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Abstract

Telecommunication fraud refers to deceptive activ-
ities in the field of communication services. This
research focuses on a category of fraud identified
as “mutation telecommunication fraud”. There is
currently a lack of research on mutation telecom-
munication fraud detection, allowing this type of
fraud to persist uncaught. We identify that detect-
ing mutation fraud requires capturing multi-source
patterns, including user communication graphs and
temporal-spatial Voice of Call (VOC) features.
Specifically, we introduce MutationGuard, which
leverages Graph Neural Networks (GNN) to cap-
ture changes in user communication graphs. For
VOC records, we map call start times onto a 3D
cylindrical surface, thereby representing each VOC
record in spatial coordinates and utilizing proposed
LFFE and TCFE modules to capture local fraud
behaviors and temporal behavior changes. The
proposed neural modeling approach that facilitates
multi-source information fusion constitutes a sig-
nificant advancement in detecting mutation fraud.
Experiment results reveal a significant improve-
ment in the AUC score by 1.52% and the F'; score
by 1.36% on the proposed telecommunication fraud
dataset. Particularly, our method shows a signifi-
cant improvement of 13.93% in accuracy on muta-
tion fraud data. We also validate the effectiveness
of our method on the publicly available Sichuan
Telecommunication Fraud dataset.

1 Introduction

Telecom fraud refers to fabricating stories through messages,
phone calls, and other communication methods to acquire a
large amount of public and private property illegally. It is a
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Figure 1: A schematic illustration of a mutation fraud. The user
communication graph illustrates the connectivity established by a
user’s calls. VOC records capture call metadata such as start time,
duration, and direction (incoming/outgoing). Notably, the conspic-
uous mutation is observed following the 3rd call. The mutation in-
cludes changes in the user communication graph (from friends (F) to
strangers (S)) and changes in various call metadata. This indicates
that the user has started engaging in telecom fraud after the 3rd call.

pervasive issue with significant societal and economic impli-
cations [Barson er al., 1996], resulting in substantial financial
losses and compromised user personal safety.

Due to the trust granted by communication service
providers to users with a history of good communication be-
havior, fraudsters often resort to buying or renting commu-
nication cards from legitimate users to carry out fraudulent
activities. Furthermore, fraudsters may also simulate a large
volume of normal call activities to conceal a small amount
of fraudulent call behavior. This leads to the phenomenon of



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Q Vector
AN | = -
B vOCRecords \Q|==>Vs==> Classification

A. Local Fr(:ud Behaviors

n VOCRecords Q) ..."\.\?D."'

Call Record 1 -->Q —a
B. Temporal Behavior Changes
-->e Sequence
> q
Call Record k -->0 Classification
-->0

Figure 2: Different modeling methods for VOC. The points repre-
sent the raw features, and Vs represents the statistical feature ex-
tracted using manually designed rules. Red dots represent fraudulent
behavior, while black dots represent normal behavior. (1) illustrates
the current pipeline framework. (2) presents our proposed method.
Our method focuses on capturing two key patterns of mutation fraud,
considering both static and dynamic perspectives.

mutation fraud. Mutation fraud refers to fraudulent activities
interleaved with legitimate behaviors within a short time win-
dow. Unlike persistent fraud, mutation fraud exhibits abrupt
shifts in communication patterns, such as sudden changes
in call recipients (e.g., from known contacts to strangers) or
temporal anomalies (e.g., short-duration calls clustered in un-
usual hours), as illustrated in Figure 1.

Existing methods assume that the users under detection ex-
hibit stable behavioral patterns and directly convert the en-
tire Voice of Call (VOC) records of the user into a hand-
designed statistical feature vector (average call duration, to-
tal number of calls, etc.) [Hu er al., 2022; Hu et al., 2024;
Jietal., 2020]. Subsequently, they solve the problem by using
vector classification approaches. This classification approach
based on statistical features is inadequate for adapting to com-
plex and evolving fraud patterns. In the long-term adversarial
scenario between fraudsters and regulators, fraud techniques
are constantly updated. Once fraud patterns change (e.g., mu-
tation fraud), the existing statistical feature extraction meth-
ods are likely to become ineffective.

There are three major challenges in the task of mutation
telecommunication fraud detection: (1) Research in this field
is currently limited by the absence of datasets created specif-
ically for mutation telecommunication fraud. (2) Mutation
fraud has its inherent patterns, but existing methods based on
manual statistical features make it difficult to capture these
patterns. (3) Telecom fraud detection is a complex task that
requires the integration of multiple sources of information.
However, existing methods often lack the capability to fuse
multi-source information effectively.

To address the first challenge, we have curated a dataset
named MutationTeleFraud, specifically containing mutation
fraud data. This dataset is obtained from a telecommunication
carrier after removing PII (Personally Identifiable Informa-
tion) and sensitive data and is made publicly accessible to fa-
cilitate further research. In addressing the second challenge,
we introduce a deep neural method called MutationGuard,
specifically designed to handle the intricate pattern detection
issues associated with mutation fraud. The main difference

between our approach and previous methods for VOC model-
ing is illustrated in Figure 2. Although mutation fraud is very
covert, it still has two significant patterns: 1. From a static
perspective, there must be local fraud behaviors; 2. From
a dynamic perspective, there are significant temporal behav-
ior changes. Our method processes each call record into a
vector, with the entire VOC records forming a list of vec-
tors, and employs a sequence classification method follow-
ing the above two insights to detect telecom fraud. Existing
methods cannot effectively utilize the above two insights be-
cause manual features cannot effectively focus on local be-
haviors and reflect the temporal changes. Regarding the third
challenge, we consider users under investigation to be cen-
tral nodes, with all users communicating with them treated as
neighboring nodes. For users engaged in mutation fraud, their
communication often undergoes significant changes. For ex-
ample, an ordinary individual with regular social connections
would typically have dense communication with family and
friends. However, if their mobile SIM card is lost or sold
for fraudulent purposes, their calling users would include
both friends and a large number of strangers, as illustrated in
Figure 1. Considering that the message-passing mechanism
can effectively discover relevant patterns [Zhao et al., 2021;
Zhou et al., 2020; Scarselli et al., 2004], we effectively cap-
ture the evolving patterns within user communication graphs
by employing a graph attention mechanism. In summary, the
main contributions are as follows:

1. Our study represents the first investigation into the phe-
nomenon of mutation telecommunication fraud, offering
empirical data from real-world scenarios coupled with
comprehensive analytical insights.

2. The proposed MutationGuard facilitates multi-source in-
formation fusion and constitutes a significant advance-
ment in detecting mutation fraud. MutationGuard not
only captures local fraud behaviors and temporal behav-
ior changes in VOC records but also discerns evolving
patterns within user communication graphs.

3. Our MutationGuard shows a significant improvement on
the proposed MutationTeleFraud dataset and the open-
source dataset. Specifically, experiment results reveal a
significant improvement in the AUC score by 1.52% and
the F; score by 1.36% on the proposed telecommunica-
tion fraud dataset.

2 Related Work

Rule-based Methods. Early research on telecom fraud de-
tection primarily employs rule-based approaches, emphasiz-
ing the manual design of filtering rules based on expert
knowledge. For instance, Hilas [2009] utilizes professional
expertise and data mining techniques to design an expert sys-
tem for telecom fraud detection. Prakash ez al. [2010] em-
ploy the Singular Value Decomposition (SVD) method to an-
alyze anomalous patterns in large-scale telephone communi-
cation networks. Liu et al. [2017] introduce a metric named
’contrast suspiciousness,” utilizing graph topology informa-
tion to identify potential fraudsters.

Machine Learning Methods. With the advent of ma-
chine learning technology, researchers have shifted towards



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

User Information ke ( User Encoder
Phone label Q‘ Q
#A To Be Identified |- = A A" ®
#B N/A - B 0 —
. . Trans
#C N/A
: / Tm| O O 6
N/A " g— @ VOC Encoder
HE N/A o @ £
=5
VOC Records Q =
0 F,
Phone  Receiver Time w
o C |g
(=]
4 2024/8/30 |55 |- :,I 5
14:25:30 = Z
2024/8/30 I = 3 3|8 _ Z1 LFFE Modul
#B #A oo > mo| | % (. odule
14:32:55 g N
I 2 S @ Concatenation
» =z:p 2 5
L o TCFE Module

Figure 3: MutationGuard comprises two main components: the User Encoder and the VOC Encoder. We convert a directed graph into an
undirected graph by treating multiple directed edges between two nodes as a single undirected edge. The LFFE module first achieves better
feature locality through SPC, then extracts multiple regions of interest through S&G, and subsequently captures local fraud features through
the LFFE layer. The TCFE module performs time sequence encoding to capture temporal behavior changes.

manually designing features and employing classical ma-
chine learning methods to classify fraudulent telephone num-
bers. Dong et al. [2004] extract 55 feature attributes from user
call records and utilize a Support Vector Machine (SVM) with
a Radial Basis Function (RBF) kernel to predict fraudulent
users. Xing et al. [2020] employ random forests as a bench-
mark method, outperforming SVM with an RBF kernel on
fraud detection datasets. To overcome the high bias of the
dataset, Arafat et al. [2019] apply ensemble techniques of
classifiers. Despite the computational efficiency of classical
machine learning methods, their constrained fitting capability
poses challenges in adapting to intricate patterns.

Deep Learning Methods. Deep learning methods have been
widely used in an adversarial scenario nowadays [Zhou et al.,
2024], including in the field of telecommunication fraud de-
tection [Ravi et al., 2022; Hu et al., 2024]. Wahid et al. [2023]
introduce a real-time fraud detection method utilizing a Neu-
ral Factorization Autoencoder (NFA). Ji et al. [2020] em-
ploy a Multi-Range Gated Graph Neural Network for telecom
fraud detection. Hu er al. [2022] utilize subscriber synergy
behavior to reconstruct connectivity, thereby bridging the gap
between sparse connectivity data and graph machine learn-
ing. These methods commonly require manually extracting
statistical features from telecommunication users’ VOC in-
formation and various behavioral records. To fully utilize the
temporal features in VOC records, Zhen and Gao [2023] in-
troduce CDR2IMG that leverages temporal periodicity to en-
hance fraud detection. Specifically, they compress the call
duration feature into a 2D image and employ Convolutional
Neural Networks (CNN) to extract latent fraud features em-
bedded in the image. These existing approaches heavily
depend on predefined feature engineering methods, making
existing methods challenging to adapt to complex mutation
fraud scenarios. In contrast, our proposed MutationGuard di-
rectly utilizes the raw data from call records as input, allow-
ing the method to better capture complex mutation patterns.

3 Our Method

3.1 Overview

Figure 3 shows the architecture of our MutationGuard, which
is based on multi-source information joint learning. Muta-
tionGuard follows the design principles presented in the In-
troduction section, using the VOC Encoder to capture lo-
cal fraud behaviors and temporal behavior changes, and then
leveraging the User Encoder to incorporate user interactions.

3.2 Embedding Layer

User Feature Initialization. User features are encoded into a
vector encompassing: static attributes (e.g., SMS usage, app
preferences) and temporal distribution features (e.g., call time
distribution). Ultimately, we obtain the user feature matrix
U € RM*du where M denotes the number of nodes in the
graph, and d,, denotes the dimensionality of features.

VOC Feature Initialization. VOC refers to detailed records
about communication activities generated by the telephone
system. These records encompass details such as the call
start time, call duration, call type (e.g., incoming or outgo-
ing), etc. Assuming a target user to be identified generates
a set of records with a length of IV over a period, we obtain
the VOC feature representation matrix C € RV X% where
d. represents the dimensionality of each VOC record feature.

3.3 VOC Encoder

To capture fraud behaviors, we design two corresponding
modules inspired by Pointnet++ [Qi et al., 2017] and BiL-
STM: the Local Fraud Feature Extraction (LFFE) Mod-
ule and the Temporal Change Feature Extraction (TCFE)
Module. The components are shown in Figure 3.

Locality. To achieve better local fraud feature representation,
it’s essential to reconsider the locality within human activity
data. Organizing data based on the principle of local similar-
ity enables more effective extraction of local features. If data
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Figure 4: The schematic diagram illustrates the process of SPC,
S&G, and LFFE. Black dots represent normal behavior, and red dots
represent fraudulent behavior. The fraudulent behaviors in VOC
records can be better aggregated in a local area after the SPC step.

isn’t organized according to this principle, during local ag-
gregation, the model might blend distinct fraud patterns with
normal behavior, resulting in higher false positives or over-
looking critical fraud features. Image data naturally lends
itself to the concept of locality through geometric relations,
where neighboring pixels often exhibit similar values due to
spatial proximity. VOC data is 1D time-series data that ex-
hibits local behavioral similarity within adjacent time win-
dows. However, humans also engage in similar activities at
the same time on different days, which cannot be reflected in
the 1D time series, thus losing some local information. There-
fore, we need to address the question: How can we reorganize
VOC records so that reorganized human activity behaviors
exhibit better local similarity, facilitating the detection of lo-
cal fraudulent activities? Zhen and Gao [2023] uses a 2D
time grid to solve this problem, but the sparsity of features
is caused by fixed intervals. Unlike them, we conceptualize
time as a spiral structure to solve this problem.

Spatial Position Calculation (SPC). Spatial Position Cal-
culation provides spatial position inputs for the LFFE Layer
in the VOC encoder. Specifically, we transform each times-
tamp in VOC records into coordinates on a cylindrical surface
to ensure a reasonable distance measurement between these
embeddings. The projection of human behavior data onto a
cylindrical surface is a deliberate design choice that leverages
the natural periodicity of time to provide better locality. In
further detail, time can be conceptualized as a spiral structure
when viewed in a cylindrical projection. The cylindrical sur-
face allows for the representation of time as progressing both
in the vertical direction and along the horizontal axis of the
cylindrical surface. As we move through time, the data forms
a spiral that encircles the cylinder. Each complete rotation
represents a full day, and the height of the spiral indicates
the temporal progression of the days themselves, as shown
in Figure 4. We not only ensure that feature vectors corre-
sponding to temporally adjacent times on the same day (along
the horizontal axis of the cylindrical surface: e.g., 2024-10-1
20:00:00 and 2024-10-1 20:01:00) are spatially adjacent but
also that feature vectors corresponding to adjacent times on
different days are spatially adjacent (in the vertical direction:
e.g., 2024-10-1 20:00:00 and 2024-10-2 20:00:00). Clearly,
by selecting the same number of feature points within any
local neighborhood, our proposed data organization method
exhibits higher local similarity compared to the simple 1D
sequence feature similarity, thereby achieving better local-

ity. For any VOC record (at time ¢ on the z-th day), where
0 < t<24 and z € N (we set the earliest VOC record time at
x = (.), we obtain its cylindrical coordinates:

r=1 (D
0= (t/24) x 27 2)
z = Normalize(x + t/24) 3)

We normalize x + ¢/24 to the range [—1, 1] and convert
the cylindrical coordinates to Cartesian coordinates for sub-
sequent Euclidean distance calculation in the S&G step. Then
we get the spatial position matrix S € R™*3 for VOC records
after SPC, where NN represents the number of calls.
Sampling and Grouping (S&G). The goal of the Sampling
and Grouping (S&G) layer is to extract the most informa-
tive and relevant local fraud features from VOC data to detect
patterns of telecom fraud. This is achieved by first selecting a
representative subset of points and then grouping them based
on their proximity in time, as shown in Figure 4.

Sampling. Given the VOC feature representation matrix
C € RN*de and the spatial position matrix S € RN*3,
where N is the number of calls. Each point p; = (S;, C;)
represents a moment of activity. Thus, the complete set of
points can be represented as: P = {p1,p2,...,pn}. We
apply the farthest point sampling (FPS) method to sample a
subset of the points. We aim to sample a subset Pgymple Of
points from P, where |Psumple| = K and K represents the
number of selected samples. Using FPS, we iteratively select
points that are maximally distant from already selected ones.
The sampling process can be mathematically formulated as:

pr = arg max < min

Pi EP\Psample Pj e,Psample

Ip: pj||2> @)

where ||p; — p;||2 is the Euclidean distance between points
p; and p;, and Pgample is the selected points. This procedure
ensures that the selected points Pgample are representative.

Grouping. After selecting the representative points, we
group the sampled points based on their temporal proximity.
For each sampled point pg, we define a neighborhood N (py,)
consisting of points within a radius 7.

N(pr) ={p; € P |llp; —prll2 <7} (5)

This step ensures that each point is grouped with others
that exhibit similar behaviors, allowing the model to capture
localized patterns of user activity.

We empirically determined optimal sampling ratios (K/N)
and grouped radius through a grid search on the validation set.
LFFE Layer. Once the neighborhoods are formed, we ag-
gregate the features within each group, as shown in Figure 4.
A common approach is to apply max pooling to capture the
most significant features within each neighborhood. The ag-
gregated feature f;, for each neighborhood N (pg) is:

fi, = p({MLP(C;)) | pj = (S;,C;),p; € N(pr)}) (6)

where (-) performs the element-wise maximum operation
over the features in the neighborhood NV (py). Each input fea-
ture point py, is updated as pp°” = (Si, MLP(fy)).
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Aggregation. The aggregation Layer aggregates features di-
rectly across all points to obtain a comprehensive feature rep-
resentation of local fraud behaviors in VOC records:

FL = ¢ (MaxPooling({MLP(fy/) | ¥’ =1,...,K'})) (7)

Where K’ represents the total number of feature points in-
put to the Aggregation layer, and v (-) represents the feature
transformation function, which is a Multi-Layer Perceptron.
TCFE Layer. Due to the inability of the LFFE module to
perceive the order of data, the TCFE layer employs a bidirec-
tional Long Short-Term Memory (BiLSTM) to incorporate
temporal dynamics perception. It allows the model to learn
how current actions might relate to future fraudulent tenden-
cies. For instance, a fraudster may engage in a series of small,
unremarkable actions that gradually escalate into a full-blown
scam. By analyzing from a dynamic perspective, the TCFE
Layer can detect pattern changes in behavior. The final output
feature representation of the TCFE module is Fr.

3.4 User Encoder

Generally, there are significant differences between the com-
munication graphs of normal users and those of fraudulent
users. Differences in user features include variations in data
usage expenses and app usage patterns. Differences in graph
features are evident as the user groups contacted by normal
users and fraudulent users often differ significantly, leading
to substantial differences in the overall features of the graph.
Our approach is capable of directly encoding any avail-
able features into the node attributes of users and utilizes the
User Encoder to capture various latent features, highlighting
the importance of incorporating multi-source information in
telecom fraud detection. We conduct L-layer graph attention
mechanism to obtain user interaction pattern features Fy.

e;; = LeakyReLU (a' [Wu| \Wué}) , 8)

exp(eij )

- =, 9
> ken; exp(eir) R

Q5

utl =5 Z ai; Wl | (10)
JEN;
where u! represents the input feature vector for node 7 in layer
I, W is the weight matrix, N; represents the neighborhood of
node ¢ in the graph, a is the attention weight vector, o is the
activation function. Then we get the graph pattern feature:

FU:uoL. (11)

4 Experiments

In this section, we evaluate the performance of Muta-
tionGuard. We make all of our source code and datasets
publicly available to facilitate future study'. The research
data were provided by China Mobile Communications Group
Shaanxi Co., Ltd. The identification of fraudsters was
achieved through various measures after long-term efforts by
China Mobile Communications Group Shaanxi Co., Ltd.

"https://github.com/nlgandnlu/MutationGuard

Differences |Sichuan Dataset | MutationTeleFraud
CDR ALL VOC&CNS
Mutation Fraud Missing Included
User Graph Missing Included

Table 1: Comparison of the Sichuan Telecom Fraud Dataset and the
proposed Dataset. ‘ALL’ represents the aggregation of APP, SMS
(short messages), VOC, and CNS (user consumption).

4.1 Datasets

We first conduct experiments on the Sichuan telecom fraud
dataset’ including 4587 subscribers with complete features
from the 2020 Digital Sichuan Innovation Competition, or-
ganized by the Sichuan Provincial Big Data Center in China.
Some users in this dataset have missing attributes. To en-
sure fair comparison, we test all baseline methods using users
with complete attributes. We also conduct experiments on
the introduced dataset MutationTeleFraud. This dataset com-
prises 9874 subscribers, documenting their VOC records and
other relevant user information generated between August 1,
2023, and September 14, 2023. The dataset encompasses
1849 normal fraudulent users, 388 users exhibiting mutation
fraud, and 7637 normal users. The mutation fraudsters are
defined as users who: (1) maintained normal communication
behaviors for at least 12 consecutive months; (2) were flagged
by both telecom operators and public security agencies for
participating in fraud incidents during the latest month. Fol-
lowing the previous work [Hu et al., 2024], the ratio of the
training set, validation set, and testing set in both datasets is
60%, 20%, and 20%, respectively. The main differences be-
tween the proposed dataset and the publicly available Sichuan
dataset are illustrated in Table 1.

4.2 Evaluation Metrics and Baselines

Following the previous work [Zhen and Gao, 2023], we eval-
uate the performance with AUC, macro Recall, macro Pre-
cision, and macro F;. The default threshold for prediction
is 0.5. To gain a comprehensive understanding of the per-
formance of regular fraud and mutation fraud data, we also
provide results on Accuracy for the two types of fraudu-
lent activities. The baselines for the Sichuan telecom fraud
dataset we compared include (1) machine learning meth-
ods: Support Vector Machine (SVM) [Cortes and Vapnik,
1995], Logistic Regression (LR) [Cox, 1972], Random For-
est (RF) [Breiman, 2001]; (2) deep learning methods: Mul-
tilayer Perceptron (MLP), GCN [Kipf and Welling, 2016],
GAT [Veli¢kovié et al., 20171, CDR2IMG [Zhen and Gao,
2023], GAT-COBO [Hu et al., 2024]. We follow the hy-
perparameter settings in the provided official implementa-
tions [Zhen and Gao, 2023; Hu et al., 2024].

For the construction of manual features of VOC, we em-
ploy three approaches: ‘-B’, ‘-W’, and *-D’, representing ba-
sic feature engineering [Hu er al., 2022], basic features com-
bined with weekly-level features, and basic features com-
bined with daily-level features, respectively. Since previ-
ous work does not consider the presence of mutation fraud,

*https://aistudio.baidu.com/aistudio/datasetdetail/40690
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Methods AUC Recall Precision Fq NorFraud-A MutFraud-A
SVM (Linear) 0.9493 0.9083 0.8762 0.8908 0.8652 0.4051
SVM (Poly) 0.9520 0.9207 0.8738 0.8943 0.8491 0.4051
SVM (Rbf) 0.9503 0.9113 0.8712 0.8890 0.8544 0.3797
SVM (Sigmoid) 0.8273 0.8362 0.7736 0.7979 0.7116 0.0506
LR 0.9461 0.9002 0.8660 0.8814 0.8544 0.3544
RF 0.9562 0.9313 0.8685 0.8948 0.8248 0.4177
MLP-B 0.9498 0.8697 0.9097 0.8875 0.8464 0.4051
GCN-B 0.9589 0.8868 0.9145 0.8996 0.8625 0.5316
GAT-B 0.9608 0.9000 0.9160 0.9076 0.8733 0.6456
GAT-W 0.9732 0.9090 0.9328 0.9202 0.8679 0.7215
GAT-D 0.9746 0.9140 0.9396 0.9260 0.8706 0.7468
CDR2IMG 0.9656 0.8870 0.9025 0.8944 0.8329 0.7215
GAT-COBO 0.9576 0.8816 09134 0.8961 0.8652 0.4557
Ours 0.9898} 0.9344 0.9450t 0.93967 0.89227 0.88617
Ours w/o LFFE Module 0.9790 0.9201 0.9369 0.9282 0.8733 0.8228
Ours w/o TCFE Module 0.9855 0.9205 0.9450 0.9320 0.8652 0.7975
Ours w/o VOC Encoder 0.9444 0.8193 0.8914 0.8478 0.7655 0.2025
Ours w/o User Encoder 0.9861 0.9298 0.9396 0.9346 0.8922 0.8228

Table 2: Results on the proposed MutationTeleFraud dataset. The best performance is highlighted in bold. ”NorFraud-A” represents the
Accuracy score on normal fraud data. “MutFraud-A” represents the Accuracy score on mutation fraud data. T denotes our method achieves
significant improvements over all existing baselines in a paired t-test with p-value <0.05. The statistical values (mean + standard deviation
of 5 experiments) of our method on the main metrics are: AUC is 0.9899 + 0.0003 and F is 0.9364 + 0.0071.

the basic feature engineering method directly extracts sta-
ble long-term fraud-related features. However, for mutation
fraud, these features are less effective because the presence
of fraud is short-term, and the average call duration within a
week or a day may be abnormal but appears normal in the
long term. Therefore, we further supplement weekly-level
and daily-level features for comparison. Specifically, the *-B’
method extracts 42-dimensional features from VOC without
considering temporal granularity, and ‘-W’ and ‘-D’ addition-
ally extract 27-dimensional features respectively.

4.3 Experiment Settings

We use the Adam optimizer with the learning rate being 0.001
for the User Encoder, and 0.0001 for the other learnable mod-
ules. The dropout rate is 0.1 and the batch_size is 16. The
first-level sampling retains 70% of points (ratio=0.7) with
grouping radius r=0.5, while the second-level sampling uses
30% of remaining points (ratio=0.3) with r=0.2. Other de-
tailed hyperparameters can be found in the open-source code.

4.4 Experiment on MutationTeleFraud Dataset

The evaluation results on the MutationTeleFraud Dataset are
presented in Table 2.

Firstly, we see that the GCN-B method outperforms the
MLP-B method, achieving an improvement of 1.61% points
on normal fraud data and 12.65% points on mutation fraud
data. The difference between the two methods lies in the in-
troduction of the user communication graph, indicating that
the user communication graph can significantly aid in fraud
detection, particularly in the detection of mutation fraud.

Secondly, we see our method outperforms all baselines in
all metrics. Specifically, MutationGuard shows a 1.36% im-
provement in the F'; score and a 1.52% improvement in the
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Figure 5: The AUC curves on the validation set during the training
process of the baseline methods. During the training process, we
measure the AUC score every 100 steps.

AUC score. Particularly, on mutation fraud data, our method
shows a significant improvement of 13.93%.

Finally, comparing the three baseline methods GAT-B,
GAT-W, and GAT-D, we see that a more fine-grained feature
engineering approach GAT-D can effectively improve the de-
tection results of mutation fraud by 10.12%. This further in-
dicates the necessity to effectively utilize mutation features
in mutation fraud. Our method leverages these features by
effective neural modeling, resulting in a further improvement
of 13.93% compared to GAT-D’s manual feature engineering.

To intuitively analyze the performance differences among
these methods, we further provide the AUC curves of deep
learning-based baseline methods during the training process
on the validation set, as shown in Figure 5. The GAT-COBO,
being a graph node classification method, is trained for 2000
epochs, so it is not included in the figure. We observe a high
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Methods AUC Recall Precision Fq NorFraud-A MutFraud-A

1-D CNN 0.9597 0.8860 0.8935 0.8896 0.8437 0.6962
TCFE Module 0.9673 0.8938 0.9182 0.9052 0.8302 0.7595
LFFE Module 0.9821 0.9224 0.9285 0.9254 0.8868 0.8101
TCFE&LFFE 0.9861 0.9298 0.9396 0.9346 0.8922 0.8228

Table 3: VOC modeling test results on the proposed MutationTeleFraud dataset. The best performance is highlighted in bold. "NorFraud-A”
represents the Accuracy score on normal fraud. "MutFraud-A” represents the Accuracy score on mutation fraud.

Methods AUC  Recall Precision Fq
SVM (Linear) | 0.9022 0.8418 0.7833 0.8059
SVM (Poly) 0.8655 0.7913  0.7651 0.7768
SVM (Rbf) 0.8998 0.8340 0.8051 0.8181
SVM (Sigmoid) | 0.8987 0.8141 0.7734 0.7904
LR 0.9026 0.8036 0.8862 0.8361
RF 0.9125 0.7713  0.9312 0.8220
CDR2IMG 0.9012 0.8120 0.8896 0.8432
GAT-COBO 0.9058 0.8149  0.8907 0.8455
Ours 0.92081 0.8189 0.9110 0.85497

Table 4: Results on the open Sichuan telecom fraud dataset. The best
performance is highlighted in bold. { denotes our method achieves
significant improvements over all existing baselines in a paired t-test
with p-value <0.05.

consistency between the performance results reported on the
testing set and those on the validation set, further confirming
the effectiveness of our proposed method.

4.5 Ablation Study

Table 2 presents the evaluation results of the ablation study.
We see some important conclusions from the results.

o The method’s ability to capture local fraud features and
temporal change features is crucial for the recognition of
mutation fraud. Table 2 shows that both modules for in-
dividual ablation and combined ablation exhibit significant
performance degradation.

e The GAT trained on the user graph can enhance the
method’s ability to detect mutation fraud. We see that the
score given by the ablated version of “without User Encoder”
has decreased by 0.5% and 0.37% in the F; score and AUC
score. The decline is most severe in mutation data, amounting
to a decrease of 6.33%.

4.6 VOC Modeling Test

To explore the neural modeling method of VOC records, we
test the following deep learning-based methods in Table 3:
1-D CNN, TCFE Module, LFFE Module and TCFE&LFFE.
We see TCFE&LFFE achieves the best results.Both 1-D CNN
and LFFE structures are adept at discovering local fraud fea-
tures in data. Due to the reasonable utilization of temporal pe-
riodicity, our proposed Time-aware LFFE Module performs
better. We achieve a more effective neural method by com-
bining the Time-aware LFFE Module with TCFE Module.

4.7 Experiment on Sichuan Fraud Dataset

The evaluation results on the open Sichuan telecom fraud
dataset are shown in Table 4. It is important to note that
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Figure 6: Results of the computational efficiency evaluation. The in-
ference time represents the average inference time of a single sample
(average on more than 10,000 samples). The methods are executed
in a Python 3.8.0 environment, with hardware specifications includ-
ing 1 Tesla V100 GPU.

the publicly available dataset does not provide communica-
tion feature information for the receivers, and we cannot uti-
lize information from the user communication graph. Instead,
we directly employ a Multilayer Perceptron (MLP) to extract
user features. Our approach demonstrates a pronounced ad-
vantage compared to other classical and benchmark methods.
Results show that our MutationGuard achieves the best per-
formance in terms of AUC and F'; metrics.

4.8 Computational Efficiency Evaluation

The proposed method consists of three main components: the
User Encoder, LFFE Module, and TCFE Module. We test
the average time consumption of our method and each com-
ponent, as shown in Figure 6. The majority inference cost is
from two modules: the TCFE Module and the User Encoder.
Our method shows remarkable scalability and efficiency, en-
abling inference of more than 250,000 users in one hour on a
single GPU, making it suitable for applications.

5 Conclusion

This paper addresses the issue of mutation telecommunica-
tion fraud, a complex form of fraudulent activity character-
ized by intermittent and abrupt patterns. We present Muta-
tionTeleFraud enriched with mutation fraud instances, which
fills a critical absence in the available resources for research-
ing this specific type of fraud. We also contribute by introduc-
ing MutationGuard, a deep neural network designed explic-
itly for the detection of mutation telecommunication fraud.
Future work includes (1) integrating real-time streaming data
for instant fraud alerts, (2) extending MutationGuard to cross-
domain fraud detection (e.g., financial scams), and (3) ad-
dressing ethical challenges in user privacy preservation.
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