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Abstract
SE(3)-equivariance is a critical property for cap-
turing pose information in 3D vision tasks, en-
abling models to handle transformations such as
rotations and translations effectively. While equiv-
ariant diffusion models have recently demonstrat-
ed promise in 3D object reassembly due to their
generative and denoising capabilities, they face key
challenges when applied to this task. Specifical-
ly, traditional diffusion models rely on fixed in-
put sizes, which limits their adaptability to vary-
ing part quantities, and their linear noise addition
and removal processes struggle to address the in-
herently nonlinear transformations of 3D parts. To
overcome these limitations, this paper proposes an
SE(3)-equivariant diffusion model for pose denois-
ing and 3D object reassembly from fragmented
parts. The model incorporates an equivariant en-
coder to extract SE(3)-equivariant features, a Lie
algebra mapping to linearize noise addition and re-
moval, and an elastic diffusion framework capable
of adapting to varying part quantities and nonlinear
transformations. By leveraging these components,
the method achieves accurate and robust pose pre-
dictions across diverse input configurations. Ex-
periments conducted on the Breaking Bad dataset,
a real-world RePAIR and a self-constructed 3D
mannequin dataset demonstrate the effectiveness of
the proposed model, outperforming state-of-the-art
methods across metrics such as root mean square
error and part accuracy. Ablation studies further
validate the critical contributions of key modules,
emphasizing their roles in improving accuracy and
robustness for 3D part reassembly tasks.

1 Introduction
3D vision is a crucial branch of computer vision that focuses
on the comprehension and analysis of 3D objects, scenes, and
motion. Humans instinctively solve complex spatial prob-
lems by leveraging spatial relationships and transformation e-
quivariance to understand how various parts fit together. This

∗Corresponding author

capability is particularly valuable in fields such as archaeol-
ogy, medicine, and biomedicine, where reconstructing frag-
mented 3D objects requires both accurate identity recognition
and precise pose estimation. However, predicting accurately
pose is a challenge for conventional invariant networks [X-
ie et al., 2024], which produce constant outputs regardless
of input transformations, lack the flexibility to capture spa-
tial variability. This limitation has driven the development of
advanced networks, such as equivariant networks, which can
adapt to diverse transformations.

Equivariant networks ensure that a transformation applied
to the input results in a correspondingly transformed output.
This property facilitates the learning of part transformation
and improves generalization to unseen data with various spa-
tial configurations. Existing methods for achieving equivari-
ance in 3D vision can be broadly categorized into equivariant
kernel networks and equivariant tensor networks. Equivariant
kernel networks [Hoogeboom et al., 2022], [Hutchinson et
al., 2021] extend convolution kernels using higher-order rep-
resentations, such as spherical harmonics or Lie group rep-
resentations [Yu and Sun, 2024]. While equivariant tensor
networks [Son et al., 2024], [Assaad et al., 2023], [Lei et
al., 2023] enrich scalar features by evolving them into tensor-
valued representations, enhancing the understanding of input.

Despite these advances, predicting part poses of fragment-
ed 3D objects remains challenging. Single-layer equivari-
ant networks struggle to simultaneously capture fine-grained
part-level pose information and assemble these parts into
complete objects. To address this limitation, hierarchical
structures, such as equivariant graph networks [Scarpellini et
al., 2024], have been proposed. These networks [Satorras et
al., 2021], [Le et al., 2022], [Kofinas et al., 2024], [Du et al.,
2022], [Meng et al., 2024] use message-passing mechanisms
to maintain spatial relationships and capture geometric rela-
tionships between parts. However, they often fall sort when
parts undergo different transformations, such as rotations.

To overcome this challenge, we draw inspiration from dif-
fusion models, which excel in handling uncertainty and iter-
ative refinement. Diffusion models, successful in tasks such
as molecule generation [Guan et al., 2023], robotic manip-
ulation [Ryu et al., 2024] and trajectory prediction [Chen et
al., 2023], [Liu et al., 2024], perform iterative denoising to
recover information from noisy data. Unlike NeRF [Zhou et
al., 2025] or Gaussian splatting [Ma et al., 2024], which fo-
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cus on fixed viewpoints or scenes, diffusion models are well-
suited to tasks requiring iterative refinement, such as 3D part
pose learning. By treating random transformations as noise,
we conceptualize the learning of transformed 3D part poses
as a denoising process [Bansal et al., 2024], where the goal is
to recover original poses and assemble parts into objects.

Building on this intuition, we propose a novel framework
that integrates diffusion models with SE(3)-equivariance,
SE(3)-equivariance maintains consistency under rotations
and translations in 3D Euclidean space. Equivariance ensures
consistent transformations across parts, while diffusion mod-
els provide the flexibility to generate and refine poses in di-
verse spatial configurations. However, a key challenge is the
fixed input size of conventional diffusion models, which lim-
its their adaptability to varying part counts. Inspired by ad-
vancements in elastic diffusion for 2D images [Zheng et al.,
2024], [Haji-Ali et al., 2024], we extend these principles to
the 3D domain, enabling our model to process inputs with
varying part quantities while maintaining equivariance.

We evaluate our approach on the public 3D part dataset
Breaking Bad [Sellán et al., 2022], a real-world archaeolog-
ical dataset RePAIR [Tsesmelis et al., 2024] and a self-built
dataset of fragmented 3D mannequin. These datasets allow
us to train geometry-based networks without relying on se-
mantic labels, providing the robustness of our framework. In
summary, we make the following contributions:

• We propose a novel Lie algebra mapping to linearize
the processes of noise addition and removal, enabling
the transformation of 3D input data into a representation
compatible with diffusion models.

• Building on this, we design an elastic diffusion model
capable of handling arbitrary numbers of 3D parts, ef-
fectively adapting to varying input sizes while accurate-
ly denoising and predicting the pose states.

• Comprehensive experiments conducted on the Break-
ing Bad dataset, real-world RePAIR dataset and a self-
constructed 3D mannequin dataset demonstrate that our
method significantly outperforms state-of-the-art ap-
proaches in terms of root mean square error, mean abso-
lute error, and part accuracy for 3D part assembly tasks.

2 Related Works
2.1 Equivariant Networks
Our work focuses on SE(3)-equivariant networks, formal-
ly, an SE(3)-equivariant function f satisfies g(f(X )) =
f(g(X )), for all g ∈ SE(3) applied to an input X . Group
equivariant convolution extends traditional convolution to
group convolution under discrete symmetric group actions.
For instance, Thomas et al. [Thomas, 2019] and Fuchs et al.
[Fuchs et al., 2020] use spherical harmonics as high-order fil-
ters to design equivariant networks. However, these methods
often lack interpretability and flexibility due to architectural
constraints [Son et al., 2024].

To overcome this limitation, recent works [Deng et al.,
2021], [Assaad et al., 2023],[Lei et al., 2023] extend scalar
features to tensor-valued representations, enabling network to
model complex transformations. Son et al.[Son et al., 2024]

further map 3D point coordinates into a high-dimensional si-
nusoidal feature spaces for enhanced shape compression.

However, these single-layer equivariant networks struggle
with tasks requiring the integration of individual part poses
into a cohesive structure. To address this, researchers are ex-
ploring hierarchical structures for equivariant networks that
can better model these complex relationships.

2.2 Hierarchical Networks and Diffusion Models
Hierarchical graph structures have been proposed to model
spatial relationships among parts. Graph neural networks,
which are typically permutation-equivariant [Huang et al.,
2024], maintain topological relationships through message-
passing mechanisms. For example, Kofinas et al. [Kofinas et
al., 2024] represent neural networks as hierarchical computa-
tional graphs, preserving equivariance and spatial structure.

Diffusion models have also been explored for hierarchical
tasks. Gianluca et al. [Scarpellini et al., 2024] propose a
graph-based diffusion model for refining 3D part poses, treat-
ing fragments as nodes in a spatial graph. Similarly, Wang
et al. [Wang et al., 2024] extend the PuzzleFusion [Hossieni
et al., 2024] concept to 3D, iteratively refining 6-DoF align-
ment parameters. These models demonstrate the potential of
diffusion-based approaches for iterative pose refinement.

However, conventional diffusion models are typically
trained on fixed-size inputs, they struggle with varying aspect
ratios during inference. Therefore, designing a flexible diffu-
sion model to handle diverse input size is a new challenge.

2.3 Elastic Feature Selection
Recent advancements in 2D diffusion models address the
challenge of variable input sizes [Zheng et al., 2024], [Podel-
l et al., 2023]. For instance, ElasticDiffusion [Haji-Ali et
al., 2024] decouples global and local content generation, en-
abling robust synthesis across resolutions. Inspired by these
methods, we design elastic diffusion models for 3D object
analysis, allowing the network to adapt to varying part counts
while preserving equivariance. This flexibility is crucial for
assembly tasks, where input configurations can vary widely.

3 Equivariant Diffusion Models
This section introduces the proposed equivariant diffusion
framework, which aims to denoise pose transformations and
reassemble fragmented 3D parts into a coherent object. The
framework consists of three main components: (1) an equiv-
ariant feature representation module to extract translational
and rotational equivariant features, (2) a Lie algebra mapping
to linearize the addition and removal of noise in the transfor-
mation matrices, (3) an elastic diffusion model designed to
handle diverse input sizes while ensuring accurate denoising.

3.1 Equivariant Feature Representation
To obtain equivariant features for fragmented parts, we first
translate the parts {P k}Kk=1 such that their centers lie at the
origin, ensuring that the input parts {P̄ k}Kk=1 are translation-
ally equivariant. Each part P k is a sampled point cloud con-
taining 1000 points.
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Then a rotation-equivariant encoder is employed to extract
features and predict pose matrices {Mk

0 }Kk=1. In this paper,
we utilize the encoder proposed in [Xie et al., 2024], which
leverages an equivariant masked autoencoder to learn robust
features for 3D objects. This encoder’s feature learning ca-
pability has been validated through its reconstruction perfor-
mance on various datasets.

The predicted pose matrices are then input into the diffu-
sion model. To disrupt the input, we replace Gaussian noise
with transformed matrices during the forward process. Dur-
ing the reverse process, the diffusion model denoises the ma-
trices to estimate the original transformations, enabling the
reassembly of fragmented parts into a complete 3D object.

3.2 Lie Algebra Mapping
Directly replacing Gaussian noise with transformation matri-
ces Φk

noise ∈ R3×3 often leads to degeneration in the object’s
dimensions, as shown in the first row (orange object) of Fig-
ure 1. This degeneration occurs because traditional diffusion
models rely on linear noise addition/removal, which is incom-
patible with the nonlinear nature of transformation matrices.

Figure 1: Comparison of two different ways of adding noise. The
first row is replacing the Gaussian noise directly with transformation
matrix. The second row is mapping the process of adding noise into
the Lie algebra space.

To address this issue, we map the transformation matrices
to the Lie algebra space so(3) [Batatia et al., 2023], where
nonlinear operations can be transformed into linear ones (as
shown in the sencond row, the blue object, of Figure 1).
Specifically, we use the logarithmic map log : SO(3) →
so(3) to project rotation matrices Φk

noise into vectors φknoise:

φknoise = log(Φk
noise) = [uθ]× (1)

θ = arccos
tr(Φk

noise)− 1

2
(2)

u =
(Φk

noise − (Φk
noise)

>)∨

2 sin θ
(3)

where u = [ux, uy, uz]> is a unit vector representing the ro-
tation axis, θ ∈ [0, π] is the rotation angle. φknoise is a 3 × 3
skew-symmetric matrix, (·)∨ is the mapping from a skew-
symmetric matrix in so(3) to a vector. The inverse mapping
is performed via the exponential map exp : so(3)→ SO(3):

Φk
noise = exp(φknoise) (4)

By leveraging the Lie algebra mapping to linearize the
noise addition and removal processes, the part pose features
are transformed into a representation compatible with diffu-
sion models. Building on this foundation, we propose an e-
lastic diffusion model designed to handle diverse input sizes
and perform effective denoising and pose prediction.

3.3 Elastic Diffusion Models
Before feeding these mapped vectors into diffusion model,
we ensure compatibility with varying input sizes by applying
padding and cropping operations. The padded vectors are:

φ̂← fP (φ,Z) (5)

φ̇ = fC

(
φ̂,K

)
(6)

where φ = {φGT , φnoise}, Z is a zero matrix for padding.
Padding function fP ensures that the number of φ̂ is always
N , cropping function fC ensures that the output size matches
the original part count K. This padding-cropping strategy
guarantees consistent input sizes N while retaining the focus
on the actual parts K.

The process of the diffusion model for 3D part pose learn-
ing is illustrated in Figure 2. Each row corresponds to the
transformation and recovery of a single fragmented part. The
framework consists of a forward diffusion process and a re-
verse diffusion process, which ensure accurate reconstruction
of the original pose for each part, enabling effective 3D part
reassembly.

Figure 2: Illustration of the diffusion process for 3D part pose learn-
ing. Each row represents one part’s pose transformation. In the for-
ward diffusion process, transformation matrices progressively per-
turb the part pose, resulting in a noisy transformed state Mk

T . The
reverse diffusion process iteratively removes the perturbations, de-
noising the pose to recover the original state Mk

0 .

Forward process. In Lie algebra space, noise is added lin-
early to the transformed pose vectors:

m̂k
t = φ̂k,tGT + φ̂k,tnoise (7)

φ̂kGT = fP (log(Mk
GT ),Z) (8)

φ̂knoise = fP (log(Φk
noise),Z) (9)

where m̂k
t represents the noisy pose at step t, Mk

GT = Mk
0 is

the original pose state.
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Reverse process. The model estimates and removes noise to
recover the original pose:

m̂k
t−1 = m̂k

t − ϕ̂
k,t
noise (10)

where ϕ̂k,t
noise is the estimated noise output by our models that

has to be removed from m̂k
t at timestep t to recover m̂k

t−1.
The denoised Lie algebra element is then mapped back to
SO(3) space:

Ṁk
0 = fC(exp(M̂k

0 ),K) (11)

Finally, the denoised pose matrix Ṁk
0 = {Ṙk

0 , Ṫ
k
0 } should

correspond to the original pose matrix, ensuring accurate re-
assembly of the fragmented parts.
Loss function. To optimize the diffusion models, we intro-
duce three loss functions: translation loss Ltrans, rotation
loss Lrot, and point loss Lpoint. The total loss is:

L = λ1Ltrans + λ2Lrot + λ3Lpoint (12)

where {λi}3i=1 are weights. Each term ensures precise re-
assemble of translation, rotation.
Translation loss. The translation loss computes the distance
between the ground truth T0 and the predicted ones Ṫ0:

Ltrans = ‖Ṫ0 −T0‖22 (13)

where T0 = {T k
0 }Kk=1 is the ground truth of translation, ‖·‖22

is the L2 loss.
Rotation loss. The rotation loss measures the geodesic dis-
tance between Ṙ0 and R0:

Lrot = arccos
tr(Ṙ0R

>
0 )− 1

2
(14)

Point loss. We further use Chamfer Distance fcd(·) to jointly
measure the difference by supervising the reassembled pose
of point cloud:

Lpoint = fcd(PṘ0 + Ṫ0,PR0 + T0) (15)

where P = {P̄ k}Kk=1 is the input parts.

4 Experiments
4.1 Dataset and Implementation Details
Datasets. This study focuses on denoising poses to recover
the original part states and reassembling transformed parts in-
to a coherent object. To evaluate the proposed approach, we
conduct experiments on the publicly available Breaking Bad
dataset [Sellán et al., 2022], a real-world RePAIR dataset [T-
sesmelis et al., 2024] and construct a self-built 3D mannequin
dataset to assess the robustness of our method.

The Breaking Bad dataset [Sellán et al., 2022] consists of
approximately 10,000 meshes derived from PartNet [Mo et
al., 2019] and Thingi10k [Zhou et al., 2016]. Specifical-
ly, we select samples from the everyday subset and 6 arti-
fact categories (sculpture, spiral bulbs, rabbit, frog, sofa and
boy) for experiments. The everyday subset contains 20 object
categories, each containing fragments with varying quanti-
ties. The RePAIR dataset [Tsesmelis et al., 2024] consists of

over 1,000 verified fragmented parts, it contains detailed 3D
scans of the fragments, the fragments and fractures are real-
istic, caused by a collapse of a fresco during a World War
II bombing at the Pompeii archaeological park. While the
Breaking Bad and RePAIR datasets provides diverse object
categories, it lacks sufficient variation in human-like object
structures, which are essential for evaluating real-world ap-
plications such as pose estimation and archaeological human
fragment restoration.

To address this limitation, we construct the 3D mannequin
dataset, focusing on human-like structures with predefined
semantic parts. This dataset consists of 133 simulated man-
nequin samples collected from ShapeNet [Yi et al., 2016].
These samples are preprocessed by SubdivNet [Hu et al.,
2022] to ensure smoothness and uniformity, resulting in mesh
with 16,384 faces each. The mannequins are segmented into
distinct fragments based on semantic labels, with each frag-
ment stored in OBJ format. We also create five subsets with
varying fragment proportions. For example, a sample in the
Mannequin 4Parts subset includes a head, torso, arms, and
legs, as illustrated in Figure 3.

Figure 3: 3D Mannequin nParts dataets, n = 2, 3, 4, 6, 14. The
segment parts of them are derived from semantic labels.

Implementation details. All experiments are performed
on a Linux workstation equipped with an NVIDIA RTX 4090
GPU. We use Noise Conditional Score Networks (NCSNs)
[Song and Ermon, 2019], [Croitoru et al., 2023] as the back-
bone of the diffusion models. For the 3D object reassembly
task, we adopt the encoder proposed in [Xie et al., 2024] to
extract features from each part and predict the corresponding
poses. These predicted poses are then fed into the diffusion
models for denoising, allowing the refinement of poses to-
ward their original states.

Optimization is performed using the Adam optimizer with
an initial learning rate of 1e-3 and a cosine learning schedule.
The batch size is set to 16, and the total number of iterations
is 2000, with a consistent input size N = 30. To further im-
prove performance, we incorporate a Chamfer Distance loss
term, as proposed in [Sellán et al., 2022], which enhances the
model’s capability to minimize geometric discrepancies.

Evaluation metrics. We evaluate our method using multi-
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ple metrics, including root mean square error (RMSE) metrics
[Sellán et al., 2022], RMSE(R) for rotation and RMSE(T) for
translation, and the mean absolute error (MAE) for both rota-
tion and translation. Additionally, part accuracy (PA) [Sellán
et al., 2022] employed to assess the precision of parts.

4.2 3D Object Reassembly Task
The quantitative evaluation of our method, compared to state-
of-the-art methods, on the 3D Mannequin nParts datasets is
presented in Table 1. The results indicate that while the per-
formance of our method decreases with an increasing number
of parts, it consistently ourperforms SE(3)-Equiv [Wu et al.,
2023], Jigsaw [Lu et al., 2024] and DiffAssemble [Scarpelli-
ni et al., 2024]. Visualization results are shown in Figure 4,
and the iterative refinement process is illustrated in Figure 6.

Figure 4: Qualitative results on 3D Mannequin nParts datasets for
various multi-geometric assembly. The input is transformed man-
nequin parts.

Qualitative results demonstrate that our method effective-
ly denoises the pose noise and iteratively predicts the origi-
nal poses. Notably, we observe that SE(3)-Equiv and Jigsaw
struggle with larger parts, while DiffAssemble tends to shift
all parts toward the center, as shown in Figure 4. It is worth
noting that the runtime of the method proposed in this article
is measured from the moment the obtained poses are fed into
the diffusion model. This is primarily done to evaluate the
diffusion model’s ability to learn poses.

We also evaluate our method on the Breaking Bad and
RePAIR datasets, we select all categories from the every-
day subset and 6 categories from artifact subset of Breaking

Bad dataset as experimental subjects. Quantitative results are
summarized in Table 2 and 3.

These results highlight superior performance of our
method across various metrics, emphasizing its accuracy and
robustness in 3D object reassembly task. Although our
method requires more time compared to SE(3)-Equiv [Wu et
al., 2023], CCS [Zhang et al., 2024] and Jigsaw [Lu et al.,
2024], its superior performance justifies the additional com-
putational cost. Visualization results are shown in Figure 6,
and the iterative process is illustrated in Figure 7.

Figure 5: Ablation visual results on Mannequin 6Parts, Breaking
Bad and RePAIR datasets.

4.3 Ablation Studies
To evaluate the contribution of different modules, we conduct
ablation studies on Mannequin 6Parts, Breaking Bad and Re-
PAIR datasets. w/o Lie: without mapping input and noise
into the Lie algebra space, w/o Rot.: without mapping ro-
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Methods Dataset RMSE(R)↓ MAE(R)↓ RMSE(T)↓ MAE(T)↓ PA↑ Times
(degree) (degree) ×10−2 ×10−2 (%) (s/sample)

SE(3)-Equiv [Wu et al., 2023]

Mannequin 2Parts 79.8 69.3 21.5 19.0 16.7 0.72
Mannequin 3Parts 89.7 76.5 12.0 10.5 24.8 0.78
Mannequin 4Parts 88.8 77.2 12.7 10.9 15.4 0.77
Mannequin 6Parts 88.9 77.5 20.9 17.9 18.4 0.70
Mannequin 14Parts 86.4 74.4 13.6 11.6 13.9 1.59

Jigsaw [Lu et al., 2024]

Mannequin 2Parts 57.6 49.8 9.5 6.9 33.3 0.71
Mannequin 3Parts 57.6 50.0 9.8 7.2 33.3 0.45
Mannequin 4Parts 62.7 54.3 20.1 15.9 25.6 0.55
Mannequin 6Parts 66.4 57.8 13.9 11.9 23.1 0.33
Mannequin 14Parts 80.0 69.8 15.0 12.7 12.8 1.81

DiffAssemble [Scarpellini et al., 2024]

Mannequin 2Parts 81.3 - 27.1 - 5.1 0.85
Mannequin 3Parts 67.2 - 12.7 - 26.7 0.86
Mannequin 4Parts 72.5 - 17.5 - 11.1 1.54
Mannequin 6Parts 82.1 - 25.5 - 13.2 1.21
Mannequin 14Parts 75.1 - 12.4 - 32.2 1.07

Ours

Mannequin 2Parts 22.3 19.8 3.9 2.6 74.4 0.75
Mannequin 3Parts 19.4 18.1 10.6 10.0 67.0 0.76
Mannequin 4Parts 22.4 16.0 6.0 5.3 63.8 0.76
Mannequin 6Parts 19.1 16.6 6.0 5.1 59.4 0.75
Mannequin 14Parts 15.8 14.1 10.9 5.6 59.0 0.76

Table 1: Quantitative results on 3D Mannequin nParts datasets (n = 2, 3, 4, 6, 14) for various multi-geometric assembly.

Methods RMSE(R)↓ MAE(R)↓ RMSE(T)↓ MAE(T)↓ PA↑ Times
(degree) (degree) ×10−2 ×10−2 (%) (s/sample)

Global [Zhan et al., 2020] 79.2 66.3 14.7 11.7 23.1 0.45
DGL [Zhan et al., 2020] 80.6 67.8 15.8 12.5 23.9 1.36

RGL [Narayan et al., 2022] 83.2 70.8 14.9 11.8 25.4 0.60
LSTM [Zhan et al., 2020] 83.0 71.0 15.3 12.1 21.7 1.28

SE(3)-Equiv [Wu et al., 2023] 79.7 66.8 16.2 12.4 13.5 0.12
CCS [Zhang et al., 2024] 85.0 74.4 13.4 8.9 13.4 0.41
Jigsaw [Lu et al., 2024] 80.8 70.1 14.5 11.5 27.6 0.38

DiffAssemble [Scarpellini et al., 2024] 73.3 - 14.8 - 27.5 -
Ours 18.3 15.7 4.1 3.1 59.7 0.73

Table 2: Quantitative results on Breaking Bad dataset (everyday subset) for multi-geometric assembly.

Dataset Part num. RMSE(R)↓ MAE(R)↓ RMSE(T)↓ MAE(T)↓ PA↑ Times
(degree) (degree) ×10−2 ×10−2 (%) (s/sample)

artifact subset

Sculpture 3 11.5 9.9 2.8 2.7 53.9 0.75
Spiral bulbs 7 19.6 18.9 2.8 2.4 53.7 0.55

Rabbit 9 20.2 18.2 2.1 1.8 45.4 0.53
Frog 15 29.0 24.1 3.2 3.1 65.7 0.54
Sofa 15 20.2 14.3 4.0 3.2 46.7 0.76
Boy 15 16.0 13.8 2.3 2.3 60.1 0.57

RePAIR [Tsesmelis et al., 2024] - 17.7 12.9 5.4 4.8 59.9 0.77

Table 3: Quantitative results on Breaking Bad (artifact subset) and RePAIR datasets for multi-geometric assembly.

Figure 6: Qualitative results on Breaking Bad dataset (everyday subset).

tation noise into the Lie algebra space, w/o Trans.: without
mapping translation noise into the Lie algebra space, w/o CD:
without the Chamfer Distance as an additional test metric.

The results (Table 4 and Figure 5) show a significant per-
formance decline when the Lie algebra mapping is removed.
This decline underscores the critical role of Lie algebra map-

ping in linearizing the noise addition and denoising processes.
Furthermore, Figure 5 (second column) reveals that the ab-
sence of Lie mapping leads to disorganized pose predictions,
as the model fails to effectively disentangle pose noise.

The impact of removing rotation noise mapping is particu-
larly pronounced. Without this step, the network struggles
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Figure 7: Visualization of the assembly process in the iterations on Mannequin 6Parts, Breaking Bad and RePAIR datasets. Pred-AP and
GT-AP are the another perspective of the prediction and the ground truth, respectively.

Dataset Methods RMSE(R)↓ MAE(R)↓ RMSE(T)↓ MAE(T)↓ PA↑ Times
(degree) (degree) ×10−2 ×10−2 (%) (s/sample)

Mannequin 6Parts

w/o Lie 69.5 65.5 35.1 30.0 25.5 0.28
w/o Rot. 29.5 40.1 7.2 7.4 49.7 0.66

w/o Trans. 19.1 16.7 11.4 10.6 52.1 0.70
w/o CD 19.5 40.1 6.3 5.2 51.4 0.61

Ours 19.1 16.6 6.0 5.1 59.4 0.75

everyday subset

w/o Lie 44.2 54.3 24.5 21.7 16.5 0.27
w/o Rot. 19.4 17.1 6.3 5.1 43.3 0.64

w/o Trans. 18.7 16.1 5.9 5.2 46.0 0.68
w/o CD 19.5 16.2 5.9 5.5 38.2 0.65

Ours 18.3 15.7 4.1 3.1 59.7 0.73

RePAIR

w/o Lie 47.9 27.5 8.1 5.2 40.4 0.33
w/o Rot. 31.3 34.1 5.9 5.0 51.6 0.50

w/o Trans. 21.2 15.2 6.1 5.7 54.9 0.62
w/o CD 16.6 13.3 6.1 4.1 55.8 0.68

Ours 17.7 12.9 5.4 4.8 59.9 0.77

Table 4: Ablations on Mannequin 6Parts, Breaking Bad and RePAIR datasets.

to learn pose features due to the inherent nonlinearity and
complexity of rotational transformations. The visualization
results further confirm this observation, showing erratic and
inconsistent pose predictions for parts subjected to rotations.

The removal of translation noise mapping has a relatively
smaller impact on the overall performance, though it still in-
troduces noticeable errors in translation estimation. This sug-
gests that while both rotation and translation mappings are
important, the rotational component plays a more critical role
in ensuring robust pose predictions.

The inclusion of Chamfer Distance loss improves part ac-
curacy by refining the geometric alignment between predicted
and ground truth poses. It encourages the model to prioritize
local geometric alignment over global pose accuracy.

5 Conclusion and Limitation
This paper presents an SE(3)-equivariant diffusion model
for predicting transformed part poses and reassembling frag-
mented parts into a complete object. The framework consists
of three main components: an equivariant feature encoder, a
Lie algebra mapping module and an elastic diffusion model.
The encoder extracts rotational and translational equivariant
features, the Lie algebra mapping enables the model to handle
transformations in a linearized manner, and the elastic diffu-

sion model leverages NCSNs with an elastic property, allow-
ing the framework to adapt to varying part quantities. These
design elements collectively enhance the model’s robustness
and adaptability for complex part-based reassembly tasks.

Limitations and future work. The current method is lim-
ited to rigid transformations, such as rotation and translation,
which restrict its application to scenarios requiring flexible
transformations, such as sliding, bending, or stretching. In-
corporating flexible transformations without disassembling
parts for forward prediction remains a challenging yet essen-
tial direction for improvement. Future work will focus on
extending the model to handle non-rigid deformations by in-
tegrating techniques that can capture local pose changes driv-
en by global structural deformations. This extension would
enable the model to predict transformations for objects with
complex, flexible morphologies, broadening its applicability
to domains such as biomechanical modeling, soft robotics,
and human body pose estimation.
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itany, and Laura Leal-Taixé. The nerfect match: Exploring
nerf features for visual localization. In European Confer-
ence on Computer Vision, pages 108–127, 2025.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


