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Abstract
In recommender systems, multi-behavior methods
have demonstrated significant effectiveness in ad-
dressing issues such as data sparsity—challenges
commonly encountered by traditional single-
behavior recommendation methods. These meth-
ods typically infer user preferences from various
auxiliary behaviors and apply them to recommen-
dations for the target behavior. However, existing
methods face challenges in uncovering the inter-
action patterns for different behaviors from multi-
behavior implicit feedback, as users exhibit vary-
ing preference strengths for different items across
behaviors. To address this issue, this paper intro-
duces a novel approach, Decision-Aware Prefer-
ence Modeling (DAPM), for multi-behavior recom-
mendation. We first construct a behavior-agnostic
graph to learn comprehensive representations that
are not affected by behavior factors, complement-
ing the behavior-specific representations. Sub-
sequently, we introduce an innovative contrastive
learning paradigm that emphasizes inter-behavior
consistency and intra-behavior uniformity to alle-
viate the “false repulsion” problem in traditional
contrastive learning. Furthermore, we propose
a multi-behavior hinge loss with boundary con-
straints to explicitly model users’ decision bound-
aries across different behaviors, thereby enhancing
the model’s ability to accurately capture users’ in-
consistent preference intensities. Extensive experi-
ments on three real-world datasets demonstrate the
consistent improvements achieved by DAPM over
thirteen state-of-the-art baselines. We release our
code at https://github.com/Breeze-del/DAPM.

1 Introduction
Recommender systems are information filtering technologies
designed to provide personalized services based on user pref-
erences [He et al., 2020]. They are widely used in areas
like e-commerce [Wu et al., 2021], social media [Qi et al.,

* Corresponding author.

2021], and online video platforms [Wei et al., 2020]. Tra-
ditional collaborative filtering methods [Cheng et al., 2016;
He et al., 2020] typically focus on a single behavior like pur-
chase and often encounter challenges with data sparsity, re-
sulting in significant performance degradation.

In real-world scenarios, users can interact with items in
multiple ways, including viewing, adding to the cart and pur-
chasing. Different types of behaviors may characterize user
preference from various intention dimensions and comple-
ment each other for better user preference learning [Tanjim
et al., 2020]. To overcome the challenges posed by data spar-
sity, researchers have introduced Multi-Behavior Recommen-
dation (MBR) methods [Wei et al., 2022; Chen et al., 2020a;
Meng et al., 2023b; Li et al., 2024], which draw on data from
multiple user behaviors to provide rich insights into user pref-
erences. MBR methods primarily focus on the target behav-
ior (i.e., purchase) while treating other behaviors as auxiliary
behaviors, thereby enhancing the robustness and accuracy of
the recommendation system by utilizing a broader spectrum
of user data.

Early studies [Singh and Gordon, 2008; Zhao et al., 2015a]
employed matrix factorization using shared embeddings for
MBR. With the rise of deep learning, neural network-based
methods [Gao et al., 2019; Guo et al., 2019; Xia et al., 2020]
have gained traction for their ability to model complex re-
lationships between users and items, capturing nuanced user
interests and item characteristics. Among these, graph neu-
ral networks [Chen et al., 2020b; Schlichtkrull et al., 2018;
Meng et al., 2023b; Zhu et al., 2024] have been widely ap-
plied in MBR due to their effectiveness in utilizing high-order
connectivity between users and items. For example, MBGCN
[Jin et al., 2020] and S-MBRec [Gu et al., 2022] implement
behavior-aware embedding propagation layers to learn behav-
ior diversity by aggregating multi-behavior interactions from
high-order neighbors. However, these methods do not con-
sider using dependencies between behaviors to assist model
learning. To bridge this gap, recent works have introduced
a behavior hierarchical order to support recommendations.
CRGCN [Yan et al., 2023] and MB-CGCN [Cheng et al.,
2023] incorporate cascade dependencies between behaviors
into graph convolutional networks, improving the representa-
tion learning of users and items. BCIPM [Yan et al., 2024]
further develops a behavior-contextualized item preference
network to enhance item-aware preferences. Despite the tech-
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Figure 1: Examples of user interaction patterns influenced by incon-
sistent preference strengths.

nical difference, these methods share the common goal of in-
tegrating insights from auxiliary behaviors to guide recom-
mendations for target behaviors.

Despite the effectiveness of existing methods, they face a
significant challenge: accurately inferring users’ interaction
patterns from complex multi-behavior signals. This challenge
is exemplified in real-world scenarios. As depicted in Fig-
ure 1, Susan views four items—diamond, socks, phone and
watch, and adds socks and phone to her cart but ultimately
only purchases the socks. This diversity in her view list indi-
cates an exploratory phase, where curiosity and information-
seeking drive engagement with various items, including lux-
ury and electronic items. During the cart list, practical consid-
erations such as usability and price become more prominent,
narrowing her focus to the phone and socks. By the time she
makes a purchase, her decision is guided by immediate needs
and budget constraints, leading her to choose the socks. Each
behavior—view for information, cart for tentative choices,
and purchase for final decisions—serves distinct objectives
that influence the user’s focus and selection criteria, leading
to varying preference intensities for different items across dif-
ferent behavioral contexts. Therefore, understanding users’
comprehensive preferences and decision-making boundaries
is essential for capturing their interaction patterns, yet most
existing MBR methods overlook these nuanced factors. Our
approach aims to address this gap by emphasizing compre-
hensive preferences learning and explicitly modeling users’
personalized decision boundaries, thereby enhancing recom-
mendation effectiveness.

In addressing the challenges identified within MBR, we
propose a novel approach named Decision-Aware Prefer-
ence Modeling (DAPM). In DAPM, we construct a behavior-
agnostic user-item interaction graph that leverages multi-
behavior interaction data to capture a broader range of col-
laborative information, complementing preference learning
on type-specific behavior subgraphs and leading to a more
comprehensive understanding of user preferences. In addi-
tion, to avoid the ”false repulsion” problem in traditional con-
trastive learning—where users with highly similar interac-
tions are overlooked and incorrectly treated as negative sam-
ples—we eliminate the global contrastive loss for negative
samples across all users. Instead, we focus on measuring the
cross-behavior embedding consistency and embedding uni-
formity within behavior for individual users. This enables
our developed DAPM to effectively extract additional super-

vision signals from different types of user behaviors, thereby
enhancing the model optimization process with sparse super-
vision labels. Inspired by Bayesian personalized ranking loss,
we introduce a multi-behavior hinge loss that enlarges the
gap between positive and negative interactions by modeling
the user’s acceptance and rejection boundaries. Specifically,
DAPM increases the likelihood of items that have interacted
in a specific behavior, pushing it above the acceptance bound-
ary, while decreasing the likelihood of the remaining uninter-
acted items, bringing them closer to the rejection boundary,
thereby effectively exploring users’ decision boundaries. Fur-
thermore, we introduce a boundary constraint to prevent the
learnable acceptance boundary from continually approaching
the rejection boundary, thereby enhancing the model’s ability
to capture users’ personalized decision boundaries.

In summary, our major contributions are summarized as
follows. (1) We develop a new multi-behavior learning
paradigm DAPM for recommendation by emphasizing the
importance of comprehensive preferences and personalized
decision boundaries. (2) We propose a multi-behavior hinge
loss that explicitly models users’ varying preference intensi-
ties by introducing acceptance and rejection boundaries, en-
abling the model to make accurate recommendations from the
user’s perspective. (3) Comprehensive experiments on three
real-world datasets demonstrate that our DAPM outperforms
the state-of-the-art approaches in multi-behavior scenarios.
Further experimental results verify the rationality and effec-
tiveness of the designed sub-modules.

2 Related Works
Recently, MBR methods [Meng et al., 2023b; Li et al., 2024]
have attracted considerable attention for their effectiveness in
addressing data sparsity challenges. With advancements in
technology, MBR methods can be broadly categorized into
four main types: traditional machine learning methods, deep
neural network (DNN) methods, graph convolutional network
(GCN) methods, and self-supervised learning methods.

Traditional machine learning-based methods to MBR often
tackle multi-behavior data through multiple matrix factoriza-
tion techniques [Singh and Gordon, 2008; Tang et al., 2016;
Zhao et al., 2015b] or innovative sampling strategies [Loni et
al., 2016; Ding et al., 2018]. The former extends traditional
matrix factorization by using multiple matrices with shared
embeddings, such as CMF [Zhao et al., 2015b]. The latter
leverages various user behaviors as auxiliary data, designing
sampling strategies that enhance the training process. For ex-
ample, MF-BPR [Loni et al., 2016] and VALS [Ding et al.,
2018], introduce and refine negative sampling strategies to
improve recommendation performance.

As deep learning technologies advance, researchers are in-
creasingly investigating MBR methods that leverage DNNs
and GCNs. DNN-based methods [Liang et al., 2023; Guo et
al., 2019; Xia et al., 2020] typically design complex mecha-
nisms to learn embeddings from different behaviors, integrat-
ing them into predictions for the target behavior. For instance,
DIPN [Guo et al., 2019] and MATN [Xia et al., 2020] uti-
lize various attention mechanisms to understand relationships
between behaviors for effective embedding learning and ag-
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gregation. In contrast, NMTR [Gao et al., 2019] employs a
multi-task learning strategy, treating all user behaviors as pre-
diction objectives and using the prediction score of the previ-
ous behavior to inform the next.

GCN-based methods [Li et al., 2023; Schlichtkrull et al.,
2018; Zhu et al., 2024] focus on learning embeddings by
constructing a unified user-item graph and performing graph
convolution operations. For example, MBGCN [Jin et al.,
2020] emphasizes behavior semantics, leveraging an item-
item propagation layer alongside user-item propagation to
enhance score predictions. CRGCN [Yan et al., 2023] and
MB-CGCN [Cheng et al., 2023] further refine these methods
by incorporating hierarchical relationships between behav-
iors, utilizing cascading graph convolutional networks to ef-
fectively capture user preferences and achieve notable perfor-
mance improvements. The recently proposed PKEF [Meng
et al., 2023a] builds on MB-CGCN by incorporating a par-
allel knowledge fusion module and a projected disentangled
multi-expert network to address the issue of data distribution
imbalance in multiple behaviors. In addition, BCIPM [Yan et
al., 2024] develops a behavior-contextualized item preference
network to learn item-aware preferences, enhancing the high-
order neighbor preferences of users captured by the GCNs.

Inspired by the success of self-supervised learning (SSL),
some studies [Wei et al., 2022; Liang et al., 2023] have at-
tempted to leverage contrastive learning to enhance repre-
sentation learning. The fundamental principle of contrastive
learning is to learn high-quality, discriminative representa-
tions by maximizing the similarity among positive samples
while minimizing it among negative samples. For example,
CML [Wei et al., 2022] employs contrastive meta-learning to
capture transferable user-item knowledge across various be-
haviors while maintaining users’ personalized multi-behavior
patterns. MBSSL [Xu et al., 2023] performs node self-
identification at both inter-behavior and intra-behavior levels
in contrastive learning to obtain refined node representations.

Despite the technical diversity among these MBR meth-
ods, they commonly depend on collaborative information
from auxiliary behaviors to improve the understanding of user
preferences. Traditional machine learning-based methods di-
rectly extract information from user-item interactions in aux-
iliary behaviors. In contrast, other methods model overall
auxiliary behaviors. However, these methods often overlook
the inconsistency in users’ preference intensities for different
items across behaviors. Our proposed method stands in sharp
contrast by focusing on finely modeling users’ diverse item
preference strengths across behaviors through the introduc-
tion of acceptance and rejection boundaries.

3 Problem Formulation
We define U (𝑢 ∈ U) and V (𝑣 ∈ V) as the sets of
users and items, respectively. In our multi-behavior recom-
mendation scenario, we define the B (𝑏 ∈ B) as the set of
behaviors, where the |B|-th behavior is the target behavior
and other behaviors are auxiliary behaviors. The e𝑏 repre-
sents the 𝑏-th behavior type embedding. The multi-behavior
interaction matrices can be represented as a set, i.e., M =

{M1,M2, . . . ,M | B | }, where M𝑏 = [𝑚 (𝑏)𝑢𝑣] |U |× |V | ∈ {0, 1}

indicates whether user 𝑢 interacted with item 𝑣 under behav-
ior 𝑏. The task we aim to address is formally described as
follows: Input: observed user-item interactions with multi-
plex |B| types of behaviors M among users U and items V.
Output: a predictive function which estimates the likelihood
of user 𝑢 will interact with item 𝑣 under the target type (|B|)
of behaviors.

4 Methodology
The motivation behind this work stems from the observa-
tion that users exhibit varying levels of preference for dif-
ferent items across different behaviors. Based on this obser-
vation, we propose a decision-aware modeling module that
explicitly explores personalized decision boundaries, focus-
ing on learning the varying preference intensities for each
item within specific behaviors. To complement the behavior-
specific preferences, we first construct a behavior-agnostic
graph to capture more comprehensive user preferences. This
graph is created from interaction data encompassing all be-
haviors, allowing us to utilize a broader and more nuanced
spectrum of user-item interaction data. We then introduce a
multi-behavior contrastive learning paradigm and a gated fu-
sion mechanism to refine and enhance the behavior-specific
preference using these comprehensive preferences. The ar-
chitecture of DAPM is depicted in Figure 2, and the key com-
ponents are explained in detail in the following subsections.

4.1 Behavior-specific Embedding Learning
To incorporate high-order connectivity into multiplex rela-
tion learning across users and items, we first establish a
graph-based message passing framework that considers type-
specific behavior context. Following the findings in the state-
of-the-art model LightGCN [He et al., 2020], our behavior-
aware message passing scheme can be represented:

E𝑏, (𝑙+1) = (D− 1
2 A𝑏D− 1

2 )E𝑏, (𝑙) , (1)

where E𝑏, (𝑙) represents the 𝑙-th layer node embedding under
𝑏-th behavior, initialized as E𝑏, (0) = E(0) + E𝑏𝑒ℎ, E(0) is the
initialization of the user and item embeddings and E𝑏𝑒ℎ is
composed of stacked behavior type embeddings e𝑏. A𝑏 is ad-
jacency matrix under 𝑏-th behavior, whose upper right block
matrix is M𝑏 and lower left block matrix is M𝑇

𝑏
. D denotes

the diagonal identity matrix of A𝑏. The embeddings obtained
from different layers emphasize the information passed from
different hops. Thus, we further combine them to get the fi-
nal embeddings: E𝑏 = 1

𝐿+1
∑𝐿

𝑙=0 E𝑏, (𝑙) . Finally, we obtain the
embeddings under 𝑏-th behavior of a specific user 𝑢 and item
𝑣 from the E𝑏 as e𝑏𝑢 and e𝑏𝑣 .

4.2 Behavior-agnostic Embedding Learning
In real-world recommendation scenarios, users’ attention to
items varies across different behaviors. For instance, as
shown in Figure 1, compared to the more focused cart and
purchase behaviors, Susan explores a wider range of items
during viewing—ranging from luxury goods to electronics
and daily necessities. This indicates that behavior-specific
interactions capture only partial aspects of user preferences.
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Figure 2: Illustration of the proposed DAPM framework.

Furthermore, the inconsistent sparsity across behaviors may
compromise the quality of behavior-specific embeddings.

To address these limitations, we first construct a behavior-
agnostic interaction graph by aggregating multi-behavior
data, enabling the model to capture broader collaborative sig-
nals and enrich the learned representations. However, treat-
ing all behaviors equally may obscure users’ personalized be-
havioral tendencies, as repeated interactions with the same
item across behaviors can imply stronger interest, and differ-
ent behaviors inherently reflect varying preference intensities.
To better model this heterogeneity, we introduce behavior-
specific weighting coefficients 𝜆 to reweight the interaction
matrices, thereby enhancing the expressiveness of user pref-
erences across diverse behavioral signals. The behavior-
agnostic interaction matrix M | B |+1 is formalized as follows:

M | B |+1 = 𝜆1M1 + · · · + 𝜆 | B |M | B | . (2)

Then, we apply the same message-passing mechanism as in
Section 4.1 on the interaction matrix M | B |+1 to learn embed-
dings e | B |+1

𝑢 , e | B |+1
𝑣 , treating it as an additional auxiliary be-

havior |B| + 1 to provide more comprehensive preferences.
Note that, in order to maintain behavior agnosticism during
the message-passing procedure, we use the initial embed-
dings E(0) directly, rather than E𝑏, (0) .

4.3 Cross-behavior Aggregation
In the prediction layer of the DAPM framework, we pro-
pose using the more comprehensive embeddings learned from
the behavior-agnostic graph to supplement and enhance the
behavior-specific embeddings. To adaptively achieve this
cross-behavior aggregation, we develop a gating network that
learns the explicit importance of behavior-specific embed-
dings. Formally, the aggregation process is as follows:

g𝑏𝑢 = sigmoid(W𝑏
𝑢e𝑏𝑢 + b𝑏

𝑢),
z𝑏𝑢 = g𝑏𝑢 ⊙ e𝑏𝑢 + (1 − g𝑏𝑢) ⊙ e | B |+1

𝑢 ,
(3)

where g𝑏𝑢 denotes the importance of the behavior-specific em-
beddings e𝑏𝑢 during the aggregation procedure, W𝑏

𝑢 ∈ R𝑑×𝑑 ,

b𝑏
𝑢 ∈ R𝑑 are trainable parameters. ⊙ represents the element-

wise product of vectors. Similar aggregation is applied for the
item side. To sum up, by integrating user interactions across
all behaviors, we can learn more comprehensive embeddings
and then apply a gated fusion mechanism to adaptively en-
hance and refine the behavior-specific embeddings.

4.4 Decision-aware Modeling
Existing multi-behavior methods have made progress in mod-
eling user preferences, but they often overlook the complex-
ity of interaction patterns—specifically, the varying prefer-
ence intensities users exhibit across different behavioral con-
texts. Inferring fine-grained preferences from implicit feed-
back remains challenging, as observed interactions may not
accurately reflect true preference intensity. For example,
𝑚 (𝑏)𝑢𝑣 = 1 denotes that user 𝑢 interacted with item 𝑣 un-
der the 𝑏-th behavior, but this does not necessarily indicate
that 𝑢 favors 𝑣. Moreover, for the same item, users may apply
different decision criteria across behaviors such as viewing or
purchasing, resulting in different levels of preference.

To model these nuanced signals, we introduce behavior-
specific decision boundaries that represent each user’s inter-
action criteria under different behavioral contexts. Unlike
prior works [Hsieh et al., 2017; Luo et al., 2023] that assume
shared thresholds across behaviors, we argue that each behav-
ior reflects a distinct aspect of preference and thus requires
separate decision boundaries. Our DAPM enhances expres-
siveness by learning a personalized acceptance boundary 𝑡𝑏𝑢𝑣
for each user-item-behavior combination, providing an ex-
plicit interpretation of what it means to ”accept” or ”reject”
an item. This enables us to move beyond binary interaction
modeling and capture varying degrees of preference among
observed interactions. Specifically, we estimate behavior-
specific preference scores by projecting user and item behav-
ior embeddings through a behavior-specific prediction layer:

𝑦̂𝑏𝑢𝑣 = ReLu(𝜶𝑇
𝑏 (z

𝑏
𝑢 ⊙ z𝑏𝑣 )), (4)

where 𝜶𝑏 ∈ R𝑑 denotes the predict layer under 𝑏-th behavior.
To reduce computational cost, the acceptance boundary 𝑡𝑏𝑢𝑣 is
parameterized via matrix factorization, and we fix the rejec-
tion boundary at 0. We then design a decision-aware hinge
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loss with asymmetric constraints: (1) preference scores for
positive interactions should exceed the acceptance boundary
𝑡𝑏𝑢𝑣 , indicating strong interest; and (2) those for negative in-
teractions should remain close to zero, reflecting weak or no
preference. As illustrated in Figure 2(ii), this design allows
behavior- and instance-specific supervision. The main loss
for 𝑏-th behavior can be formalized as follows:

L𝑏
𝑚𝑎𝑖𝑛 =

∑︁
𝑢∈U

©­­«
∑︁

𝑣∈V (𝑏)+
𝑢

𝑓 2 (𝑡𝑏𝑢𝑣 − 𝑦̂𝑏𝑢𝑣) + 𝑐
∑︁

𝑣′∈V (𝑏)−
𝑢

𝑓 2 ( 𝑦̂𝑏𝑢𝑣′ )
ª®®¬ ,
(5)

where V (𝑏)+
𝑢 ,V (𝑏)−

𝑢 denotes the corresponding observed and
unobserved interacted items of user 𝑢 under 𝑏-th behavior, 𝑐
denotes the weight of negative entry, 𝑓 (·) denotes max(·, 0).
At inference time, the predicted score 𝑦̂

| B |
𝑢𝑣 for target behav-

ior |B| is adjusted by its corresponding acceptance boundary
𝑡
| B |
𝑢𝑣 , yielding a final score 𝑦̂

| B |
𝑢𝑣 /𝑡 | B |

𝑢𝑣 that reflects the user’s
preference relative to their personal behavioral threshold and
guides recommendation more effectively.

However, this design may introduce an optimization is-
sue where the acceptance boundary 𝑡𝑏𝑢𝑣 gradually decreases
and approaches the rejection boundary. Since these bound-
aries play a crucial role in modeling the intensity and subtlety
of user preferences, a vanishing gap between them under-
mines the model’s capacity to distinguish fine-grained pref-
erence signals. To mitigate this, we introduce a boundary
constraint loss to prevent collapse of the acceptance bound-
ary: L𝑏

𝑐𝑜𝑛𝑠 =
∑

𝑢∈U
∑

𝑣∈V −log(𝑡𝑏𝑢𝑣). This regularization
term penalizes excessively small acceptance boundaries, ef-
fectively maintaining a meaningful separation from the re-
jection threshold and preserving the expressiveness of user
preference modeling.

4.5 Multi-behavior Contrastive Learning
Compared to other types of user-item interactions, interac-
tions observed under the target behavior are often sparse. The
sparse supervision signals of the target behavior may lead to
severe bias of learned representations compared with those
of auxiliary behaviors. In view of the fact that supervision
signals in auxiliary behaviors are much richer than that in
the target behavior, we perform selective contrastive learn-
ing between auxiliary behaviors and the target behavior to
enable knowledge transfer, thereby alleviating the sparsity
of target behavior data. Specifically, we treat each behav-
ior type as a distinct view, considering different behaviors of
the same user as positive pairs and those of different users
as negative pairs. Given the target behavior embedding e | B |

𝑢 ,
we construct positive pairs {e | B |

𝑢 , e𝑏𝑢 |𝑢 ∈ U} and negative
pairs {e | B |

𝑢 , e𝑏
𝑢′ |𝑢, 𝑢′ ∈ U, 𝑢 ≠ 𝑢′}. This auxiliary super-

vision helps the model identify user-specific patterns across
behaviors and capture the latent relations between target and
auxiliary signals. Following [Wei et al., 2022], we adopt the
InfoNCE loss [Oord et al., 2018] within this cross-behavior
contrastive learning framework, computed as follows:

L𝑏
𝑐𝑙 =

∑︁
𝑢∈U

−𝑙𝑜𝑔 exp(𝜙(e | B |
𝑢 , e𝑏𝑢)/𝜏)∑

𝑢′∈U exp(𝜙(e | B |
𝑢 , e𝑏

𝑢′ )/𝜏)
, (6)

Dataset #User #Item #Interaction #Target Interaction #Interactive Behavior Type
Beibei 21,716 7,977 3.3 × 106 282,860 {View,Cart,purchase}
Taobao 48,749 39,493 2.0 × 106 146,247 {View,Cart,purchase}
Tmall 41,738 11,953 2.3 × 106 255,586 {View,Collect,Cart,purchase}

Table 1: Statistics of evaluation datasets.

where 𝜙(·) denotes the inner product between two embed-
dings, 𝜏 represents the temperature hyperparameter for the
softmax function. However, forcing all user embeddings to
be repelled may lead to the “false repulsion” phenomenon,
where users with highly similar interactions are overlooked
and incorrectly treated as negative samples, thereby interfer-
ing with the model’s ability to accurately capture user prefer-
ences. To address this issue, we remove the global contrastive
of negative samples across all users, instead focusing on
measuring the similarity of embeddings for individual users
across behaviors while enhancing uniformity to have more
uniformly distributed user representations within their hyper-
spheres. Therefore, we conduct efficient self-supervised con-
trastive learning of user representation from the perspective
of inter-behavior consistency and intra-behavior uniformity,
formalized as follows:

L𝑏
𝑠𝑠𝑙 =

∑︁
𝑢∈U

(
1 − e | B |

𝑢 (e𝑏𝑢)𝑇
)2

+ log
∑︁

𝑢≠𝑢′∈U
exp

(
−2∥e𝑏𝑢 − e𝑏𝑢′ ∥2

)
.

(7)

These improvements allow the model to avoid forcibly in-
creasing the distance between all negative user embeddings,
thereby alleviating the ”false repulsion” caused by behavioral
similarities. Moreover, we constrain the Euclidean distance
between different user embeddings to prevent excessive ex-
pansion and maintain the stability of the embedding space.
These modifications simplify the computation, improve effi-
ciency and stability, and enable the model to capture more
label-irrelevant data structures and patterns, leading to more
generalized consistency and uniformity, while also enhanc-
ing recommendation performance. Finally, we combine the
above objective functions for joint optimization:

L𝑎𝑙𝑙 =

| B |∑︁
𝑖=1

𝜆𝑖 (L𝑏𝑖
𝑚𝑎𝑖𝑛

+ L𝑏𝑖
𝑐𝑜𝑛𝑠) +

| B |+1∑︁
𝑖=1

𝛽L𝑏𝑖
𝑠𝑠𝑙

, (8)

where the normalized 𝜆𝑖 adjusts the effect of the 𝑖-th behav-
ioral tasks, 𝛽 controls the impact of contrastive learning.

5 Experiments
5.1 Experimental Setting
Dataset Description. To evaluate the effectiveness of the
proposed DAPM, we conduct extensive experiments on three
public multi-behavior datasets, including Beibei, Taobao and
Tmall. For the three datasets, to eliminate duplicate data, we
follow the previous works [Cheng et al., 2023; Yan et al.,
2023; Meng et al., 2023a] to retain only the earliest occur-
rence of each interaction. The specific statistical information
of the three datasets is presented in Table 1.
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Beibei Taobao TmallModel H@10 N@10 H@20 N@20 H@10 N@10 H@20 N@20 H@10 N@10 H@20 N@20
MF-BPR 0.0191 0.0049 0.0237 0.0053 0.0178 0.0101 0.0221 0.0113 0.0230 0.0124 0.0278 0.0135
LightGCN 0.0351 0.0190 0.0473 0.0211 0.0254 0.0138 0.0328 0.0153 0.0393 0.0169 0.0499 0.0182
SGL 0.0422 0.0201 0.0561 0.0223 0.0426 0.0257 0.0537 0.0285 0.0456 0.0185 0.0575 0.0202
SimGCL 0.0466 0.0231 0.0615 0.0245 0.0415 0.0226 0.0531 0.0249 0.0444 0.0195 0.0546 0.0215
SGL all 0.0599 0.0310 0.0767 0.0332 0.0466 0.0278 0.0592 0.0311 0.0577 0.0266 0.0698 0.0316
SimGCL all 0.0613 0.0311 0.0736 0.0333 0.0458 0.0274 0.0563 0.0288 0.0592 0.0296 0.0711 0.0321
NMTR 0.0429 0.0198 0.0558 0.0224 0.0409 0.0212 0.0515 0.0242 0.0517 0.0250 0.0651 0.0280
MBGCN 0.0470 0.0259 0.0635 0.0282 0.0434 0.0259 0.0564 0.0282 0.0549 0.0285 0.0686 0.0314
GHCF 0.1722 0.0912 0.1964 0.0903 0.0807 0.0442 0.0993 0.0499 0.0433 0.0175 0.0528 0.0186
CML 0.0507 0.0292 0.0649 0.0310 0.0298 0.0150 0.0378 0.0171 0.0388 0.0127 0.0493 0.0138
MBSSL 0.2114 0.1271 0.2706 0.1436 0.1031 0.0583 0.1299 0.0659 0.0858 0.0436 0.1082 0.0477
CRGCN 0.0459 0.0324 0.0560 0.0356 0.1152 0.0629 0.1463 0.0717 0.0840 0.0442 0.1092 0.0482
MB-CGCN 0.0579 0.0381 0.0724 0.0400 0.0989 0.0470 0.1197 0.0512 0.1073 0.0416 0.1352 0.0474
PKEF 0.1130 0.0582 0.1503 0.0663 0.1097 0.0627 0.1382 0.0683 0.1118 0.0630 0.1487 0.0693
BCIPM 0.1822 0.0985 0.2024 0.1105 0.1292 0.0716 0.1594 0.0843 0.1414 0.0741 0.1833 0.0855
DAPM 0.2603* 0.1534* 0.3140* 0.1670* 0.1666* 0.1106* 0.1832* 0.1149* 0.1558* 0.0820* 0.2072* 0.0951*
#Improve 23.13% 20.69% 16.04% 16.28% 28.95% 54.47% 14.93% 36.30% 10.18% 10.66% 13.04% 11.23%

Table 2: The performance comparison on three datasets. Note that baselines with the “all” suffix use data from all the behaviors to build
the single-behavior model. The best results are illustrated in bold and the number underlined is the runner-up. Superscript * indicates the
significant improvement between our DAPM and the best performing baseline with 𝑝-value ≤ 0.05.

Evaluation Protocols. In all our experiments, we assess
the performance of our proposed DAPM model and baseline
methods based on the top-𝑘 recommended items, using two
evaluation metrics: Hit Ratio (H@k) and Normalized Dis-
counted Cumulative Gain (N@k). For more experimental
analysis, please refer to the supplementary materials.
Baseline Methods. To demonstrate the effectiveness of
DAPM, we compare it with several state-of-the-art meth-
ods, which can be divided into three categories: (1) Single-
behavior methods: MF-BPR [Rendle et al., 2012] and
LightGCN [He et al., 2020], (2) Self-supervised learning
methods: SGL [Wu et al., 2021] and SimGCL [Yu et al.,
2022], (3) Multi-behavior methods: NMTR [Gao et al.,
2019], MBGCN [Jin et al., 2020], GHCF [Chen et al., 2021],
CML [Wei et al., 2022], MBSSL [Xu et al., 2023], CRGCN
[Yan et al., 2023], MB-CGCN [Cheng et al., 2023], PKEF
[Meng et al., 2023a] and BCIPM [Yan et al., 2024].
Parameter Settings. For all methods, we uniformly set the
batch size to 1024 and the embedding size to 64 during the
training phase. The parameters are optimized by Adam, while
the learning rate is set to 1𝑒−3. We adjust the behavior co-
efficients for each behavior in [0, 1/6, 2/6, 3/6, 4/6, 5/6, 1].
To determine the optimal values for the hyperparameters,
including 𝑐 and 𝛽, we perform a grid search on the set
[1𝑒−2, 1𝑒−1, 3𝑒−1, 5𝑒−1, 7𝑒−1, 1, 10, 100]. To ensure fairness,
we also set parameters for the baselines according to the de-
scriptions in their papers and perform a grid search to find the
optimal values.

5.2 Performance Evaluation
Table 2 showcases the comparative experimental results of
our proposed model alongside thirteen benchmark baseline
models, evaluated across three distinct datasets.

LightGCN consistently outperforms MF-BPR across all
three datasets, leveraging the strong representation learn-
ing capabilities of Graph Convolutional Networks. More-
over, SSL-based methods surpass single-behavior methods,

demonstrating that SSL enhances representation learning and
improves the generalization ability of recommender models.

Most multi-behavior recommendation methods outperform
single-behavior methods, highlighting the benefits of incor-
porating multi-behavioral information into user preference
modeling. Among various multi-behavior recommendation
models, BCIPM is the best baseline in most cases. This sug-
gests that capturing users’ comprehensive preferences better
guides model optimization.

Our DAPM outperforms all baselines across all datasets.
Specifically, DAPM achieves average performance improve-
ments of 19.16%, 33.66%, and 11.28% over the best baseline
on the Beibei, Taobao, and Tmall datasets, respectively. This
success is attributed to DAPM’s ability to effectively capture
the varying preference intensities of users across different be-
havioral contexts at a fine-grained level, while the behavior-
agnostic graph aids in understanding users’ overall prefer-
ences. Additionally, we introduce a novel contrastive learn-
ing paradigm that improves embedding quality through inter-
behavior consistency and intra-behavior uniformity. The sig-
nificant boost in recommendation accuracy underscores the
effectiveness of our approach.

5.3 Ablation Studies
To evaluate the effectiveness of the individual design com-
ponents in the DAPM framework, we consider five model
variants: (1) removing the behavior-agnostic graph and learn-
ing embeddings only from type-specific behavior graph (w/o.
BAG.), (2) removing the multi-behavior contrastive learning
module (w/o. MBC.), (3) adopting the traditional InfoNCE-
based contrastive loss (w/o. INC.), (4) replacing our hinge
loss with a BPR loss (w/o. MHL.), and (5) removing the
boundary constraint component (w/o. BDL.).

The experimental results are presented in Table 3. From the
results, we observe that the w/o. BAG. variant shows a perfor-
mance drop across all datasets, highlighting the importance
of learning more comprehensive preferences to complement
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Beibei Taobao TmallModel Variants H@10 N@10 H@10 N@10 H@10 N@10
DAPM 0.2603 0.1534 0.1666 0.1106 0.1558 0.0820
w/o. BAG. 0.2185 0.1308 0.1132 0.0672 0.1311 0.0705
w/o. MBC. 0.2215 0.1331 0.1459 0.0969 0.1371 0.0720
w/o. INC. 0.2385 0.1428 0.1518 0.1018 0.1415 0.0731
w/o. MHL. 0.2082 0.1242 0.1361 0.0913 0.1268 0.0687
w/o. BDL. 0.2504 0.1469 0.1511 0.0993 0.1504 0.0774

Table 3: Performances of different DAPM variants.

Beibei Taobao TmallModel E T E T E T
DAPM 16 (±1)s 86m 20 (±1)s 111m 21 (±1)s 126m
NMTR 165(±5)s 550m 180(±5)s 600m 196(±5)s 670m
GHCF 13(±1)s 45m 34(±1)s 115m 44(±1)s 140m
BCIPM 402(±10)s 890m 903(±10)s 2211m 1597(±10)s 1822m

Table 4: Computational Time Cost Investigation (Second/Minute
[s/m]). Here “E” and “T” represent the training time for each epoch
and the total training time, respectively.

behavior-specific preferences. A similar trend is observed
with the w/o. MCL. variant, indicating the effectiveness of
inter-behavior consistency and intra-behavior uniformity in
improving embedding quality. Furthermore, the performance
degradation of the w/o. INC. variant validates the ”false re-
pulsion” mentioned before, where potential incorrect nega-
tive samples interfere with the learning of representations.
The performance of the w/o. MHL. variant significantly
drops, demonstrating that our multi-behavior hinge loss cap-
tures varying inherent preference intensities, which notably
improves performance. Finally, DAPM outperforms the w/o.
BDL. variant, confirming that continuously pushing the ac-
ceptance boundary toward the rejection boundary harms the
model’s ability to accurately model preference strength.

5.4 Efficiency Analysis of DAPM
In this section, we evaluate the computational time of our pro-
posed DAPM and compare it with three state-of-the-art multi-
behavior methods: NMTR, GHCF, and BCIPM. All methods
are trained on a single NVIDIA GeForce GTX 3090 GPU
with the same hidden state dimensionality setting to ensure
a fair comparison of efficiency. Table 4 presents the run-
time for each method during each epoch and the total train-
ing time. DAPM outperforms NMTR by effectively integrat-
ing users’ diverse preferences into decision boundary model-
ing, thereby enhancing preference learning efficiency. GHCF
improves performance by integrating edge relationships into
the graph message-passing mechanism to learn better rep-
resentations of users and items, with the cost of low effi-
ciency. BCIPM achieves near-optimal performance across
the three datasets, benefiting from its accurate learning of
item preferences and high-order neighbor preferences. How-
ever, this two-pronged design and the additional embedding
pre-training module considerably increase training time and
reduce model efficiency. In contrast, we improve efficiency
by removing the computation of negative samples in multi-
behavior contrastive learning and simplifying the decision
boundary modeling. In a nutshell, our DAPM shows a com-
petitive model scalability because of the comparable compu-

(a) Negative entry 𝑐 (b) Contrastive 𝛽
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Figure 3: Hyperparameter study of DAPM.

tational complexity and great performance.

5.5 Parameter Analysis
We conduct extensive experiments to examine the impact of
several key hyperparameters, including the weight for nega-
tive entry 𝑐, the weight for contrastive learning 𝛽, and behav-
ior coefficients 𝜆. Figure 3 illustrates the percentage decrease
in performance relative to the best performance achieved.
From Figures 3(a)(b), we observe a similar performance trend
across different settings, i.e., performance initially improves
significantly as the weight increases, but then quickly de-
clines. For the behavior coefficient, both the Beibei and
Taobao datasets consist of three behavior types—view, cart,
and purchase—which correspond to the three loss coefficients
𝜆1, 𝜆2, and 𝜆3. The HR@10 results are shown in Figure 3(c),
in which darker blocks mean better performance. It can be
found that a relatively large coefficient for the cart behavior
performs best on Beibei and Taobao. The potential reason
is that purchase interaction is too sparse to offer much infor-
mation and view interaction is relatively far from the target
behavior. For both datasets, DAPM achieves optimal perfor-
mance when the coefficients are set to [1/6, 4/6, 1/6], which
not only effectively utilizes all three behavior types but also
places more emphasis on cart behavior.

6 Conclusion
In this paper, we revisit the use of multi-behavior data in
recommendation and propose a novel method, DAPM. Our
approach constructs a behavior-agnostic graph for compre-
hensive representation learning, incorporates multi-behavior
contrastive learning and a gating mechanism to adaptively
refine behavior-specific embeddings, and explicitly models
users’ varying preference strengths via personalized deci-
sion boundaries. Extensive experiments on three real-world
datasets demonstrate the effectiveness of DAPM.
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