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Abstract
Autoregressive transformers have revolutionized
generative models in language processing and
shown substantial promise in image and video gen-
eration. However, these models face significant
challenges when extended to 3D generation tasks
due to their reliance on next-token prediction to
learn token sequences, which is incompatible with
the unordered nature of 3D data. Instead of im-
posing an artificial order on 3D data, in this pa-
per, we introduce G3PT – a scalable, coarse-to-fine
3D native generative model with cross-scale vector
quantization and cross-scale autoregressive model-
ing. The key is to map point-based 3D data into
discrete tokens with different levels of detail, natu-
rally establishing a sequential relationship across a
variety of scales suitable for autoregressive mod-
eling. Remarkably, our method connects tokens
globally across different levels of detail without
manually specified ordering. Benefiting from this
approach, G3PT features a versatile 3D genera-
tion pipeline that effortlessly supports the genera-
tion of 3D shapes under diverse conditional modali-
ties. Extensive experiments demonstrate that G3PT
achieves superior 3D generation quality and gen-
eralization ability compared to previous baselines.
Most importantly, for the first time in 3D genera-
tion, scaling up G3PT reveals distinct power-law
scaling behaviors.

1 Introduction
In recent years, the field of 3D shape generation has ex-
perienced significant advancements. One notable approach
is the use of Large Reconstruction Models (LRMs) [Hong
et al., 2023; Tochilkin et al., 2024], which convert images
into 3D shapes through a pipeline that employs transform-
ers [Vaswani et al., 2017] to create and optimize implicit 3D
representations with multi-view image supervision. Another
line of approach extends 2D diffusion models [Rombach et
al., 2022] into the 3D domain, aiming to combine multi-view
images into consistent 3D shapes using techniques such as
sparse view reconstruction [Li et al., 2023] and score distil-
lation sampling [Poole et al., 2022]. However, these methods

heavily depend on the fidelity of the multi-view images and
often struggle to generate high-quality meshes, particularly in
capturing intricate geometric details. To mitigate this issue,
a newer paradigm [Zhang et al., 2023a] leverages 3D varia-
tional auto-encoders to compress high-resolution point clouds
into a compact latent space before performing diffusion to di-
rectly generate 3D shapes. Despite its potential, this approach
is limited by the lengthy training time and the lack of a scaling
strategy, which constrain its effectiveness and scalability.

In parallel, the emergence of autoregressive (AR) Large
Language Models [Brown et al., 2020] and multimodal AR
models [Liu et al., 2023] has opened a new era in artificial in-
telligence. These models demonstrate exceptional scalability,
versatility, as well as generalization and multimodal capabil-
ities. At the core of these AR models is the tokenizer [Esser
et al., 2021], which transforms diverse data into discrete to-
kens, enabling the model to employ self-supervised genera-
tive learning for next-token prediction.

AR models have also made notable advancements in vi-
sual generation, leveraging their sequential processing capa-
bilities to construct images as raster-scan token grids [Yu et
al., 2023]. However, given the unordered and unstructured
nature of 3D data, extending next-token prediciton to 3D gen-
eration tasks remains a hurdle. For example, MeshGPT [Sid-
diqui et al., 2024] and its successors tokenize serialized
mesh data with a GNN-based encoder [Zhou et al., 2018]
and rely on manually defined sequence ordering [Wu et al.,
2024b]. Despite the promising results on shapes with sim-
ple topology, they generally fail to represent complex geom-
etry. On the other hand, recent attempts that encapsulate
3D shapes as structured 3D volumes [Cheng et al., 2023;
Xiang et al., 2024] or 2D triplanes [Wu et al., 2024a] also
struggle to learn effective feature representations from un-
ordered 3D data, due to the lack of compression expressivity,
robustness, and scalability in representing high-quality geom-
etry.

Remarkably, we argue that 3D data inherently exhibits
level-of-detail characteristics, with a natural sequential rela-
tionship across different scales – a concept well established
in 3D rendering [Lindstrom et al., 1996] and reconstruc-
tion [Zhang et al., 2021]. In light of this insight, we intro-
duce G3PT – a scalable, coarse-to-fine 3D native generative
model that effectively maps unordered point-based 3D data
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Figure 1: Overall pipeline of G3PT for representing and generating unordered 3D data. (a) Cross-scale Vector Quantization (CVQ): G3PT
encodes the input point cloud into discrete scales of token vectors, each representing a different level of detail. The proposed Cross-scale
Querying Transformer (CQT) utilizes cross-attention mechanisms with learnable queries of varying lengths to globally connect tokens across
different scales, without requiring the tokens to be organized in a specific order. The final output is the occupancy value for each query point.
(b) Cross-scale AutoRegressive modeling (CAR): G3PT reuses the CQT from the stage of CVQ for cross-scale dimension alignment and
enables scalable 3D native generation from coarse to fine scales under various conditions, with an autoregressive transformer trained using
next-scale prediction.

into discrete tokens at various levels of detail, creating a se-
quential relationship ideally suited for autoregressive mod-
eling. Unlike the recent Visual AutoRegressive [Tian et al.,
2024a] (VAR) model, which also use “next-scale prediction”
but rely on average pooling and bilinear interpolation (op-
erations poorly suited for unordered data), G3PT employs
Cross-scale Querying Transformer (CQT), which uses cross-
attention and learnable queries to connect tokens across dif-
ferent scales, to effectively enable global integration of infor-
mation without imposing a specific token order.

The training of G3PT comprises two stages, namely Cross-
scale Vector Quantization (CVQ) and Cross-scale AutoRe-
gressive modeling (CAR). In CVQ, we employ a transformer-
based tokenizer to encode high-resolution point clouds into
latent tokens and decode them into 3D occupancy grids
through querying points [Zhang et al., 2023a]. During this
process, CQT is utilized to decompose the latent feature into
discrete tokens at various scales, yielding a level-of-detail 3D
representation for residual vector quantization [Tian et al.,
2024a] (Figure 1 (a)). With the cross-scale quantized tokens,
the CAR process of G3PT begins at the coarsest scale with
only one token, and the transformer predicts the next-scale to-
ken map conditioned on all previous ones by reusing the CQT
for dimension alignment (Figure 1 (b)). This CAR approach
provides G3PT with a versatile 3D generation pipeline, which
seamlessly supports diverse conditional modalities, includ-
ing image-based and text-based inputs. Extensive experi-

ments show that G3PT not only surpasses previous LRMs
and diffusion-based 3D generation methods in terms of gen-
eration quality, but also, for the first time in 3D generation,
reveals distinct scaling-law behaviors.

In summary, the key contributions of this work are:

• The introduction of the first cross-scale autoregressive
modeling framework for generating unordered data, of-
fering insights to AR models on the 3D generation task.

• The development of a Cross-scale Querying Trans-
former (CQT) that tokenizes 3D data into discrete tokens
at varying scales, enabling sequential coarse-to-fine AR
modeling.

• Demonstration through extensive experiments that
G3PT sets a new state-of-the-art in 3D content cre-
ation, outperforming previous LRMs and diffusion-
based methods.

2 Related Work
Large reconstruction models. Extensive large-scale 3D
datasets [Deitke et al., 2023; Deitke et al., 2024] have en-
abled the development of LRMs [Hong et al., 2023; Tochilkin
et al., 2024], which utilize transformers to map image to-
kens to triplanes with multi-view supervision. Instant3D [Li
et al., 2023] and MeshLRM [Wei et al., 2024] extend LRM
from single-view to sparse multi-view inputs by integrating a
multi-view diffusion model. Methods like InstantMesh [Xu
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Figure 2: Comparison of multi-scale vector quantization ap-
proaches. (a) The quantization approach used in VAR [Tian et al.,
2024a] relies on average pooling and bilinear upsampling, which are
not suitable for unordered data. (b) Our Cross-scale Vector Quanti-
zation (CVQ) overcomes this limitation with CQT, which employs
a set of cross-scale learnable queries to globally “downsample” and
“upsample” the unordered input feature with cross-attention. Specif-
ically, a set of “downsample” learnable queries “pool” the input fea-
ture into token vectors of decreased length at each scale, effectively
forming a level-of-detail tokenization. These cross-scale token vec-
tors are then “upsampled” to the original scale for residual quantiza-
tion, with another set of “upsample” learnable queries.

et al., 2024a] and CRM [Wang et al., 2024] incorporate
Flexicubes [Shen et al., 2023] for direct mesh optimization.
To improve rendering efficiency, LGM [Tang et al., 2024]
and GRM [Xu et al., 2024b] replace NeRF with 3D Gaus-
sians [Kerbl et al., 2023]. However, these approaches often
prioritize minimizing rendering loss over explicit mesh gen-
eration, resulting in noisy and coarse geometry.

3D native generative models. Generating 3D content with
direct 3D supervision offers a more efficient approach, yet
training 3D generative models directly on 3D data poses
significant challenges due to high memory and computa-
tional demands. Recent methods, such as MeshGPT [Sid-
diqui et al., 2024], Shap-E [Jun and Nichol, 2023], and oth-
ers [Zhang et al., 2023a; Zhao et al., 2024; Li et al., 2024;
Zhang et al., 2024], compress 3D shapes into a compact la-
tent space before performing diffusion or autoregressive pro-
cesses. While MeshGPT shows promise, its performance is
limited by the mesh tokenizer. Direct3D [Wu et al., 2024a]
and LAM3D [Cui et al., 2024] further enhance generation
quality by introducing explicit 3D triplane representations.
Make-A-Shape [Hui et al., 2024] and WaLa [Sanghi et al.,
2024] use a wavelet-tree representation to enhance geometry
encoding. TRELLIS [Xiang et al., 2024] is a very recent,
open-source 3D native generative model, whose latent rep-
resentation is based on the hierarchical and sparse 3D vox-
els. It is composed of a sparse 3D VAE and a rectified flow
transformer, enabling the generation of versatile 3D repre-
sentations. However, the extended training cycles and un-
predictable scaling behaviors still constrain the efficiency of
these 3D generation approaches.

Autoregressive models for image generation. Autore-
gressive models have revolutionized visual generation by se-
quentially creating images using discrete tokens, produced
by image tokenizers [Van Den Oord et al., 2017; Esser et
al., 2021]. Models like DALL-E [Ramesh et al., 2021], RQ-

Figure 3: Illustration of the proposed CAR process in G3PT. The
transformer predicts the next-scale token vector using features de-
rived from the “upsampled” tokens of the previous scale. The “up-
sampling” process involves two layers of cross-attention to align
the number of tokens across scales. First, features are “upsampled”
with a learnable query ẽs, and then “downsampled” using a “down-
sample” query es to match the token number of the next scale. A
causal mask is applied to maintain the correct order and dependen-
cies across different scales and input conditions, ensuring coherence
in the model predictions.

Transformer [Lee et al., 2022], and Parti [Yu et al., 2022] rely
on raster-scan sequences for “next token prediction” within
a given scale. VAR [Tian et al., 2024b] introduces a novel
“next-scale prediction” approach, which better preserves spa-
tial locality and reduces computational costs. In this paper,
we aim to explore the scalability potential of next-scale au-
toregressive modeling in 3D generation.

3 G3PT
We introduce G3PT, a scalable and hierarchical 3D native
generative model comprising two training stages, namely
Cross-scale Vector Quantization (CVQ) and Cross-scale Au-
toRegressive Modeling (CAR). In the CVQ stage, we per-
form multi-scale residual quantization [Tian et al., 2024a],
converting unordered, point-based 3D data into compact, dis-
crete tokens across multiple scales. The core of this process is
the Cross-scale Querying Transformer (CQT), which utilizes
cross-attention mechanisms and learnable ”downsample” and
”upsample” queries to efficiently generate a level-of-detail la-
tent 3D representation. In the subsequent CAR stage, this
latent hierarchy is aligned by CQT and transformed into a se-
quential formulation for next-scale prediction.

In the following, we first review the key components of to-
kenization and autoregressive modeling in Section 3.1, fol-
lowed by a detailed description regarding the Cross-scale
Vector Quantization (CVQ) (Section 3.2) and the Cross-scale
AutoRegressive Modeling (CAR) (Section 3.3).

3.1 Preliminaries
Tokenization. We use Lookup-Free Quantization (LFQ) [Yu
et al., 2023] to tokenize the feature map Z ∈ RL×C with
L tokens and C-dimensional embeddings into the quantized
feature map Ẑ. LFQ streamlines the quantization process by
eliminating the need for explicit codebook lookups, thereby
reducing the embedding dimension of the feature Z. For-
mally, the quantization is executed via a mapping function
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ζ = q(z) = sign(z), which maps a feature vector z ∈ RC

to an index vector ζ ∈ Rlog2 C , with each dimension of ζ be-
ing quantized independently. The token index for q(z) using
LFQ is determined by:

Index(z) =
log2 C∑
i=1

2i−11{zi > 0}. (1)

Autoregressive modeling. For a sequence of discrete to-
kens x = (x1, x2, . . . , xN ), the probability distribution over
the sequence is defined as the product of the conditional prob-
abilities of each token given its predecessors, expressed as
P (x) =

∏N
i=1 P (xi | x1, x2, . . . , xi−1). This approach ef-

fectively models the dependencies between tokens, which is
crucial in generating coherent sequences in tasks like lan-
guage processing and image synthesis.

To account for the spatial dependencies and multi-scale
characteristics of images, next-scale prediction [Tian et al.,
2024a] is proposed to progressively refine the 2D latent
representation across a sequence of varying scales. How-
ever, the original implementation constructs multi-scale to-
ken maps using average pooling and bilinear interpolation,
both of which assume an inherent order on the tokens at each
scale. This ordering becomes problematic when applied to
unordered 3D data.

3.2 Cross-Scale Vector Quantization (CVQ)
Shape encoding. As illustrated in Figure 1 (a), we first fol-
low the architecture described in 3DShape2VecSet [Zhang et
al., 2023b] to encode 3D shapes. The input point cloud is
represented as X ∈ RN×(3+3), with each of the N points
having 3 position and 3 normal point features. We employ a
cross-attention layer to integrate the 3D information from X
into the learnable latent queries Lat ∈ RL×C , as follows:

Z = CrossAttn(Lat, PosEmb(X)), (2)

where PosEmb represents Fourier positional encoding and
Z ∈ RL×C is the output latent features.
CVQ. We then perform Cross-scale Vector Quantization
(CVQ), a novel quantization process that extends the residual
quantization steps [Tian et al., 2024a] leveraging the Cross-
scale Querying Transformer (CQT).

A high-level comparison between the quantization used in
VAR and the proposed CVQ is illustrated in Figure 2. As
shown in Figure 2 (a), the conventional downsampling and
upsampling operations, such as average pooling and bilin-
ear interpolation, require a sequential arrangement of tokens,
which is problematic for unordered tokens. To address this is-
sue, we propose Cross-scale Querying Transformer (CQT) to
yield a level-of-detail latent 3D representation using a set of
“downsample” and “upsample” learnable queries and cross-
attention, as shown in Figure 2 (b).

Specifically, we first apply a cross-attention layer and in-
troduce a set of cross-scale learnable queries {e1, e2, . . . , eS}
– with a hierarchy of decreased token numbers – to “down-
sample” the unordered 3D tokens Z. More formally, at each
scale s, the current residual feature Zs ∈ RL×C (initialized
by ZS = Z and L(S) = L), is “downsampled” into a compact

latent vector Es ∈ RL(s)×C by a cross-attention layer with a
“downsample” learnable query es ∈ RL(s)×C :

Es = CrossAttndown(es, Zs). (3)

In this configuration, es serves as the query head, while Zs

acts as the key and value heads. Following Eq. (1), LFQ is
applied on Es, and we denote by Ês the resulting quantized
token vector of the latent feature Es.

Then, we retrieve the “upsampled” feature Z̃s ∈ RL×C of
the original scale by using another cross-attention layer with
an “upsample” learnable query ẽs ∈ RL×C :

Z̃s = CrossAttnup(ẽs, Ês). (4)

The residual feature for the subsequent scale, Zs+1, is then
calculated as: Zs+1 = Zs − Z̃s. This process iteratively
continues until the final quantization step S.
Shape decoding. The final 3D shape decoder, as shown on
the right side of Figure 1 (a), which consists of several self-
attention layers and a cross-attention layer, decodes the sum
of these “upsampled” features and a set of query points p into
occupancy values:

Occ(p) = CrossAttn(PosEmb(p), SelfAttn(
S∑

s=1

Z̃s)). (5)

3.3 Cross-Scale AutoRegressive Modeling (CAR)
After the stage of CVQ, we obtain a sequence of cross-
scale 3D token vectors (Ê1, Ê2, . . . , ÊS) of varying lengths
(L(1), L(2), . . . , L(S)) to serve as inputs for AR modeling. To
enable effective next-scale prediction, we introduce Cross-
scale AutoRegressive modeling (CAR), which reuses the
CQT trained during the CVQ stage to align the token dimen-
sions across different scales. Specifically, we first employ the
“upsample” queries ẽs−1 ∈ RL×C to elevate the token length
L(s−1) to the original scale L, followed by using “downsam-
ple” queries es ∈ RL(s)×C that compress them to the scale
L(s) to be predicted next.

To perform next-scale prediction [Tian et al., 2024a], we
model the probability distribution P (Ê) over the sequence
of the cross-scale 3D token vectors (Ê1, Ê2, . . . , ÊS), where
the token vector at each scale Ês is conditioned on that at the
preceding coarser scales:

P (Ê) =
S∏

s=1

P (Ês | Ê1, Ê2, . . . , Ês−1). (6)

In this manner, the token vector at each scale is added with
more detailed information based on the previous one, allow-
ing the model to progressively refine the data from a rough
approximation to a detailed representation.

3.4 Conditional Autoregressive Modeling
Image conditioning. In each CAR block, pixel-level infor-
mation from the conditional image and point-level informa-
tion from the point cloud are seamlessly integrated, so as to
align the image feature space with the 3D latent space for
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Figure 4: Qualitative comparisons on image-to-3D shape generation against state-of-the-art methods on the Objaverse dataset.

high-quality controllable 3D generation. The overall frame-
work of the conditional CAR model is depicted in Figure 1
(b). Specifically, we employ the pre-trained DINO-v2 (ViT-
L/14) [Oquab et al., 2023] to extract image features, lever-
aging its strength in capturing the structural information cru-
cial for 3D tasks. A linear layer projects the LI image tokens
Idino ∈ RLI×CI , derived from DINO-v2, to Zdino ∈ RLI×C ,
which matches the channel dimension of the cross-scale 3D
tokens (Ê1, Ê2, . . . , ÊS). These projected image tokens are
then concatenated with the cross-scale 3D tokens and regu-
lated through an attention mask in the causal transformer, as
shown in Figure 3, to ensure that only subsequent 3D tokens
are predicted.

Text conditioning. Text conditions can also be easily added
to ensure semantic consistency using the pre-trained CLIP
model, which extracts semantic tokens from the conditional
text input. We use AdaLN [Wu et al., 2024a] for effective
signal control. Note that this approach only serves as a pre-
liminary attempt to validate the flexible conditioning capabil-
ities of the proposed G3PT, while other advanced condition-
ing mechanisms are left for further exploration.

4 Experiments
4.1 Implementation Details
CVQ. Each input point cloud to CVQ contains 16384
points uniformly sampled from the 3D model in the Obja-
verse dataset [Deitke et al., 2023], accompanied by a learn-
able latent query with length L = 2304 and channel di-
mension C = 512. The vocabulary size of the codebook
in LFQ is 8192. The shape encoder network includes one
cross-attention layer and 12 self-attention layers. The shape
decoder network contains a cross-attention layer and 16 self-
attention layers with the same channel dimension of the en-
coder. When training CVQ, 8192 uniform points and 8192

near-surface points are sampled for supervision. The AdamW
optimizer is employed with a learning rate of 1 × 10−4, and
the CVQ model is trained for 60,000 steps on 8 NVIDIA
A100 GPUs with 80GB memory.

CAR. The transformer in CAR shares a similar architecture
with the standard decoder-only transformer used in GPT-2.
To stabilize training, queries and keys are normalized to unit
vectors before calculating the attention weights. All models
are trained with a learning rate of 1×10−5 and a batch size of
1600, using the AdamW optimizer with β1 = 0.9, β2 = 0.95,
and a weight decay of 0.05 for every 1000 steps. The 1.5B
model is trained for two weeks on 136 NVIDIA H20 GPUs
with 96GB memory.

Type Method Name IoU↑ Cham.↓ F-score↑

LRM NeRF
Triposr 72.6 0.023 58.2

InstantMesh 68.7 0.029 58.3
CRM 76.3 0.020 61.4

Gaussian LGM 67.6 0.025 49.3

3D
Generation

Diffusion

Michelangelo 74.5 0.028 62.5
Shap-E 66.8 0.029 46.3

CraftsMan 72.2 0.021 56.1
Make-A-Shape 69.3 0.025 54.9

WaLa 71.4 0.025 62.6
CLAY* 77.1 0.021 63.4

TRELLIS 79.9 0.021 70.4

AR
Modeling

G3PT (0.1B) 73.9 0.025 60.4
G3PT (0.5B) 82.11 0.015 75.1
G3PT (1.5B) 87.6 0.013 83.0

Table 1: Quantitative comparisons on image-to-3D shape generation
against state-of-the-art LRMs and diffusion-based 3D generation ap-
proaches on the Objaverse dataset. (*Reproduction)
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Figure 5: Text-to-3D generation results using G3PT. The colored texts serve as prompt conditions for text-to-3D shape generation.

Method #TokenIOU↑Cham.↓F-score↑Acc.(%)↑Usage(%)↑

VAE 576 89.20 0.0126 84.10 95.24 -
2408 89.60 0.0118 85.80 95.80 -

VQVAE 576 85.32 0.0134 80.15 85.59 96.34
2408 87.43 0.0131 80.53 88.32 92.96

CVQ 576 89.38 0.0122 85.70 95.27 99.51
2408 90.35 0.0108 87.23 97.13 97.13

Table 2: Ablative comparisons on different tokenizers.

4.2 Training Details
CVQ. Directly training with a large number of discrete to-
kens is highly time-consuming. To mitigate this, during the
initial training phase for CVQ, the quantization layer in be-
tween the encoder and decoder is replaced by a layer nor-
malization to facilitate convergence. Once this model is ade-
quately trained, the CVQ is further finetuned with the quanti-
zation layer.

CAR. We implement a progressive training strategy for
CAR. Specifically, instead of processing the tokens across
all scales (L(1), L(2), . . . , L(S)) at once, the training begins
with tokens before the S/2 scale (L(1), L(2), . . . , L(S/2)) and
progressively includes finer scales. This approach accelerates
convergence and improves training stability.

4.3 3D Generation Results
Evaluation protocols. We mainly benchmark on the task of
image-to-3D shape generation, where a single RGB image is
used as the conditional signal and the output is the generated
3D mesh. We evaluate the mesh quality using Intersection-
over-Union (IoU), Chamfer distance (Cham.), and F-score
(with a threshold of 0.01), which reflect the overall proximity
from the generated mesh to the ground-truth. The experi-
ment is conducted on 120 randomly selected testing objects
from the Objaverse dataset [Deitke et al., 2023]. We com-
pare against LRMs including InstantMesh [Xu et al., 2024a],
CRM [Wang et al., 2024], Triposr [Tochilkin et al., 2024],
and LGM [Tang et al., 2024], as well as diffusion-based
approaches like Michelangelo [Zhao et al., 2024], Shap-
E [Jun and Nichol, 2023], CraftsMan [Li et al., 2024], Make-
A-Shape [Hui et al., 2024], WaLa [Sanghi et al., 2024],
CLAY [Zhang et al., 2024], and TRELLIS [Xiang et al.,
2024].

Figure 6: Scaling laws in G3PT with network parameters N .

Image-to-3D generation. The results in Table 1 highlight
the superiority of G3PT for image-to-3D shape generation,
particularly the model with 1.5 billion parameters, which out-
performs all other methods with a substantial margin in all
metrics, demonstrating the unparalleled generation quality
and fidelity. We also conduct qualitative evaluations by com-
paring the proposed G3PT with other state-of-the-art methods
(including commercial software like Meshy1 and Tripo2.02)
using the Objaverse dataset [Deitke et al., 2023]. As shown
in Figure 4, LRMs like CRM and Triposr suffer from noisy
artifacts. Diffusion-based methods like Michelangelo and
TRELLIS produce plausible geometry but struggle to align
with the semantic structure of the conditional images. In
contrast, G3PT achieves a superior balance between geom-
etry quality and controllability, consistently producing high-
quality meshes that align well with the conditional images.
Note that the proposed G3PT, only trained on the Objaverse
dataset, performs on par with Meshy and Tripo2.0, which
span a large amount of internal data for training. Please refer
to the supplement for more quantitative and qualitative eval-
uations on other datasets.

Text-to-3D generation. In Figure 5, we present the quali-
tative generation results of G3PT, given only text prompts as
conditions. The generated meshes align well with the condi-
tional semantics while exhibit remarkable diversity and high-
quality geometry.

Scaling Behaviors. Figure 6 illustrates the scaling laws ob-
served in G3PT by examining the relationship between the
number of model parameters (in billions) and the test loss
(measured as cross-entropy). Both plots demonstrate a clear

1https://www.meshy.ai/discover
2https://www.tripo3d.ai/
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#Token Codebook
Size IOU(%)↑ Cham.↓ F-score(%)↑ Acc.(%)↑

2408 1024 85.43 0.0122 81.25 92.96
2408 2048 86.65 0.0115 86.36 94.44
2408 4096 89.32 0.0119 87.46 96.21
2408 8192 90.35 0.0108 87.23 97.13

(a) Codebook sizes.

#Token Codebook
Size IOU(%)↑ Cham.↓ F-score(%)↑ Acc.(%)↑

256 8192 84.31 0.0125 80.18 93.32
576 8192 89.38 0.0122 85.7 95.27

1024 8192 89.51 0.0119 86.86 96.58
2408 8192 90.35 0.0108 87.23 97.13

(b) Number of tokens.

Table 3: Ablation on different codebook sizes and number of tokens.

3D
Representation

Encoding
Method Quantization IOU (%) ↑ Cham. ↓ F-score (%) ↑ Acc. (%) ↑ Usage (%) ↑

Volume 3D CNN LFQ 85.29 0.0114 78.66 86.89 91.34
Triplane Learnable query LFQ 86.13 0.0120 80.12 90.44 89.34

1D Latent Learnable query Pooling + LFQ 89.51 0.0139 86.86 93.80 99.50
Learnable query CVQ 90.35 0.0108 87.23 97.13 97.13

Table 4: Comparison of various 3D representations paired with different encoding methods.

trend where the test loss decreases as the number of model pa-
rameters increases, with a power-law relationship. This fur-
ther validates the potential of G3PT in handling complex 3D
generation tasks.

4.4 Ablation Studies
In the following, we perform comprehensive ablation studies
on the task of image-to-3D shape generation, strictly follow-
ing the evaluation protocols outlined in Section 4.3.

Tokenization. We first demonstrate the effectiveness of the
proposed CVQ by comparing to other tokenizers. Table 2
presents the comparison against two commonly used ap-
proaches: VAE and VQVAE. We implement VAE follow-
ing [Zhang et al., 2024], which applies KL regularization be-
tween the encoder and decoder, differing from the quantiza-
tion module utilized in diffusion models. We implement VQ-
VAE by incorporating LFQ quantization, which maintains the
same quantization structure as described by [Yu et al., 2023].
The quantitative metrics additionally include prediction accu-
racy (Acc.) of the occupancy value (0 or 1), which is deter-
mined by evaluating points that are randomly sampled in the
vicinity of the ground-truth mesh. The “Usage” metric indi-
cates the efficiency of codebook usage. As can be seen, CVQ
outperforms both VAE and VQVAE across multiple metrics
with near-complete codebook usage.

Codebook size and the number of tokens. A detailed
quantitative comparison given different codebook sizes and
the number of tokens (#token) are presented in Table 3 (a) and
(b), respectively. Due to memory constraints, the evaluation
is limited to a maximum of 8192 tokens. We refer readers to
the supplement for relationships between #token and #scale.

3D representation. The comparison of different 3D repre-
sentations and encoding methods is reported in Table 4. We
consider three types of 3D representations: volumetric fea-
ture grids (Volume), Triplane [Wang et al., 2023], and 1D

latent vectors. The Volume representation is encoded us-
ing a 3D Convolutional Neural Network (3D CNN) follow-
ing the architecture of SDFusion [Cheng et al., 2023], while
the Triplane representation utilizes the architecture from Di-
rect3D [Wu et al., 2024a]. All encoders are designed with
similar parameter counts. For 1D Latent, a comparison is
also conducted between CVQ and a baseline setup (Pool-
ing + LFQ), i.e., a similar implementation to VAR [Tian et
al., 2024a] by incorporating a 1D average pooling module, a
bilinear upsampling module, and an additional 1D convolu-
tional layer (Figure 2 (a)), which forces the tokens to learn an
ordered sequence.

The results demonstrate that CVQ achieves superior per-
formance with near-complete codebook usage, emphasizing
the effectiveness of CVQ in preserving detailed structural in-
formation during quantization. When compared to the base-
line setup with average pooling and bilinear upsampling, the
results are in line with our intuition that 1D latent tokens do
not possess an inherent sequential order, unlike image data.

5 Conclusion

This paper introduces G3PT, a scalable hierarchical 3D gen-
erative model featuring a Cross-scale Querying Transformer
(CQT) to map unordered 3D data into discrete tokens across
various levels of detail. By establishing a natural sequential
relationship among these tokens, G3PT enables Cross-scale
AutoRegressive modeling (CAR) in a manner that aligns well
with the inherent unordered characteristics of 3D data. This
novel CAR framework tailored for unordered data offers new
insights into autoregressive algorithm design. Extensive ex-
periments demonstrated that G3PT achieves superior gener-
ation quality compared to existing 3D generation methods,
setting a new state-of-the-art in 3D content creation.
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