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Abstract
Multivariate long-term time series forecasting is
critical for applications such as weather prediction,
and traffic analysis. In addition, the implemen-
tation of Transformer variants has improved pre-
diction accuracy. Following these variants, differ-
ent input data process approaches also enhanced
the field, such as tokenization techniques includ-
ing point-wise, channel-wise, and patch-wise to-
kenization. However, previous studies still have
limitations in time complexity, computational re-
sources, and cross-dimensional interactions. To
address these limitations, we introduce a novel
CNN Autoencoder-based Score Attention mech-
anism (CASA), which can be introduced in di-
verse Transformers model-agnosticically by reduc-
ing memory and leading to improvement in model
performance. Experiments on eight real-world
datasets validate that CASA decreases computa-
tional resources by up to 77.7%, accelerates infer-
ence by 44.0%, and achieves state-of-the-art per-
formance, ranking first in 87.5% of evaluated met-
rics. Our code is available at https://github.com/
lmh9507/CASA.

1 Introduction
Multivariate Long-Term Time Series Forecasting (LTSF)
plays a pivotal role in real-world applications, including
weather prediction, traffic flow analysis [Ji et al., 2023], and
solar energy forecasting [Lai et al., 2018]. LTSF has seen
rapid advancements driven by the emergence of Transformer
model [Vaswani, 2017]. Subsequent Transformer variants
have further demonstrated the effectiveness of the multi-head
self-attention mechanism in capturing temporal dependen-
cies and cross-dimensional correlations. [Zhou et al., 2021;
Wu et al., 2021; Liu et al., 2022b; Zhou et al., 2022;
Liu et al., 2022c; Zhang and Yan, 2023; Nie et al., 2022].

Despite numerous efforts, Transformer-based models have
not consistently outperformed CNN- or MLP-based architec-
tures in the LTSF domain [Wu et al., 2023; Ekambaram et al.,
2023; Das et al., 2023; Zeng et al., 2023]. Notably, DLinear

† Corresponding author.
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Figure 1: The validation loss of iTransformer, Transformer,
PatchTST, and our model on the Traffic dataset is evaluated. Point-
wise and patch-wise implemented models exhibit lower perfor-
mance compared to channel-wise models. However, while the
iTransformer model rapidly saturates, CASA demonstrates consis-
tent learning and achieves the lowest loss value.

[Zeng et al., 2023], a model constructed with simple linear
layers, raises critical questions about the effectiveness and
necessity of Transformer-based architectures in this field, es-
pecially considering their demanding computational and time
resources. To address the aforementioned challenges, diverse
tokenization techniques have been introduced into the core
architecture of Transformer-family models [Liu et al., 2023;
Nie et al., 2022]. We evaluate the effectiveness of three mod-
els, each employing a distinct tokenization technique, as illus-
trated in Figure 2. Figure 1 demonstrates that channel-wise
tokenization achieves the best performance among the three,
as highlighted in [Yu et al., 2024]. However, it still leads
to rapid saturation during training. Moreover, computational
cost and memory usage remain significant challenges. Our
objective is to develop a more efficient model that delivers
superior predictive performance while mitigating these draw-
backs. We tackle these issues by refining the self-attention
mechanism, the cornerstone of Transformer-based mod-
els.

In this paper, we propose CNN Autoencoder-based Score
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Figure 2: (a) point-wise token (b) patch-wise token (c) channel-wise token

Attention (CASA), a simple yet novel module that addresses
the aforementioned gap by effectively capturing correlations
and avoiding saturation, thereby facilitating consistent learn-
ing, designed to serve as an alternative to the conventional
self-attention mechanism. We retain the vanilla Transformer
encoder while substituting the attention mechanism with a
CNN-based module. CASA approximates QKT

√
dk

rather than
directly calculating it, as done in traditional multi-head self-
attention. This design addresses a critical limitation of con-
ventional methods by sufficiently accounting for significant
correlation between variates in the calculation of attention
scores (see Section 3.3 for details).

Our key contributions are as follows:

• We present a simple yet effective CNN Autoencoder-
based Score Attention (CASA) module as an alterna-
tive to self-attention. It scales linearly with the number
of variates, input length, and prediction length. Com-
pared to Transformer-based variants, CASA reduces
memory usage by up to 77.7% and improves compu-
tational speed by 44.0%, depending on the dataset.

• CASA can be agnostically integrated into Trans-
former models, regardless of the tokenization tech-
nique used (e.g., point-wise, patch-wise, or channel-
wise). To the best of our knowledge, this is the first
module validated across individual tokenization tech-
niques, successfully enhancing cross-dimensional infor-
mation capture and improving prediction performance.

• CASA achieved first place in 54 out of 64 metrics
across 8 real-world datasets and ranked highest in 14
out of 16 average metrics, establishing itself as a highly
competitive solution for multivariate LTSF.

2 Related Works
Transformer variants The vanilla Transformer model
[Vaswani, 2017], widely recognized for its success in natural
language processing, has also achieved notable advancements
in time-series forecasting. Diverse Transformer variants have
been introduced to enhance forecasting performance, which
can be broadly grouped into three approaches. The first ap-
proach modifies the traditional self-attention mechanism with
alternatives by incorporating specialized modules, or pyra-
midal attention [Liu et al., 2022b], to reduce memory re-
quirements while capturing multi-resolution representations.

Additional modifications, including the trapezoidal architec-
ture [Zhou et al., 2021] and de-stationary attention [Liu et
al., 2022c], aim to improve robustness and address issues
like over-stationarization. The second approach leverages
frequency-domain techniques, such as Fast Fourier Trans-
form (FFT) [Zhou et al., 2022] and auto-correlation mech-
anisms [Wu et al., 2021], to better extract temporal pat-
terns. The third approach introduces hierarchical encoder-
decoder frameworks [Zhang and Yan, 2023] with routing
mechanisms to capture cross-dimensional information, al-
though these methods sometimes encounter challenges such
as slower learning and higher computational demands.
Alternatives of Transformers While Transformer variants
have significantly advanced the time-series forecasting do-
main, CNN-based models present promising alternatives.
These approaches include methods that model segmented sig-
nal interactions [Liu et al., 2022a] and those that reshape
1D time-series data into 2D tensors [Wu et al., 2023], en-
abling the capture of both inter-period and intra-period dy-
namics. Similarly, linear models [Zeng et al., 2023] have
demonstrated simplicity while achieving high prediction per-
formance. However, these methods generally fall short of
explicitly addressing cross-dimensional interactions, which
are crucial for improving multivariate time-series forecast-
ing. Other methods have been developed to modify aspects
of the Transformer architecture, particularly focusing on to-
kenization techniques. For instance, PatchTST [Nie et al.,
2022] segments input data into patches to extract local in-
formation within individual variates, while iTransformer [Liu
et al., 2023] treats each variate as a token, enabling the
self-attention mechanism to capture multivariate correlations.
However, a common drawback of these methods is their re-
liance on self-attention, which demands substantial computa-
tional resources. Furthermore, their prediction performance
remains suboptimal, with both models struggling to effec-
tively capture multivariate dependencies, which critically im-
pacts their predictive accuracy. In contrast, our proposed
model, CASA, addresses these challenges by significantly re-
ducing resource consumption while achieving superior pre-
diction performance, offering an efficient and effective alter-
native to traditional self-attention-based approaches.

3 Method
This section provides an overview of CASA, including the
motivation behind its architecture, a detailed explanation of
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Figure 3: (a) Conventional Self-Attention. (b) Overall architecture of our CASA block. The time-series data is embedded using channel-wise
tokenization. The 1D CNN Autoencoder is then used to compute cross-dimensional information. The softmax output and the value are
multiplied element-wise. Our CASA places a strong emphasis on capturing essential cross-dimensional information by calculating high-
dimensional spatial relationships before compressing the channel information.

its structure, and a complexity analysis. Section 3.1, we for-
mulate the problem we aim to solve and define the neces-
sary notations. Section 3.2 provides an explanation of the
overall architecture. Section 3.3 discusses the limitations of
conventional Transformers in capturing cross-dimensional in-
teractions. Section 3.4 introduces CNN Autoencoder-based
Score Attention (CASA), an improved self-attention module
designed to address these issues. We confirm theoretical effi-
ciency of CASA through complexity analysis.

3.1 Problem Formulation
In multivariate LTSF, given an input length L, the number
of variates N , the number of layers M , and a prediction
length H , denote the input and the output X ∈ RN×L and
Y ∈ RN×H respectively. The hidden dimension is denoted
as D, and the intermediate feature after embedding is repre-
sented as Zi ∈ RN×D (i ∈ {0, 1, · · ·M}). Since this is
not a univariate time-series forecasting problem, the input is
consistently represented as a matrix.

3.2 Overall Architecture
The overall framework is depicted in Figure 3. Following
prior works [Liu et al., 2023; Yu et al., 2024], we adopt
a channel-wise tokenization approach, utilizing the vanilla
Transformer encoder as the backbone. To address the chal-
lenges outlined in Section 3.3, we enhance the Transformer
by replacing only the attention mechanism with a 1D CNN
Autoencoder Score Attention (CASA). Although this mod-
ification alters only a very small portion of the overall model,

it effectively reduces computational cost and memory usage
while improving prediction performance.

The input X is linearly embedded to produce the interme-
diate feature Z0. The final feature ZM , obtained by passing
Z0 through M CASA blocks, is then fed into the predictor
where the output becomes Y . The pipeline is summarized by
the following equation.

Z0 = Embedding(X) (1)
Zi+1 = CASA block(Zi) (2)

Y = Predictor(ZM ) (3)

3.3 Limitation of Self-Attention
We demonstrate that the existing self-attention mechanism
does not sufficiently consider cross-dimension information
when embedding queries and keys. the structure of the self-
attention mechanism in the conventional Transformer is as
follows (fj : affine map):

Attention(Zi+1) = softmax

(
Qi+1K

T
i+1√

dk

)
∗ Vi+1 (4)

Qi+1 = f1(Zi), Ki+1 = f2(Zi), Vi+1 = f3(Zi) (5)
At this point, since fj is an affine map, queries and keys are
computed through the following operations:

Qi+1 = Zi,1Wi,1 + bi,1, Ki+1 = Zi,2Wi,2 + bi,2 (6)

where Wi,j ∈ RD×D and bi,j ∈ RN×D (7)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

CASA SOFTS iTransformer PatchTST Transformer

Complexity O(NL+NH) O(NL+NH) O(N2 +NL+NH) O(NL2 +NH) O(NL+ L2 +HL+NH)

Memory(MB) 1684 1720 10360 21346 4772

Inference(s/iter) 0.05 0.042 0.162 0.441 0.087

Table 1: A complexity comparison conducted on the Traffic dataset among baseline models, including the vanilla Transformer, PatchTST,
iTransformer, and SOFTS, with respect to window length L, number of channels N, and forecasting horizon H. Notably, the complexity of
CASA scales linearly with N, L, and H. Detailed implementation information is provided in Appendix D.

Proposition 1. Query and key embeddings are variate-
independent operations in the conventional Transformer us-
ing channel-wise tokenization.

Proof. See Appendix E.1.

Proposition 2. Query and key embeddings are time-
independent operations in the conventional Transformer us-
ing point-wise and patch-wise tokenization.

Proof. See Appendix E.2.

Proposition 1 and Proposition 2 imply that each tokeniza-
tion method does not consider the correlation between vari-
ates or time points when embedding the key and query. Since
multivariate time series exhibit correlations both between
variates and across time points, this reduces the potential
of the Transformer architecture. Especially, based on the
Proposition 1, the Transformer using channel-wise tokeniza-
tion does not directly incorporate cross-dimensional informa-
tion when embedding the r-th variate into queries and keys.
In other words, the self-attention mechanism embeds queries
and keys through variate-independent feature refinement op-
erations and then computes the attention map using QiK

T
i√

dk
.

In the LTSF domain, tokens (i.e., variates) exhibit inher-
ent correlations (see Section 4.4), which reduce the effec-
tiveness of variate-independent operations during feature
refinement. This limitation can hinder performance in the
multivariate LTSF domain, where capturing correlations be-
tween variates is important.

3.4 CNN Autoencoder-based Score Attention
To address the issue posed by the self-attention mecha-
nism’s variate-independent operation, we treat each variate
as a channel and apply a convolution instead of using the
affine map from the conventional self-attention mechanism.
This approach ensures that the operation becomes variate-
dependent. In more detail, instead of directly computing
QiK

T
i√

dk
, we designed a score network Score to approximate

this operation using 1D CNN Autoencoder. The modified
structure of self-attention is as follows (f : affine map, ⊛:
element-wise product):

Attention(Zi+1) = softmax(Score(Zi))⊛ Vi+1 (8)

Vi+1 = f(Zi) (9)

By approximating QiK
T
i√

dk
via a CNN architecture instead of

direct computation, we reduce complexity compared to the

affine map (see the paragraph below), addressing the limita-
tions of self-attention. This facilitates the development of a
linear complexity model with enhanced performance (Section
4.1). To explain the score network in more detail, we adopted
an inverted bottleneck autoencoder structure, inspired by pre-
vious research [Wilson et al., 2016; Bengio et al., 2013],
which demonstrated that embedding low-dimensional fea-
tures into a high-dimensional latent space can improve ex-
pressiveness. In summary, we leverage CNN operations to
incorporate information across all variates, embedding them
into a high-dimensional feature space before compressing
the channels to retain only essential cross-variable infor-
mation. Consequently, despite its simple architecture, the
proposed module outperforms existing self-attention mecha-
nisms while maintaining efficiency, constituting a significant
contribution.

Complexity Analysis CASA is an efficient algorithm that
exhibits linear complexity not only with respect to the num-
ber of tokens, i.e., the number of variates N , but also with
respect to the input length L and prediction length H . The
detailed complexity calculation is as follows. Let the kernel
size of the score network be denoted as k. The complexi-
ties of the Reversible Instance Normalization (RevIN), series
embedding, and MLP are O(NL), O(NLD), and O(ND2),
respectively. Additionally, the complexity of the score net-
work, composed of CNN autoencoder blocks, is O(NkD2).
The predictor has a complexity of O(NDH). Thus, the over-
all complexity of our method is O(NL + NLD + ND2 +
NkD2+NDH), which scales linearly with respect to N , L,
and H . Since the hidden dimension and kernel size are con-
stants in the algorithm, they can be ignored. Consequently,
N is dominated by NL and NH(Since L and H typically
take on large values in LTSF), leading to the final complexity
summarized in Table 1. In addition, the results for memory
usage and inference time are included in the table, empiri-
cally demonstrating the efficiency of CASA. For details of
the implementation, refer to the Appendix D.

4 Experiments
Dataset We conduct our comprehensive experiment on 8
benchmark datasets [Zhou et al., 2021], such as Traffic, ETT
series including 4 subsets (ETTh1, ETTh2, ETTm1, ETTm2),
Weather, Solar, Electricity. More detailed information on
Dataset is described in Appendix A.

Baselines We chose totally 8 comtemporarlly baseline
models, including SOFTS [Han et al., 2024], iTransformer
[Liu et al., 2023], PatchTST [Nie et al., 2022] , TSMixer
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Dataset CASA(ours)
SOFTS

Han et al.,
2024

iTransformer
Liu et al.,

2023

PatchTST
Nie et al.,

2022

TSMixer
Ekambaram
et al., 2023

Crossformer
Zhang and Yan,

2023

TiDE
Das et al.,

2023

DLinear
Zeng et al.,

2023

FEDformer
Zhou et al.,

2022
MSE(↓) / MAE(↓) MSE / MAE MSE / MAE MSE / MAE MSE / MAE MSE / MAE MSE / MAE MSE / MAE MSE / MAE

ETTm1 0.386 / 0.393 0.393 / 0.403 0.407 / 0.410 0.396 / 0.406 0.398 / 0.407 0.513 / 0.496 0.419 / 0.419 0.474 / 0.453 0.543 / 0.490

ETTm2 0.276 / 0.319 0.287 / 0.330 0.288 / 0.332 0.287 / 0.330 0.289 / 0.333 0.757 / 0.610 0.358 / 0.404 0.350 / 0.401 0.305 / 0.349

ETTh1 0.438 / 0.434 0.449 / 0.442 0.454 / 0.447 0.453 / 0.446 0.463 / 0.452 0.529 / 0.522 0.541 / 0.507 0.456 / 0.452 0.440 / 0.460

ETTh2 0.374 / 0.397 0.373 / 0.400 0.383 / 0.407 0.385 / 0.410 0.401 / 0.417 0.942 / 0.684 0.611 / 0.550 0.559 / 0.515 0.437 / 0.449

ECL 0.168 / 0.259 0.174 / 0.264 0.178 / 0.270 0.189 / 0.276 0.186 / 0.287 0.244 / 0.334 0.251 / 0.344 0.212 / 0.300 0.214 / 0.327

Traffic 0.421 / 0.261 0.409 / 0.267 0.428 / 0.282 0.454 / 0.286 0.522 / 0.357 0.550 / 0.304 0.760 / 0.473 0.625 / 0.383 0.610 / 0.376

Weather 0.243 / 0.267 0.255 / 0.278 0.258 / 0.278 0.256 / 0.279 0.256 / 0.279 0.259 / 0.315 0.271 / 0.320 0.265 / 0.317 0.309 / 0.360

Solar 0.221 / 0.244 0.229 / 0.256 0.233 / 0.262 0.236 / 0.266 0.260 / 0.297 0.641 / 0.639 0.347 / 0.417 0.330 / 0.401 0.291 / 0.381

1st/2nd count 14 / 2 2 / 13 0 / 1 0 / 2 0 / 0 0 / 0 0 / 0 0 / 0 0 / 1

Table 2: Multivariate forecasting results with horizon H ∈ {96, 192, 336, 720} and fixed lookback window length L = 96. Red values
represent the best performance, while underlined values represent the second-best performance. Results are averaged from all prediction
horizons. Full results are listed in Table 6. (Appendix B)

(a)

GroundTruth
Ours

(b)

GroundTruth
iTransformer

(c)

GroundTruth
SOFTS

(d)

GroundTruth
PatchTST

Figure 4: Prediction results for our model and baseline models on the Weather dataset, with sequence lengths L and H set to 96. (a) CASA,
(b) iTransformer, (c) SOFTS, (d) PatchTST.

[Ekambaram et al., 2023], Crossformer [Zhang and Yan,
2023], TiDE [Das et al., 2023] , DLinear [Zeng et al., 2023],
FEDformer [Zhou et al., 2022].

Setup Our comprehensive experiments results are based on
MSE (Mean Squared Error) and MAE (Mean Absolute Error)
metrics. Our main experiments are conducted on the condi-
tions with L = 96 and the H ∈ {96, 192, 336, 720}.

4.1 Multivariate Forecasting Results
The main results are presented in Table 2, where red-bold text
indicates the best score and blue-underlined text represents
the second-best score. CASA demonstrates the lowest MSE
and MAE losses across 8 benchmark datasets, surpassing the
previous state-of-the-art model, SOFTS, by a substantial mar-
gin. Additionally, the second-lowest performance scores ex-
hibit a smaller gap from the best score compared to the oth-
ers. Notably, the proposed model showcases its robustness on
relatively large datasets, such as Traffic, Weather, and Solar,
highlighting its ability to capture complex correlations, which
significantly enhances the model’s predictive performance.

Figure 4 visualizes the prediction performance of weather
dataset from CASA, SOFTS, iTransformer, and PatchTST
models against the ground truth. CASA shows the closest
alignment with the label, while iTransformer shows similar

tendency along the ground truth with large deviation. SOFTS
and PatchTST prediction slightly detours the label. The full
results of different prediction lengths and the visualization re-
sults on the rest of the datasets are demonstrated in Appendix
B and Appendix C, respectively.

4.2 Superiority Analysis of CASA
Replacing Self-Attention with CASA To ensure the pro-
posed model’s adaptability to diverse tokenization tech-
niques, we integrate CASA into various Transformer vari-
ants including the vanilla Transformer, PatchTST, and iTrans-
former. Especially for the vanilla Transformer, we only use
the encoder architecture to appropriately compare the effec-
tiveness of CASA.

The results on seven benchmark datasets are presented in
Table 3. With the exception of two specific cases—ETTm2
compared to PatchTST and ETTh2 compared to the vanilla
Transformer—CASA consistently enhances the performance
of the original and variants models, achieving improvements
in 40 out of 42 results across the benchmarks. These findings
not only demonstrate that replacing self-attention with CASA
significantly boosts forecasting accuracy, but also highlight
its flexibility and adaptability, as it can seamlessly integrate
with diverse tokenization techniques, making it a versatile en-
hancement for Transformer-based architectures.
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Model Comp
ECL Traffic Weather ETTm1 ETTm2 ETTh1 ETTh2

MSE(↓) MAE(↓) MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Transformer
Attention 0.203 0.292 0.655 0.359 0.245 0.296 0.407 0.417 0.369 0.398 0.482 0.465 0.522 0.481

CASA 0.201 0.287 0.645 0.354 0.242 0.293 0.390 0.411 0.368 0.388 0.465 0.461 0.512 0.490

PatchTST
Attention 0.189 0.276 0.454 0.286 0.256 0.279 0.396 0.406 0.287 0.330 0.453 0.446 0.385 0.410

CASA 0.186 0.273 0.440 0.280 0.253 0.277 0.386 0.402 0.285 0.332 0.452 0.443 0.365 0.399

iTransformer
Attention 0.178 0.270 0.428 0.282 0.258 0.278 0.407 0.410 0.288 0.332 0.454 0.447 0.383 0.407

CASA 0.168 0.259 0.421 0.261 0.244 0.267 0.386 0.393 0.276 0.319 0.438 0.434 0.374 0.397

Table 3: The performance of CASA across three distinct Transformer-based models, each employing different tokenization techniques. The
standard self-attention module is replaced with our CASA. Among the 42 metrics assessed, CASA demonstrated improvements in 40 of them.
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Figure 5: Experimental results on the ETTm1, Electricity, and Traffic datasets (with 7, 321, and 862 variates, respectively). Our CASA
remains robust across varying input and prediction lengths (48 to 720). Unlike PatchTST, which struggles as the number of variates increases,
models like iTransformer and SOFTS, which tokenize variates, exhibit stronger performance.
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Figure 6: (a) Memory usage scaling with the number of tokens, demonstrating CASA’s linear growth and reduced memory consumption
compared to SOFTS. (b, c) Experimental results on Traffic and Electricity datasets (batch size: 16, input/prediction length: 96), highlighting
CASA’s low memory usage and balanced trade-off between speed and performance.

Robustness of CASA under varying conditions To val-
idate the robustness of CASA with respect to input length
and the number of variates, we conducted experiments on
the ETTm1, Electricity, and Traffic datasets, which con-
tain 7, 321, and 862 variates, respectively, with prediction
lengths ranging from 48 to 720. As shown in Figure 5, the
performance of models utilizing non-channel-wise tokeniza-
tion declines as the number of variates increases. Specifi-
cally, PatchTST experiences a significant performance drop

on the Traffic dataset, recording the highest MSE losses. In
contrast, models such as iTransformer and SOFTS, which
employ channel-wise tokenization, demonstrate greater re-
silience to increases in the number of variates. However, both
models exhibit elevated MSE losses on the ETTm1 dataset,
while their performance improves on the Electricity and Traf-
fic datasets. In comparison, our proposed model maintains
stable MSE losses across all three datasets, achieving no-
tably lower MSE losses on the ETTm1 dataset. This under-
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Figure 7: (a) Correlation matrix among the Ground Truth variates,
computed on the Weather Dataset. (b) PDFs of the Ground Truth
and each model, computed using KDE.

Model MSE(↓) Cosine Similarity(↑) SSIM(↑)
CASA(ours) 1.1204 0.9965 0.9912
SOFTS 1.2520 0.9957 0.9889
iTransformer 1.8675 0.9910 0.9791
PatchTST 1.2393 0.9960 0.9896

Table 4: Metrics for the correlation matrices of the Ground Truth
and each model. Boldface indicates the best performance, and un-
derlining indicates the second-best performance.

scores CASA’s ability to deliver high predictive accuracy un-
der varying conditions, ensuring consistent performance even
as the input data length increases.

4.3 Model Efficiency Analysis
In this section, we empirically validate the efficiency of
CASA, as theoretically outlined in Section 3.4. For com-
parison, we use iTransformer and SOFTS as baselines. Fig-
ure 6 (a) depicts memory usage, revealing that CASA ex-
hibits linear complexity and effectively leverages practical
computational resources. This performance is compara-
ble to SOFTS, which also demonstrates similar complexity
but increases memory usage significantly. Notably, CASA
significantly outperforms iTransformer, which suffers from
quadratic memory growth. Figures 6 (b) and (c) present

memory footprints, inference time, and MSE for the Traf-
fic and Electricity datasets, using a batch size of 16 and in-
put/inference sequence lengths of 96. CASA consumes fewer
computational resources than Transformer variants such as
iTransformer, Crossformer, and PatchTST. Regarding MSE,
CASA achieves the second-lowest value on Traffic and the
lowest on Electricity, all while maintaining fast inference and
efficient resource usage. Although CASA slightly exceeds
TSMixer in memory usage, it delivers stronger overall per-
formance, striking an effective balance between accuracy and
resource efficiency.

4.4 Investigating Cross-Dimensional Interactions:
A Correlation Matrix Analysis of CASA

We evaluate CASA’s capacity to capture cross-dimensional
interactions by examining the correlation matrices derived
from each model’s predictions (i.e., correlations among all
variates) on the Weather Dataset, comparing outcomes from
CASA, SOFTS, iTransformer, and PatchTST against the
Ground Truth. The Ground Truth correlation matrix shows
distinct positive and negative correlation blocks, indicating
a clear spatial structure with a grid-like arrangement (Figure
7 (a)). Furthermore, kernel density estimation (KDE) using
a Gaussian kernel reveals that correlation values are mostly
concentrated in the positive domain (Figure 7 (b)), suggesting
many variates rise or fall in sync. Notably, CASA’s correla-
tion matrix most closely approximates the Ground Truth, as
evidenced by the lowest MSE loss between their probability
density functions (PDFs) (Figure 7 (b)). This underscores
CASA’s ability to preserve intricate relationships essential
for capturing temporal and spatial dependencies in weather
data. For a more comprehensive evaluation, we compare
each model’s correlation matrix to the Ground Truth using
Mean Squared Error (MSE), cosine similarity, and the Struc-
tural Similarity Index Measure (SSIM). CASA outperforms
all other models across these metrics, validating its effective-
ness in capturing cross-dimensional interactions (Table 4).

5 Conclusion
In this study, we introduce the CASA model, which demon-
strates remarkable effectiveness and solid predictive perfor-
mance, as confirmed by a broad range of experiments. By de-
livering state-of-the-art results while requiring notably fewer
computational resources and less processing time than ex-
isting approaches. Moreover, its CNN-based autoencoder
module successfully captures cross-dimensional interactions
throughout the compress-and-decompress procedure, which
contributes to its outstanding performance. Additionally,
CASA shows strong potential as a versatile alternative to con-
ventional attention mechanisms in various Transformer con-
figurations, remaining unaffected by different tokenization
methods. This further highlights its adaptability, practicality,
and efficiency across diverse use cases.
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