Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

An Out-Of-Distribution Membership Inference Attack Approach for
Cross-Domain Graph Attacks

Jinyan Wang'2 , Liu Yang'?, Yuecen Wei
Qingyun Sun*, Xianxian Li'?, Xingcheng Fu

i***, Jiaxuan Si'?, Chenhao Guo'?,

1,2%

'Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education,
Guangxi Normal University, China
2Guangxi Key Lab of Multi-Source Information Mining and Security,
Guangxi Normal University, Guilin, China
3School of Software, Beihang University, Beijing, China
*SKLCCSE, School of Computer Science and Engineering, Beihang University, China
{wangjy612, ylzyg, sijiaxuan03, guochenhao03, fuxc, lixx } @ gxnu.edu.cn,
{weiyc, sunqy} @buaa.edu.cn

Abstract

Graph Neural Network-based methods face privacy
leakage risks due to the introduction of topologi-
cal structures about the targets, which allows at-
tackers to bypass the target’s prior knowledge of
the sensitive attributes and realize membership in-
ference attacks (MIA) by observing and analyz-
ing the topology distribution. As privacy con-
cerns grow, the assumption of MIA, which pre-
sumes that attackers can obtain an auxiliary dataset
with the same distribution, is increasingly devi-
ating from reality. In this paper, we categorize
the distribution diversity issue in real-world MIA
scenarios as an Out-Of-Distribution (OOD) prob-
lem, and propose a novel Graph OOD Membership
Inference Attack (GOOD-MIA) to achieve cross-
domain graph attacks. Specifically, we construct
shadow subgraphs with distributions from differ-
ent domains to model the diversity of real-world
data. We then explore the stable node representa-
tions that remain unchanged under external influ-
ences and consider eliminating redundant informa-
tion from confounding environments and extracting
task-relevant key information to more clearly dis-
tinguish between the characteristics of training data
and unseen data. This OOD-based design makes
cross-domain graph attacks possible. Finally, we
perform risk extrapolation to optimize the attack’s
domain adaptability during attack inference to gen-
eralize the attack to other domains. Experimental
results demonstrate that GOOD-MIA achieves su-
perior attack performance in datasets designed for
multiple domains.

*Co-corresponding Authors.
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Figure 1: Traditional MIA (Trad-MIA) vs GOOD-MIA.

1 Introduction

Graph Neural Networks (GNNs) [Wu et al., 2019; Fu et al.,
2023] have been widely applied in various practical and po-
tentially high-risk scenarios, such as social networks [Sharma
et al., 2024], bioinformatics networks [Zhang et al., 2021],
and medical diagnosis [Boll et al, 2024]. Existing re-
searches [Wu et al., 2020b; Veli¢kovié et al., 2017] lever-
age the ability of GNNSs to capture structural information and
node features to address diverse downstream tasks [Tu et al.,
2021]. However, the in-depth mining of data and the power-
ful representation capabilities of the model also raise serious
privacy concerns [Zhang et al., 2025; Zhang et al., 2024a].
With the growing concern for personal privacy secu-
rity [Zhang et al., 2024b; Wei et al., 2024; Li et al., 2025],
graph-structured data has been proven to be highly suscepti-
ble to Membership Inference Attacks (MIA) due to its rich
associative semantics. In MIA, attackers attempt to infer
whether a specific node belongs to the training set of the
target GNN model, which can lead to severe privacy leak-
age, especially when the model is trained on sensitive do-
main datasets. For example, when medical diagnosis data
is modeled as a graph for training, MIA allows attackers to
obtain an individual’s health information without having spe-
cific details. However, the success of traditional MIA [Wei
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et al., 2025] is usually based on the assumption that attack-
ers can access shadow datasets with the same distribution as
the target. In reality, as shown in Fig. 1, it is often difficult
to obtain similarly distributed data, and there can be biases
in data distribution across different environments [Liu et al.,
2021]. These issues lead to diminished attack efficacy due
to significant gaps in training data distribution. Therefore,
cross-domain graph attacks are more practical as they better
reflect scenarios where data access is restricted and the data
comes from diverse distributions across different domains.

Out-of-distribution (OOD) [Liu et al., 2021] methods show
excellent capabilities in domain adaptation tasks. Existing ap-
proaches [Arjovsky et al., 2019; Krueger et al., 2021] make
the model’s learned representations consistent across differ-
ent data distributions through invariant learning, thus pro-
viding robustness and generalization to unseen distributions.
However, graph-structured data may not exhibit high con-
nectivity but a scale-free power-law distribution [Wu er al.,
2020al]. Tt indicates that the structural differences among
nodes and edges in different domains may be significant, re-
quiring the shadow model to account for graph data with sub-
stantial distributional differences while mimicking the target
model’s decisions. Therefore, arbitrarily changing the train-
ing domain or roughly incorporating graph OOD [Liu et al.,
2023; Wu et al., 2022] methods may lead to a shadow model
that fails to adapt to multiple domains, resulting in posterior
distribution shifts and affecting the effectiveness of the attack.

Therefore, to explore the privacy risks faced by models
when dealing with data from different distributions, an in-
tuitive idea is to reveal the privacy vulnerabilities of GNNs
in OOD inference scenarios by studying the cross-domain
graph attack. Overall, our research faces the following two
challenges: Based on the MIA assumptions, existing meth-
ods overly rely on specific data features and lack adaptability
to the topology of graph OOD data. This results in an inabil-
ity to distinguish the intrinsic characteristics of training data
when faced with confounded distributions, leading to subop-
timal attack performance. Therefore, the key issue lies in
simultaneously capturing the common representations of
graph features and graph structures across domains, and
extending the attack. Due to the distribution discrepancies
between the shadow and target datasets, existing attack mod-
els tend to overfit specific features of the shadow dataset, fail-
ing to adequately learn the attributes and structural informa-
tion directly relevant to downstream tasks. This necessitates
joint invariant learning to reinforce the acquisition of crit-
ical topological information in graph structures.

To address the above problem, we propose a novel out-of-
distribution MIA approach for cross-domain graph attacks,
named GOOD-MIA. Specifically, to acquire knowledge from
multiple domains during the training, we generate multi-
ple graphs in different environments using an augmentation
method [Fu et al., 2024]. Then, we extract invariant features
of the data in multi-domain generalization training to depict
the distribution of the training data. Moreover, in the model’s
inference, we constrain sufficient and critical beneficial infor-
mation for downstream classification tasks and further rein-
force invariant representations to maintain the mimicry of the
target model’s behavior. For the attack model, we encourage

the equalization of training risks to minimize the likelihood
of risk changes when the distribution shifts. Finally, exten-
sive experiments validate the effectiveness of cross-domain
attacks. Our contributions are summarized as follows:

* To the best of our knowledge, this is the first work to
conduct cross-domain attacks against GNNs. It breaks
the conventional settings of MIA and reveals the privacy
leakage risks of graph models on unknown distributions.

* We propose a novel Graph Out-Of-Distribution
Membership Inference Attack (GOOD-MIA) to achieve
cross-domain graph attacks. By capturing invariant
representations of cross-domain graph data and con-
straining the training direction of the model, we mitigate
distribution shifts during the risk extrapolation process.

e Comprehensive experiments on multiple real-world
datasets demonstrate that GOOD-MIA leads in cross-
domain graph attack performance.

2 Related Work

2.1 Membership Inference Attacks on GNN

MIAs aim to infer whether or not a data sample was used to
train a target model [Shokri ez al., 2017]. Later works [Hayes
et al., 2017; Song and Shmatikov, 2019; He et al., 2020]
further investigate the feasibility of MIAs in other types of
models, such as image generative and segmentation models.
[Olatunji et al., 2021] first migrated membership inference
attack to the graph data, using a shadow training technique.
The proposed scheme is based on node-level tasks performed
on graph data. [He ef al., 2021] proposed a scheme for the
membership inference attack using the 0-hop subgraph and
the 2-hop subgraph, which combined the membership infer-
ence attack with the structure of the graph. However, the ad-
versary requires all needs a shadow dataset that is identically
distributed with the target dataset as the auxiliary dataset in
the above membership inference attacks. In practical appli-
cation scenarios, due to the diversity of data, it is almost im-
possible to obtain identically distributed data as the auxiliary
dataset. Therefore, the effectiveness of the aforementioned
MIAs is likely overestimated [Hintersdorf ez al., 2021].

2.2 Out-Of-Distribution Generalization on Graphs

Previous work [Beery et al., 2018; Recht et al., 2019] has
shown that the performance of neural networks is sensitive to
distribution changes and exhibits unsatisfactory performance
in new environments. It is difficult to solve this generaliza-
tion problem because the observations in the training data
cannot cover all real-world environments. Several kinds of
strategies can be applied to tackle OOD generalization [Liu
et al., 2021]. Causal inference aims to learn causal represen-
tations in causal graphs. By capturing causal representations,
the model can obtain potential direct associations, which can
help resist distribution changes caused by interventions. In-
variant learning methods represented by invariant risk mini-
mization (IRM) [Arjovsky et al., 20191, which are proposed
based on causal inference, have extended generalization mod-
els to more practical environments. Although the above meth-
ods have improved the generalization ability of existing ML
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models, it is difficult to identify invariance due to the com-
plex topological structure of the graph. GIL [Li et al., 2022]
captures the invariant relationships within the graph struc-
ture and the environment by jointly optimizing three mod-
ules. EERM [Wu et al., 2022] trains multiple context genera-
tors to explore invariance within environments. FLOOD [Liu
et al., 2023] combines invariant representation learning and
contrastive learning to train a more flexible framework to deal
with different environments. However, the features captured
by the existing invariant learning are relatively generic. Al-
though they can render the model more generalizable, these
features may not be beneficial for downstream tasks when
dealing with data from other distributions.

3 Preliminaries

In this section, we introduce the notation used in this paper,
as well as some related methods.

3.1 Problem Statement

The goal of an adversary is to determine whether a given node
is used to train a target GNN model or not. Formally, let
G = (V, A, X) represents the graph dataset, V is the node set
with size n = V|, and € C V x V represents the edge set. We
denote the adjacency matrix of G as A € {0,1}"*", where
A;; = 1 if node v; connects to node v;, otherwise A;; = 0,
and N (v) is the neighbor set of node v. X € R™*/ is the
matrix of node attributes where each row vector X,, € R/ is
the corresponding attributes of node v. Given a target node v
in the target dataset G;, a target GNN model M, and the ad-
versary’s background knowledge . Membership inference
attack A is defined as:

A v, My, K — { member, non-membe}. (1)

3.2 Invariant Learning

Invariant learning is used to capture invariant relationships
among different distributions. Therefore, when conducting
cross-domain attacks, we can utilize invariant learning to cap-
ture invariant representations between different datasets.
Empirical Risk Minimization (ERM) [Vapnik, 1991] solu-
tion is found by minimizing the global risk, expressed as the
expected loss over the observational distribution, but it does
not generalize well to other domains in the testing[Liu et al.,
2023], ERM as:

RERM (fw) = EPobs(m,y,e) [f (fw(m)v y)] ) (2)

where Ep | (2.4,¢) indicates that the expectation is taken with
respect to the observed data distribution Pyps(z, y, €), £ is the
loss function and w is the parameter.

Invariant Risk Minimization (IRM) [Arjovsky ef al., 2019]
includes a regularization objective that enables the classifier
£ () to achieve optimality across all environments, following:

Rirn (fu) = Y Re(fu) + BIVLRe (f)l3, 3
e€Eobs

where £°P%is is the observed environment, (3 is penalty
weight, R, is short for Rgrm in environment e, and ||H§ is
the square of the Lo norm.

Risk Extrapolation (REx) [Krueger et al., 2021] is a form
of robust optimization over a perturbation set of extrapolated
domains. That means that reducing differences in risk across
training domains can reduce a model’s sensitivity to distribu-
tion shifts. The REXx is defined as:

Rupx (fo) = max Y ARe(fo), @)

eNe=— bs
>\52>\mm ecgobs

where ) is the extrapolated weight.

3.3 Graph Information Bottleneck

The information bottleneck (IB) [Fu ez al., 2025a; Fu et al.,
2025b] principle uses mutual information I(X;Y") as a cost
function and regularization. The GIB is defined as follows:

GIB¢(G,Y;2) 2 [-1(Y;2) +€1(G; 2)], (5
where £ is the balancing coefficient.

4 Graph Out-Of-Distribution Membership
Inference Attack

In this section, we first define cross-domain MI attacks
against GNNs. Then, we discuss the threat model and present
the attack methodology.

4.1 Threat Model

In this paper, we study MIAs under the black-box settings,
which means the adversary can’t access the target model’s
parameters but can only observe the input and output of the
target model, We then analyze the adversary’s background
knowledge K along two dimensions, i.e., shadow dataset,
shadow model.

Our setting. As mentioned above, it is very difficult to ob-
tain datasets with the same distribution in real life, so our
setting is different from previous work [He et al., 2021;
Olatunji er al., 2021]. We assume that the attacker uses a
dataset with a different distribution from the target dataset
for auxiliary training. Using the shadow dataset, the attacker
needs to train a shadow model that can learn invariant features
and structures. However, the generalized representations and
structures learned from data in different domains may not
fully mimic the target model. Therefore, based on the above
discussion, the purpose of training the shadow model is not
only to mimic the behavior of the target model but also to
summarize the membership status of data points in the train-
ing set of the ML model.

4.2 Attack Methodology

According to the traditional procedure of membership in-
ference attacks on previous ML models and GNN mod-
els [Olatunji et al., 2021; Shokri et al., 2017], our GOOD-
MIA also models the attack model as a binary classification
task where the goal is to determine if a given node v € V. We
illustrate the pipeline of GOOD-MIA in Fig. 2, which consists
of two modules: (1) Shadow model training: we adopt IRM
and GIB to train the GNN model for invariant representation
learning and privacy-sensitive learning. The training environ-
ments are constructed by data augmentation on graphs. (2)
Attack model training: we adopt REX to train the binary
classification model for OOD generalization.
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Figure 2: Framework of GOOD-MIA. (1) The input graph is augmented to construct M training environments. Then, we employ IRM and
GIB to extract cross-domain graph features and structural that can facilitate cross-domain attacks. Next, (2) the output posteriors of the

shadow model are used to construct the attack training set, and REx

Shadow Model Training
To endow the shadow model with generalization ability, we
need a shadow model that can capture the invariant proper-
ties of graphs, such as features and structures, enabling the
posterior distribution learned by the model to be as close as
possible to the output posterior of the target model. For a
shadow dataset Gs, the adversary first constructs multiple
training environments from the original shadow graph Js.
Then, each augmented graph Gg is divided into two disjoint
subgraph, including Go™" and GI*'. We perform two typ-
ical graph augmentations, namely node feature masking and
DropEdge [You et al., 2020]:
pe(X,A) = (X0 AL), e=1...M, (6

) )

where X, represents the features after data augmentation, A,
is the adjacency matrix after data augmentation, and e repre-
sents different environments.

Next, we train a GNN encoder f,(-) to extract invari-
ant features and to capture information-sensitive represen-
tations from the graphs in different training environments.
fo (X, A) — R%is a L-layer graph neural networks and
outputs d-dimension representation for each node. In layer
I(I =1,...,L), the representation for node ¢ under environ-
ment e is defined by:

) =a6G () {nl Y e M)}).

)

where N, () indicates the neighbor set of node i decided by

Ae, and h(o) Xe.
Fmally, a softmax layer is applied to the node represen-
tations in the last layer for the final prediction of the node

@)

h(l+1) UPDATE < O ,arg 1}111111 LB

e,i

is employed to enable the attack model to conduct cross-domain attacks.

classes. The GNN parameterized by w is trained by minimiz-
ing the cross-entropy loss defined by:

Re() =~ > Yo o (1o (X A))] - ®

i=1 j=1

where o is the activation function.

To learn a better invariant representation, we use IRM to
capture the invariant representations X, in the graph struc-
ture during across different training domains, when Ve; #
es, P, (Y | X.) = Po,(Y | X.), IRM constructs a linear
combination with penalty weights as:

Riru (f.) ZR (fu) + B1IVuRe (£)l5, O
e=1
where 51 € [0, +00) controls the balance between reducing

average risk and penalty weights of risks.

Overall, in the shadow model training phase, both invari-
ant learning and information bottleneck are jointly optimized
under the overall loss as:

Hgn Liain = aGIB + (1 — a)Rirm, (10)
where € [0,1) is the weight factor used to balance the
constant risk and the graph information bottleneck.

Attack Model Training

The attack model is a binary machine learning classifier and
its input is derived from a node’s posteriors provided by a
GNN. The MLP parameterized by (w, b) is trained by mini-
mizing the cross-entropy loss defined as.

1 Lc
)= N Zzyz‘j log(pij)-

i=1 j=1

Re(w,b (11)
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To enable the attack model to obtain a good generaliza-
tion ability of the attack, we adopt the REx principle. The
goal of using REx is to reduce the differences in risks across
different domains, thereby enhancing the model’s robustness
against distribution shifts. It encourages the equality of train-
ing risks and when a distribution shift occurs at test time, the
risks are more likely to change less. Minimax-REx builds a
linear affine combination of training risks, as represented by:

M
RMM—REx(wa b) = E?}\%}zil Z AeRe(¢a b)
Xe>Amin ¢=1

= (1 — MAyin) mnge(w, b) (12)

M
+ )\min Z Re(w? b))
e=1

where M is the number of environments, which consists of a
posteriori of the enhanced graph.

Practically, as there is a maximum in Eq. (12), it is hard
and unstable to optimize Ryv—Rrex- 10 tackle the problem,
we replace Eq. (12) with the variance of risks as:

RV—REX(¢7 b) = 62 Var ({Rl (7/1, b)7 e »RMW% b)})
M
+ ) Re(1h,),
- (13)

where 33 € [0, +00) controls the balance between reducing
average risk and enforcing equality of risks.

4.3 Opverall Algorithm and Complexity Analysis

The overall training algorithm is summarized in Algorithm
1. Given a shadow graph Gs, we first construct M training
environments by data augmentation (Line 1). With the GNN
initialized parameters (Line 2), we get the node representa-
tion under each environment (Line 5). After that, the model
is trained until convergence by minimizing Eq.(8) (Line 7).
In the attack model training phase, We use the output poste-
rior of the shadow model to construct the attack dataset and
regard the posterior outputs of different augmented graphs as
different environments in the attack dataset. Finally, the at-
tack model is updated by minimizing Eq. (13) (Line 11).

Consider a graph with NV nodes and E edges, the average
degree is d, an MLP with N samples, D input dimensions,
and H dimensions of the hidden layer. GNN with L lay-
ers computes embeddings in time O (NLd?) and the time
complexity of the MLP is O (NDH). GOOD-MIA does M
encoder computations per update step (M for training envi-
ronment) plus a prediction step. The overall time complexity
has a linear relationship with the previous work.

5 Experiments

In this section, we investigate the effectiveness of the pro-
posed attack model in the face of three cross-domain settings
with practical significance, aiming to address the following
research questions.

Algorithm 1 GOOD-MIA: Out-of-Distribution Membership
Inference Attack Approach for Cross-domain Graphs Attack

Input: target graph Greer, shadow graph Gpagow, Number of
training environments M
Parameter: w, v
Output: Membership prediction
1: Construct M shadow training environments by Eq. (6);
2: Initialization parameters w, 1;
3: while Shadow model training epoch < N, espoch do
4: fore=1,...,M do
5: Get the representation & for nodes of G, w.r.t Eq. (7);
6.
7
8

end for
:  Train w by minimizing Eq. (10);
: end while
9: return Posterior probability for shadow model;
10: while Attack model training epoch < NAtack do

epoch

11:  Train w by minimizing Eq. (13);

12: end while
Datasets | #Nodes | #Edges | #Classes #Features

Cora 2708 5429 7 1433

Citeseer 3327 4732 6 3703
Pubmed 19717 44338 3 500
Twitch | 1912-9498 | 31299 - 153138 2 2545
FB-100 | 769 - 41536 | 16656 - 1590655 2 8319

Table 1: Statistics for experimental datasets

5.1 Experimental Settings

Datasets. We adopt five node property prediction datasets
of different sizes and properties, including Cora, Citeseer,
Pubmed, Twitch and Facebook-100. For Cora, Citeseer and
Pubmed [Sen et al., 2008], we keep the original node la-
bels and synthetically create spurious node features to intro-
duce distribution shifts between different domain data. The
Twitch and Facebook-100 [Rozemberczki and Sarkar, 2021;
Traud et al., 2012] represent canonical real-world social net-
works. For Twitch, we consider subgraph-level data splits:
nodes in subgraph DE are used as target model datasets, while
nodes in ENGB, ES, FR, PTBR, RU and TW are used as
shadow model datasets to set cross-domain attacks in differ-
ent domain environments. For Facebook-100, we use John
Hopkins, Amherst and Cornell5 as the target datasets, Penn
and Reed as the shadow datasets. We summarize the dataset
information in Tab. 1.

Baselines. We established three backbone models (GCN,
GAT, SGQ) to test the expressiveness of GOOD-MIA in dif-
ferent scenarios. We compare the proposed GOOD-MIA
with the state-of-the-art attack methods TSTS [Olatunji et al.,
2021] on GNNs. The baselines in our experiment have the
same setting as our method, that is, the shadow dataset has a
different distribution from the target dataset.

Evaluation Metrics. We use Accuracy, AUC score, and Re-
call [He et al., 2021; Olatunji et al., 2021; Salem et al., 2018]
to evaluate the performance of the attack model.
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Cora \ CiteSeer \ Pubmed

Model ACC  AUC Recall | ACC AUC Recall | ACC AUC Recall

GCN 6731 6734 67.18 | 79.34 79.39 78.35 | 50.57 50.58 50.60

TSTS GAT 65.81 6533 6583 | 7749 77.57 7796 | 50.18 50.19 50.18

SGC 66.36 66.28 66.33 | 80.21 &81.52 80.09 | 51.19 51.22 51.19

GCN 7415 7399 73.02 | 84.10 84.04 84.26 | 53.79 53.81 53.79

GOOD-MIA GAT 71.23 71.14 70.99 | 81.81 82.48 81.87 | 54.47 5439 54.48

SGC 71.07 71.80 7140 | 82.72 82.83 84.67 | 53.94 5392 53.95

GOOD-MIA\IRM | 62.87 62.96 62.87 | 62.33 62.34 6233 | 4572 4576 45.73

Ablation GOOD-MIA\GIB | 68.23 6835 68.25 | 68.53 69.28 70.50 | 48.20 47.20 47.26

GOOD-MIA\REx | 6149 6145 61.50 | 71.02 7090 71.30 | 51.73 51.71 51.73

Table 2: Summary results of Synthetic Data (Bold: best; Underline: runner-up).

‘ ENGB ES FR PTBR RU ™
Model | ACC  AUC | ACC  AUC AUC | ACC AUC | ACC AUC | A AUC
GCN | 57.04 5699 | 59.65 59.67 | 59.07 59.08 | 58.99 59.07 | 56.59 56.56 | 50.05 60.08
TSTS GAT | 55.69 55.67 | 56.81 56.78 | 56.31 5532 | 57.37 57.36 | 57.33 57.39 | 56.14 56.18
SGC 60.27 60.20 | 59.43 59.47 | 60.14 60.20 | 61.37 61.36 | 58.21 58.27 | 60.15 60.14
GCN | 57.14 57.06 | 61.06 61.10 | 63.02 63.15 | 61.02 61.04 | 58.88 58.92 | 61.30 61.27
GOOD-MIA GAT | 5997 60.00 | 59.46 59.50 | 59.29 59.30 | 59.52 59.54 | 5894 58.96 | 60.12 60.19
SGC 61.29 61.31 | 61.56 61.58 | 63.74 63.77 | 64.80 64.92 | 60.38 60.36 | 61.56 61.33

Table 3: Attack accuracy and AUC of the GOOD-MIA on the Twitch dataset (Bold: best; Underline: runner-up).

5.2 Performance Evaluation

We conduct comprehensive performance verification and ab-
lation experiments on GOOD-MIA.

Distribution Shifts on Synthetic Data. We report the attack
scores on the citation network dataset in Tab. 2. We found
that when using different GNNs as the backbone, GOOD-
MIA consistently showed a significant advantage over corre-
sponding competitors under artificially induced distribution
shifts. Also, when the datasets were Cora and PubMed, their
performance was close to that of the attack models trained
with datasets of the same distribution [Olatunji et al., 2021].
The results indicate that this attack model can effectively cap-
ture cross-domain features and their structures when using
datasets with different distributions, enabling the model to
launch effective attacks.

Distribution Shifts across Domains. Tab. 3 and Tab. 4
demonstrate the attack performance in real-world social net-
work datasets. This kind of dataset has great practical signif-
icance because it is rather difficult for us to obtain datasets
with the same distribution, while it is relatively easy to ac-
quire datasets with approximate distributions. This kind
of dataset is challenging for cross-domain attacks since the
nodes in different subgraphs are disconnected. We found
GOOD-MIA achieves overall superior performance over
competitors. This demonstrates the efficacy of our model in
tackling OOD attacks across graphs in different domains.
Overall. For different datasets, the invariance of their fea-
tures and structures may vary in strength. For example, ci-
tation networks may exhibit strong invariance in their struc-

tures, making them easier to capture in cross-domain scenar-
ios. Social networks may exhibit weak invariance in their
structures, leading to less clear capture and, consequently,
poorer attack performance.

5.3 Ablation Study

In this section, we analyze the effectiveness of the three vari-
ants:

* GOOD-MIA (w/o IRM ): We remove the IRM in the
shadow model training objective (Eq. (10)).

* GOOD-MIA (w/o GIB ): We remove the GIB in the
shadow model training objective (Eq. (10)).

* GOOD-MIA (w/o REx ): We remove the REx in the
attack model training objective (Eq. (13)), and using the
traditional Cross Entropy Loss

We choose GCN as the backbone to evaluate three key mod-
ules of GOOD-MIA, namely IRM, GIB, and REx, by remov-
ing each module respectively. We report the ablation exper-
iments of artificial data MIA in Tab. 2. Compared with the
three variants, the complete model achieves the best attack
performance in terms of the total number, indicating that each
module is essential for the generalization of the attack model.

Removing the IRM part, when training the shadow model,
GOOD-MIA\IRM can only capture features and structures
related to downstream tasks through the information bottle-
neck. It fails to obtain invariant representations of the data
when the distributions vary. Merely conducting REX via the
attack model cannot yield a satisfactory attack effect.
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Shadow Data ‘ Penn ‘ Reed
Target Data \ GOOD-MIA TSTS \ GOOD-MIA TSTS
\ ACC AUC Recall \ ACC AUC Recall \ ACC AUC Recall \ ACC AUC Recall
John Hopkins | 57.20 57.12 5720 | 5339 5342 5339 | 57.74 5775 57773 | 51.99 5197 5199
Amberst | 58.31 57.83 5831 | 51.62 51.63 51.62 | 60.19 60.29 57.68 | 5456 54.48 54.56
Cornell5 | 5752 57.59 57.53 | 53.68 53.62 53.62 | 56.81 56.78 56.83 | 53.48 5347 53.48
Table 4: Attack accuracy and AUC of the GOOD-MIA on the Facebook-100 dataset (Bold: best).
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Figure 3: Trade-off parameter « analysis.

Omiitting the GIB part, GOOD-MIA\GIB can only obtain
generalized representations of the data. Although such infor-
mation may have the same probability under different distri-
butions, it may not be a crucial part in cross-domain attacks.

Without the REx part, although GOOD-MIA\REx can
capture invariant representations as well as structures and fea-
tures related to downstream tasks during the training of the
shadow model, simply using an MLP insufficient to achieve
effective cross-domain attack. We conclude that only by com-
bining these three can we improve the capability of cross-
domain attacks in GOOD-MIA.

5.4 Analysis

Hyperparameter Trade-off Analysis. We conduct a hyper-
parameter analysis of the trade-off parameter in the shadow
model to verify the roles of information bottleneck and in-
variant learning in GOOD-MIA. The results are shown in
Fig. 3, indicating that the sensitivity to attack accuracy when
setting « varies between different GNN models. It can be
seen from this that the analysis we presented earlier is correct.
When the shadow model learns invariant representations us-
ing IRM, generalizing to other domains may not be relevant
to the downstream tasks. Therefore, it is also necessary to
capture the features and structures that are closely related to
the downstream tasks. Moreover, when using different GNN
models, the attack effect obtained by using different parame-
ters is also different due to different aggregation methods.

In summary, the hyperparameter settings can be further op-
timized based on the characteristics of different models to im-
prove the overall performance of the attack model.

Figure 4: Different numbers of neurons are used in the hidden layer
of the shadow model for the MIA.

Different Model Architecture. We further investigate
whether the different number of neurons affects the attack
performance. We evaluated the target model with 256 neu-
rons in its hidden layer, while the number of neurons in the
shadow model varied from 32 to 256. The results are depicted
in Fig. 4. We observed that in Cora and CiteSeer, the closer
the shadow model approximates the target model, the higher
the attack accuracy. PubMed is the opposite. This may be
attributed to the lower feature dimensionality of PubMed.

6 Conclusions

In this paper, we propose a novel framework named GOOD-
MIA, designed to explore the feasibility of cross-domain
membership inference attacks when identically distributed
auxiliary datasets are unavailable in real-world scenarios, and
to enhance the effectiveness of such cross-domain attacks.

We decompose the overall objectives of GOOD-MIA into
shadow model training and attack model training, which have
a linear relationship. During the shadow model training
phase, invariant features and key graph structures are first
captured from the environments of different graph data. Sub-
sequently, attack training sets for different environments are
constructed, followed by training the attack model. Finally,
through risk extrapolation, the attack model can be gener-
alized to other domains for attacks. Extensive experiments
show that GOOD-MIA exhibits excellent attack inference ca-
pabilities and domain adaptability.
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