probability of each condition
in the environment being disturbed. We set up disturbance
functions for each environment to ensure the disturbances are
reasonable and reflect real-world conditions. We have the ini-
tial noise parameter €; and the transition noise parameter es,
which respectively test the BT’s ability to execute tasks un-
der conditions not targeted in the planning and its robustness
under uncertainties on the environment transition. Under the
effect of the noise function, the environment transitions as
follows:

5o = N(sos€1),air1 = T(s}),
Sit1 = M(si,ait1), sip1 = N (siv1; €2),
i:O,1,2737"'

We measure the execution robustness of a BT by the proba-
bility that it successfully reaches the goal in a noisy environ-
ment. We assume that the planned BTs succeed in a finite
time in the absence of noise, meaning that when the envi-
ronment state falls in the attraction region of the BT, it can
follow the predetermined path to the goal. Thus, as long as
the BT has not returned a failure, it is considered to be
progressing towards the goal. Execution Robustness can then
be defined as follows:

EFR=1-— HP(failure =T (s})|s0, €1, €2, N, T, M) (6)
i=0

where failure = 7 (s}) indicates that the BT 7T returns a
failure under state s at time ¢.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

RoboWaiter VirtualHome OmniGibson RobotHow
B 100 100 100 100 i
E /—/
o
S0 ‘
= 90 90 90 90
g
g I
& 80 80 80 80 [fk —
0 20 40 0 20 40 0 20 40 0 20 40
Exploration number Exploration number Exploration number Exploration number
105 RoboWaiter VirtualHome OmniGibson RobotHow
100 100 100
B 100 - [
B
2% 80 80 80
E %
R }
85 60 60 60 ;[—f
80 I
0 20 40 0 100 200 0 100 200 0 100 200
Exploration number Exploration number Exploration number Exploration number
—— BT Expansion —— OBTEA HBTP —— UHBTP —— HBTP-Oracle
Figure 3: The changes in the Planning Progress metric with the increase in the number of explorations.
RoboWaiter VirtualHome OmniGibson RobotHow
600
100+
400
g 751 5400 g 5400
Q Q Q Q
=] E] E] E
g 501 g g g
2 & 200 = 200 £ 200
251
0 0 0
0123456789 0123456738 012345678 0123456789
Region Distance Region Distance Region Distance Region Distance
BT Expansion OBTEA HBTP UHBTP HBTP-Oracle

Figure 4: The comparison of Region Distance in the multi-goal set.

Achieving greater robustness in the planned BTs typically
involves higher planning and execution expenses. Therefore,
the trade-off between efficiency and robustness is a key chal-
lenge that future BT planning algorithms need to address.

5 Experiments

To evaluate the performance of BT planning algorithms in
our benchmark, for each environment, we randomly gener-
ated 100 single-goal tasks under a uniform distribution, as
well as 100 multi-goal tasks where the number of goal condi-
tions ranged from 2 to 3. We implemented the following five
BT planning algorithms in BTPG: BT Expansion, OBTEA,
HBTP, UHBTP and HBTP-Oracle, where in HBTP-Oracle
we assume that the heuristics provided by LLMs are always
accurate. All our experiments were performed on an AMD
Ryzen 9 5900X 12-Core Processor (3.70 GHz).

5.1 Common Metrics

Planning Efficiency. We set a planning time limit of 1 sec-
ond for each algorithm. If the time limit is exceeded, planning
is stopped and its execution efficiency is not recorded. As we
can see from Table 2, BT Expansion has the lowest planning
efficiency while HBTP-Oracle has the highest. The heuristics
used by the HBTP algorithm significantly improved planning
efficiency compared to OBTEA, but there is still a consider-
able gap compared to HBTP-Oracle. More surprisingly, even
UHBTP, which uses only domain-independent heuristics is
faster than HBTP. This indicates that there is still much room
for improving the reasoning abilities of LLMs to enhance the
BT planning efficiency.

Execution Efficiency. As shown in Table 2, when the time-
out rate is close to 0, we can observe that algorithms using
heuristics generally have higher executed actions and costs
than OBTEA. However, compared to the significant improve-

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Single-Goal Multi-Goal
RW VH OG RH RW VH OG RH
BT Expansion 81 74 78 55 17 27 26 17

Settings Algorithms

e1 =0 OBTEA 82 81 72 62 14 48 53 10
ez = 0.2 HBTP 77 76 74 69 12 58 51 23
UHBTP 82 72 72 64 16 52 41 23
HBTP-Oracle 83 77 80 69 13 51 51 13
BT Expansion 55 58 63 48 8 20 19 7
€1 =0 OBTEA 57 60 59 46 6 31 34 9
e2 = 0.5 HBTP 54 58 56 49 5 24 26 16
UHBTP 57 57 56 45 7 22 21 12
HBTP-Oracle 53 57 61 47 4 24 31 11
BT Expansion 34 71 68 60 1 40 46 16
e1 =1 OBTEA 34 70 67 62 1 56 60 19
e2 =0 HBTP 33 68 69 65 0 46 47 36
UHBTP 35 65 67 59 1 53 46 33
HBTP-Oracle 35 68 88 64 1 48 52 23
BT Expansion 33 65 67 50 0 36 37 18
€1 =1 OBTEA 32 66 65 54 1 53 49 18
ez = 0.2 HBTP 33 61 65 55 0 37 38 29
UHBTP 37 61 64 56 2 37 32 22
HBTP-Oracle 33 66 64 55 0 35 38 19

Table 3: The success rates (%) of planned BT in noisy environments,
which reflect the Execution Robustness metric.

ment in planning speed they achieve, these minor sacrifices
in execution efficiency are acceptable. Moreover, heuristics
can lead to smaller tree sizes and lower tick counts, indicat-
ing that the generated tree structures are more concise. How-
ever, when the timeout rate increases, the assessment results
for Execution Efficiency will lose statistical significance, as
many tasks fail to generate an executable BT.

5.2 Advanced Metrics

Evaluation of Planning Progress. As shown in Figure 3,
we can observe a clear phenomenon where the PP in the early
stage is generally positively correlated with the final planning
efficiency. This indicates that our PP metric can effectively
reflect the planning efficiency of an algorithm early in the
planning procedure, without waiting for the entire planning
to complete. This is particularly helpful in complex environ-
ments, such as RH. Furthermore, most of the planning pro-
gresses are achieved early on, and as planning continues, the
increase in PP slows down significantly. This indicates that
the difficulty of planning in the later stages is much higher
than in the early stages. This is because the number of com-
binations between conditions increases dramatically as more
conditions are explored. This insight suggests that improving
planning efficiency in the later stages of planning might be a
worthwhile research direction. Another phenomenon regard-
ing the planning efficiency of OBTEA and BT Expansion has
been observed. In the OG environment, the planning progress
of BT Expansion eventually surpasses that of OBTEA, while
in other environments, it is generally lower. This suggests
that the planning efficiency of the algorithms may depend on
the specific action model of the environment.

Evaluation of Region Distance. We conducted Region
Distance experiments on the multi-goal dataset, where each
algorithm was run for only 10 explorations. Despite the lim-
ited number of explorations, we can still observe differences
between the algorithms. As shown in Figure 4, the Region
Distance metric indicates that BT Expansion’s Region Dis-
tance is generally distributed within a smaller range. The
Region Distance for HBTP and UHBTP is relatively larger,
which suggests that with the help of heuristics, the algorithms
tend to explore states in more distant regions. Addition-
ally, the performance of HBTP is not significantly different
from its theoretical bound, HBTP-Oracle. From this experi-
ment, we can preliminarily conclude that higher planning ef-
ficiency often implies that the algorithm explores regions at
sufficiently far distances.

Evaluation of Execution Robustness. To test the robust-
ness of BTs generated by different algorithms, we set vari-
ous noise parameter settings in each environment, ran each
algorithm with 5 random seeds, and calculated the average
completion rate for the BTs generated by each algorithm. As
shown in Table 3, when only the environment transition noise
€9 is present, these BTs have a relatively high success rate on
the single-goal set. However, the success rate significantly
drops on the multi-goal set. This is because the robot needs
to complete multiple goals simultaneously, and noise inter-
ference in any single goal can lead to the failure of the en-
tire task. Next, when comparing the second and third set-
tings, we found that in VH, OG, and RH, the success rate
with €; = 1,e2 = 0 is higher than with ¢; = 0,e5 = 0.5.
However, in the RW environment, the opposite is true. This
indicates that the robustness of BTs generated by planning
algorithms is depends on the type of tasks in different envi-
ronments. Finally, we observed that in all random perturba-
tion environments, the robustness of the BTs generated by all
algorithms is generally low. This highlights the severe de-
ficiencies of current BT planning algorithms in terms of the
robustness of the generated BTs. Improving the robustness
of planned BTs is a significant challenge that needs to be ad-
dressed in future work.

6 Conclusion

This paper presents BTPG, the first platform and benchmark
for Behavior Tree (BT) planning in everyday service robots.
In BTPG, we adopt a predicate logic representation for be-
havior nodes, formulate the BT planning problem using a
STRIPS-style action model, and use object categorization to
aid definition. We create four environments with three simu-
lators that encompass most everyday service activities. Addi-
tionally, we design a dataset generator for each environment.
We implement and test three state-of-the-art BT planning al-
gorithms, as well as UHBTP proposed by us, using various
common metrics and three advanced metricsto gain deeper
insights into these algorithms. With a standard test bench-
mark, we hope BTPG can inspire and accelerate progress in
the field of BT planning. Future work includes continuing to
improve the success rate of BT execution in the simulators,
incorporating more BT planning algorithms, and providing a
more comprehensive user manual and community support.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant Nos. 62032024 and 62372459)
and the Independent Innovation Science Fund Project of
NUDT (Grant No. 23-ZZCXKXKY-07).

Contribution Statement

Yishuai Cai and Minglong Li are corresponding authors.

References

[Bai et al., 2023] Fengshuo Bai, Hongming Zhang,
Tianyang Tao, Zhiheng Wu, Yanna Wang, and Bo Xu.
Picor: Multi-task deep reinforcement learning with policy
correction. Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), 37(6), Jun. 2023.

[Bai et al., 2025a] Fengshuo Bai, Yu Li, Jie Chu, Tawei
Chou, Runchuan Zhu, Ying Wen, Yaodong Yang, and
Yuanpei Chen. Retrieval dexterity: Efficient object re-
trieval in clutters with dexterous hand. arXiv preprint
arXiv:2502.18423,2025.

[Bai et al., 2025b] Fengshuo Bai, Runze Liu, Yali Du, Ying
Wen, and Yaodong Yang. Rat: Adversarial attacks on
deep reinforcement agents for targeted behaviors. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI), volume 39, 2025.

[Banerjee, 2018] Bikramjit Banerjee. Autonomous Acquisi-
tion of Behavior Trees for Robot Control. In Proceedings
of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3460-3467, 2018.

[Bekiroglu et al., 2020] Yasemin Bekiroglu, Naresh Marturi,
Miximo A. Roa, Komlan Jean Maxime Adjigble, Tom-
maso Pardi, Cindy Grimm, Ravi Balasubramanian, Kaiyu
Hang, and Rustam Stolkin. Benchmarking Protocol for
Grasp Planning Algorithms. /EEE Robotics and Automa-
tion Letters, 5(2):315-322, 2020.

[Cai et al., 2021] Zhongxuan Cai, Minglong Li, Wanrong
Huang, and Wenjing Yang. BT Expansion: A Sound and
Complete Algorithm for Behavior Planning of Intelligent
Robots with Behavior Trees. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), pages 6058—
6065. AAAI Press, 2021.

[Cai et al., 2025a] Yishuai Cai, Xinglin Chen, Zhongxuan
Cai, Yunxin Mao, Minglong Li, Wenjing Yang, and
Ji Wang. Mrbtp: Efficient multi-robot behavior tree
planning and collaboration. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pages
14548-14557, 2025.

[Cai et al., 2025b] Yishuai Cai, Xinglin Chen, Yunxin Mao,
Minglong Li, Shaowu Yang, Wenjing Yang, and Ji Wang.
Hbtp: Heuristic behavior tree planning with large language
model reasoning. Proceedings of the International Confer-
ence on Robotics and Automation (ICRA), 2025.

[Chamzas et al., 2022] Constantinos Chamzas, Carlos
Quintero-Pena, Zachary Kingston, Andreas Orthey,
Daniel Rakita, Michael Gleicher, Marc Toussaint, and

Lydia E. Kavraki. MotionBenchMaker: A Tool to Gen-
erate and Benchmark Motion Planning Datasets. IEEE
Robotics and Automation Letters, 7(2):882—889, 2022.

[Chen et al., 2023] Yaran Chen, Wenbo Cui, Yuanwen Chen,
Mining Tan, Xinyao Zhang, Dongbin Zhao, and He Wang.
RoboGPT: An intelligent agent of making embodied long-
term decisions for daily instruction tasks. arXiv preprint
arXiv:2311.15649, 2023.

[Chen et al., 2024] Xinglin Chen, Yishuai Cai, Yunxin Mao,
Minglong Li, Wenjing Yang, Weixia Xu, and Ji Wang.
Integrating Intent Understanding and Optimal Behavior
Planning for Behavior Tree Generation from Human In-
structions. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI), 2024.

[Colledanchisq and Ogren, 2018] Michele Colledanchise
and Petter Ogren. Behavior Trees in Robotics and Al: An
Introduction. CRC Press, 2018.

[Colledanchise et al., 2019a] Michele Colledanchise, Diogo
Almeida, and Petter Ogren. Towards Blended Reactive
Planning and Acting using Behavior Trees. In Proceedings
of the International Conference on Robotics and Automa-
tion (ICRA), pages 8839-8845, Montreal, QC, Canada,
May 2019. IEEE.

[Colledanchise et al., 2019b] Michele Colledanchise,
Ramviyas Parasuraman, and Petter Ogren. Learning
of Behavior Trees for Autonomous Agents. [EEE
Transactions on Games, 11(2):183-189, 2019.

[Fikes and Nilsson, 1971] Richard E. Fikes and Nils J. Nils-
son. STRIPS: A new approach to the application of the-
orem proving to problem solving. Artificial Intelligence,
2(3-4):189-208, December 1971.

[French et al., 2019] Kevin French, Shiyu Wu, Tianyang
Pan, Zheming Zhou, and Odest Chadwicke Jenkins.
Learning behavior trees from demonstration. In 2019
International Conference on Robotics and Automation
(ICRA), pages 7791-7797. IEEE, 2019.

[Hoffmann and Nebel, 2001] Joérg Hoffmann and Bernhard
Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence
Research, 14:253-302, 2001.

[Izzo et al., 2024] Riccardo Andrea Izzo, Gianluca Bardaro,
and Matteo Matteucci. Btgenbot: Behavior tree genera-
tion for robotic tasks with lightweight llms. arXiv preprint
arXiv:2403.12761, 2024.

[Ji et al., 2023] Jiaming Ji, Borong Zhang, Jiayi Zhou, Xue-
hai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng, Yi-
fan Zhong, Josef Dai, and Yaodong Yang. Safety Gym-
nasium: A Unified Safe Reinforcement Learning Bench-
mark. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine, editors, Proceedings of the An-
nual Conference on Neural Information Processing Sys-
tems (NeurIPS), volume 36, pages 18964—18993. Curran
Associates, Inc., 2023.

[Li et al., 2023] Chengshu Li, Ruohan Zhang, Josiah Wong,
Cem Gokmen, Sanjana Srivastava, Roberto Martin-

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Martin, Chen Wang, Gabrael Levine, Michael Lingel-
bach, Jiankai Sun, Mona Anvari, Minjune Hwang, Man-
asi Sharma, Arman Aydin, Dhruva Bansal, Samuel Hunter,
Kyu-Young Kim, Alan Lou, Caleb R Matthews, Ivan Villa-
Renteria, Jerry Huayang Tang, Claire Tang, Fei Xia, Sil-
vio Savarese, Hyowon Gweon, Karen Liu, Jiajun Wu, and
Li Fei-Fei. BEHAVIOR-1K: A Benchmark for Embodied
Al with 1,000 Everyday Activities and Realistic Simula-
tion. In Karen Liu, Dana Kulic, and Jeff Ichnowski, edi-
tors, Proceedings of The 6th Conference on Robot Learn-
ing, volume 205 of Proceedings of Machine Learning Re-
search, pages 80-93. PMLR, December 2023.

[Li et al., 2024] Fu Li, Xueying Wang, Bin Li, Yunlong Wu,
Yanzhen Wang, and Xiaodong Yi. A Study on Train-
ing and Developing Large Language Models for Behavior
Tree Generation. arXiv preprint arXiv:2401.08089, 2024.

[Liao et al., 2019] Yuan-Hong Liao, Xavier Puig, Marko
Boben, Antonio Torralba, and Sanja Fidler. Synthesizing
environment-aware activities via activity sketches. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

[Lim er al., 2010] Chong-U Lim, Robin Baumgarten, and
Simon Colton. Evolving behaviour trees for the com-
mercial game DEFCON. In Applications of Evolution-
ary Computation: EvoApplicatons 2010: EvoCOMPLEX,
EvoGAMES, EvolASP, EvoINTELLIGENCE, EvoNUM,
and EvoSTOC, Istanbul, Turkey, April 7-9, 2010, Proceed-
ings, Part I, pages 100-110. Springer, 2010.

[Liu and Liu, 2022] Shuai Liu and Pengcheng Liu. Bench-
marking and optimization of robot motion planning with
motion planning pipeline. The International Journal
of Advanced Manufacturing Technology, 118(3):949-961,
January 2022.

[Lykov and Tsetserukou, 2023] Artem Lykov and Dzmitry
Tsetserukou. LLM-BRAIn: Al-driven Fast Generation of
Robot Behaviour Tree based on Large Language Model.
arXiv preprint arXiv:2305.19352, 2023.

[Lykov et al., 2023] Artem Lykov, Maria Dronova, Niko-
lay Naglov, Mikhail Litvinov, Sergei Satsevich, Artem
Bazhenov, Vladimir Berman, Aleksei Shcherbak, and
Dzmitry Tsetserukou. LLM-MARS: Large Language
Model for Behavior Tree Generation and NLP-enhanced
Dialogue in Multi-Agent Robot Systems. arXiv preprint
arXiv:2312.09348, 2023.

[Neupane and Goodrich, 2019] Aadesh ~ Neupane and
Michael Goodrich. Learning Swarm Behaviors using
Grammatical Evolution and Behavior Trees. In Proceed-
ings of the International Joint Conference on Artificial
Intelligence (IJCAI), pages 513-520, 2019.

[Neupane and Goodrich, 2023] Aadesh Neupane and
Michael A Goodrich. Designing Behavior Trees
from Goal-Oriented LTLf Formulas. arXiv preprint
arXiv:2307.06399, 2023.

[Ning et al., 2023] Kun-Peng Ning, Hu Xu, Kun Zhu, and
Sheng-Jun Huang. Co-Imitation Learning without Expert

Demonstration. In Proceedings of the International Con-
ference on Learning Representations (ICLR), 2023.

[Ogren and Sprague, 2022] Petter Ogren and Christopher I
Sprague. Behavior trees in robot control systems. An-
nual Review of Control, Robotics, and Autonomous Sys-
tems, 5:81-107, 2022.

[Puig er al., 2018] Xavier Puig, Kevin Ra, Marko Boben,
Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Tor-
ralba. Virtualhome: Simulating household activities via
programs. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
8494-8502, 2018.

[Rocha and Vivaldini, 2022] Lidia Rocha and Kelen Vival-
dini. Plannie: A Benchmark Framework for Autonomous
Robots Path Planning Algorithms Integrated to Simulated
and Real Environments. In International Conference on
Unmanned Aircraft Systems (ICUAS), 2022.

[Scheide et al., 2021] Emily Scheide, Graeme Best, and Ge-
offrey A. Hollinger. Behavior Tree Learning for Robotic
Task Planning through Monte Carlo DAG Search over a
Formal Grammar. In Proceedings of the International
Conference on Robotics and Automation (ICRA), pages
4837-4843, Xi’an, China, May 2021. IEEE.

[Singh er al., 2022] Ishika Singh, Valts Blukis, Arsalan
Mousavian, Ankit Goyal, Danfei Xu, Jonathan Trem-
blay, Dieter Fox, Jesse Thomason, and Animesh Garg.
ProgPrompt: Generating Situated Robot Task Plans using
Large Language Models. In Proceedings of the Interna-
tional Conference on Robotics and Automation (ICRA).
Proceedings of the International Conference on Robotics
and Automation (ICRA), September 2022.

[Tadewos et al., 2022] Tadewos G Tadewos, Abdullah
Al Redwan Newaz, and Ali Karimoddini. Specification-
guided behavior tree synthesis and execution for

coordination of autonomous systems. Expert Systems with
Applications, 201:117022, 2022.

[Toma et al., 2021] Alexandru-Iosif Toma, Hao-Ya Hsueh,
Hussein Ali Jaafar, Riku Murai, Paul H.J. Kelly, and Sa-
jad Saeedi. PathBench: A Benchmarking Platform for
Classical and Learned Path Planning Algorithms. In 2021
18th Conference on Robots and Vision (CRV), pages 79—
86, 2021.

[Valmeekam et al., 2023] Karthik Valmeekam, Matthew
Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao
Kambhampati. Planbench: An extensible benchmark
for evaluating large language models on planning and
reasoning about change. Proceedings of the Annual
Conference on Neural Information Processing Systems
(NeurlPS), 36, 2023.

[Wen et al., 2021] Jian Wen, Xuebo Zhang, Qingchen Bi,
Zhangchao Pan, Yanghe Feng, Jing Yuan, and Yongchun
Fang. Mrpb 1.0: A unified benchmark for the evaluation of
mobile robot local planning approaches. In Proceedings of

the International Conference on Robotics and Automation
(ICRA), pages 8238-8244. IEEE, 2021.

