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Abstract
Recommender systems (RS) are crucial in offer-
ing personalized suggestions tailored to user pref-
erences. While conventionally, Top-K recommen-
dation approach is widely adopted, its reliance
on fixed recommendation sizes overlooks diverse
needs of users, leading to some relevant items not
being recommended or vice versa. While recent
work has made progress, they determine K by
searching over all possible recommendation sizes
for each user during inference. In real-world sce-
narios, with large datasets and numerous users
with diverse and extensive preferences, this pro-
cess becomes computationally impractical. More-
over, there is no theoretical guarantee of improved
performance with the personalized K. In this pa-
per, we propose a novel framework, Top-Adaptive-
K, which determines dynamic K-prediction set size
for each user efficiently and effectively. Gener-
ally, framework formulates recommendation prob-
lem within Conformal Risk Control paradigm and
proposes the loss function based on user utility
functions. A novel greedy optimization algorithm,
K-Adapt, is designed to efficiently learn predic-
tion sets. Theoretical analysis is provided to ensure
recommendation performance by establishing up-
per bounds on the expected risk. Extensive exper-
iments on multiple datasets demonstrate that Top-
Adaptive-K framework outperforms baseline meth-
ods in both performance and time efficiency, offer-
ing guaranteed solution to fixed Top-K challenges.

1 Introduction
With the growing relevance of web as a medium for elec-
tronic and commercial transactions, Recommender Systems
(RS) [Lu et al., 2015; Aggarwal, 2016; Zhao et al., 2023]
have become ubiquitous for mitigating information overload,
enabling platforms to deliver relevant suggestions across var-
ious domains such as e-commerce [Gulzar et al., 2023], en-
tertainment [Perano et al., 2021], and job matching [Islam
et al., 2021]. They rank items based on users’ preferences

∗Corresponding author

and their historical behaviors [Khatwani and Chandak, 2016;
Cui et al., 2020], thereby presenting the Top-K items [Cre-
monesi et al., 2010; Li et al., 2020], with the ranking scores,
sorted in descending order. While this heuristic Top-K rec-
ommendation approach is widely adopted in the literature for
its simplicity, a fundamental limitation is often overlooked:
its reliance on a fixed K. This approach assumes that the
same recommendation size will suffice for all users, ignoring
their diverse needs and, leading to some relevant items not be-
ing recommended or vice versa. As a result, poor recommen-
dation performance across users can lead to dissatisfaction
and disengagement from the platform [Chen et al., 2022].

For example, Figure 1 illustrates how NeuMF’s oracle per-
formance on Last.fm dataset, obtained by dynamically select-
ing each user’s best per-metric set size (capped at 25) differs
substantially from the performance under a single, fixed k (
where fixed k is derived by averaging the user-specific (ora-
cle) set sizes across the dataset for each metric) highlighting
the inherent weakness of fixed-K recommendations.

Figure 1: Performance Comparison of Oracle and Fixed K Across
Metrics on Last.fM dataset using NeuMF.

While the concept of dynamically tailoring K to individ-
ual users is promising across multiple recommendation set-
tings like optimizing screen space [Xi et al., 2023], balanc-
ing user engagement and budget constraints [Chen et al.,
2022], or reducing user overload, existing research in this
direction remains very limited. Recently, [KWEON et al.,
2024] modeled user-item interactions using Bernoulli distri-
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butions during inference and approximated utility over ranked
lists with Poisson-Binomial distribution to determine opti-
mal K for each user. However, evaluating utility during
inference is computationally impractical for real-world sys-
tems handling extra high dimension K, millions of users,
and numerous preferences. This challenge also shares paral-
lels with document list truncation methods [Wu et al., 2021;
Wang et al., 2022]. However, these methods are prone to
overfitting and poor generalization in the sparse and noisy
contexts of recommendation datasets. Moreover, none of
these methods provide statistical guarantees for model perfor-
mance, which is essential for trustworthy recommendations.

Motivated by the above-mentioned challenges and taking
inspiration from Conformal Prediction (CP) [Schafer et al.,
1999; Vovk et al., 2005; Fontana et al., 2023], we aim to pro-
pose a statistically sound user-tailored framework that incor-
porates uncertainty quantification into RS ecosystem. Specif-
ically, our framework aims to achieve two key objectives: 1)
dynamically and efficiently determining prediction set size
for each user while 2) statistically ensuring that these dynam-
ically generated prediction set sizes meet the desired perfor-
mance guarantees across the dataset. CP, in its natural form,
is designed to control and provide coverage guarantees. How-
ever, performance in RS is also evaluated through additional
factors such as ranking quality and user satisfaction. This
raises an important question: how can we adapt CP to con-
formalize different evaluation metrics in RS?

To address these challenges, we propose dataset and
model-agnostic statistical framework- Top-Adaptive-K
within the Conformal Risk Control paradigm [Bates et
al., 2021a; Angelopoulos et al., 2024]. Specifically, the
framework dynamically determines personalized K for each
user by leveraging performance of the base recommenda-
tion model, ensuring statistically guaranteed performance
across diverse recommender metrics. Our contributions
are as follows: 1) We first propose a novel framework-
Top-Adaptive-K which constructs loss functions based on
utility functions tailored to key RS performance metrics
and reformulates the recommendation problem within the
conformal risk paradigm. 2) Secondly, we develop a novel
and light-weight greedy-based optimization algorithm-
K-Adapt to efficiently control the utility risk defined by
Top-Adaptive-K below a user-defined threshold. 3) Next,
we provide a rigorous theoretical analysis establishing the
upper bound on expected risk. 4) Finally, we conduct
extensive experiments across multiple datasets and metrics
to demonstrate the effectiveness of Top-Adaptive-K in both
performance as well as time efficiency.

2 Related Works
Personalized Recommendation Size. Traditional RS typi-
cally generate a fixed-size top-K list for each user [Yang et
al., 2012; Kang et al., 2022; Li et al., 2024]. A more re-
cent direction involves dynamically adapting the recommen-
dation size based on user preferences, analogous to document
truncation in information retrieval [Arampatzis et al., 2009;
Wu et al., 2021]. Methods like AttnCut and MtCut [Bahri
et al., 2020; Wang et al., 2022] frame this as a classifica-

tion task, predicting cutoff positions with a K-dimensional
target. PerK [KWEON et al., 2024] estimates expected
user utility using calibrated interaction probabilities to per-
sonalize list sizes. However, unlike broader trends in ma-
chine learning (ML) [Gong et al., 2021; Gong et al., 2023;
Gong et al., 2024], these approaches lack probablistic mod-
elling, leading to no guarantees in their performances.

Conformal Prediction (CP) CP [Papadopoulos et al.,
2002; Shafer and Vovk, 2008; Angelopoulos and Bates, 2022]
provides distribution-free, finite-sample guarantees by con-
structing prediction sets satisfying P (Y /∈ C(X)) ≤ α. They
can help in uncertainty quantification by creating generalized
bounds, as seen in other ML paradigms ([Liu and Tsang,
2017; Zou and Liu, 2023; Liu et al., 2019]. Extensions ad-
dress distribution shifts [Tibshirani et al., 2019] and provide
risk bounds beyond coverage [Bates et al., 2021b]. Confor-
mal risk control [Angelopoulos et al., 2024] generalizes the
approach to control monotone loss expectations supporting
applications like false negative rate in multilabel tasks.

3 Preliminaries
We begin by introducing the notations used in this paper.
Consider m items, denoted as i = [i]mj=1, where each item ij
is an element of the item space I. Similarly, we have n users,
represented by u = [u]nk=1, where each user uk belongs to
the user space U . For brevity, we use u and i to denote a user
and an item, respectively.

We focus on recommendations with implicit feedback [He
et al., 2016; Zhu et al., 2024], a widely adopted scenario in
RS. For a pair (u, i), an interaction label Yu,i is assigned a
value of 1 if the interaction is observed, and 0 otherwise. Note
that when Yu,i = 0, it indicates that item i may either be
irrelevant to user u or hidden-relevant item.

A dataset D = {(u, i) | Yu,i = 1} consists of observed
positive pairs and is partitioned into three mutually exclu-
sive subsets: training (Dtrain), calibration (Dcalib), and testing
(Dtest). For user u, unobserved itemset I−u = {i | (u, i) /∈
Dtrain} represents all items not observed in training set.

Prediction Sets After the recommender model fθ : U ×
I → [0, 1] is trained on Dtrain, we produce a ranked list π(u)
for the unobserved items in I−u by sorting their relevance
scores fθ(u, i) in descending order:

π(u) = sorti∈I−
u
fθ(u, i), (1)

where π(u) represents the ranked order of unobserved
items based on the estimated scores.

Top-K Predictions Traditionally, recommender systems
generate Top-K predictions for a given user u by selecting
the K-most relevant items from the ranked list π(u):

πK(u) = π(u)[: K], (2)

where[: K] denotes selecting the first K elements of the
ranked list π(u).

While this fixed-K approach is commonly adopted for sim-
plicity, it fails to adapt to user-specific preferences and vary-
ing recommendation quality across users. This limitation mo-
tivates the exploration of dynamic prediction set sizes to bet-
ter align recommendations with user needs.
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4 The Proposed Framework
In this section, we develop our Top-Adaptive-K framework
which creates personalized dynamic prediction set sizes for
each user to ensure guaranteed performance across different
recommendation metrics.

We begin by defining our set predictor ϕλ(u) dominated
by the parameter λ to output calibrated prediction set πλ(u).

The calibrated prediction set πλ(u) is given by:

πλ(u) =
{
i ∈ π(u)

∣∣∣ fθ(u, i) ≥ λ
}
. (3)

The calibration is assumed to satisfy following property:

λ1 < λ2 =⇒ πλ2
(u) ⊆ πλ1

(u). (4)

Next, to quantify alignment between prediction set πλ(u) and
true relevant items Itrue(u), we introduce the concept of utility
function, denoted as UM(Itrue(u), πλ(u)). This function eval-
uates the quality of prediction set πλ(u) under some recom-
mendation metric denoted by M, such as NDCG, thus mea-
suring how well the set captures the user’s true preferences.

Subsequently, we define the user-utility-based loss func-
tion for user u as follows:

Lu(λ) = 1 − UM

(
Itrue(u), πλ(u)

)
. (5)

Now given Equation (5), we define the expected risk as:

R(λ) = EU [Lu(λ)]. (6)

Following the framework of risk control [Angelopoulos et
al., 2024] and property in Equation (4), we attempt to find
optimal λ∗ to ensure probability of expected risk lower than
α to be no less than confidence 1- η, which is formulated as:

λ∗ = sup{λ ∈ Λ : Pr(R(λ) ≤ α) ≥ 1− η}. (7)

Since, true data distribution is unknown, we use empirical
risk R̂(λ) to approximate the expected risk R(λ), given by:

R̂(λ) =
1

n

n∑
i=1

Lui(λ). (8)

To this end, we complete the modeling of the proposed
framework. To output the dynamic prediction sets for each
user by Top-Adaptive-K such that the performance guaran-
tee is met, we design a novel algorithm- K-Adapt based on a
greedy strategy to obtain the parameter λ∗.

The K-Adapt framework is depicted in Figure 2 and the
complete procedure of constructing dynamic prediction sets
is summarized in Algorithm 1.

Prediction Set Construction: After obtaining λ∗ from Al-
gorithm 1, we construct prediction sets for Dtest. For each
user u in test dataset, we create the prediction set by selecting
items with relevance scores greater than λ∗. The prediction
sets, tailored to individual user preferences, are ensured to
control the risk below the user-defined risk threshold α.

† Here,∆(λ) is equivalent to λ
|Λ| , where Λ is set of λ.

Algorithm 1 K-Adapt Algorithm
Input: Recommendation model fθ(u, i), calibration dataset
Dcalib, initial control parameter λinit, user-defined risk thresh-
old α, error tolerance ϵ.
Output: Optimal λ∗ .

1: Define utility function UM(·) based on the recommenda-
tion metric.

2: Goal: Find the λ∗ that meets the risk guarantee as in
Equation (7).

3: Initialize λ← λinit.
4: while λ < 1 do
5: Generate πλ(u) using fθ(u, i) > λ based on Equa-

tion (3) .
6: Calculate Lu(λ) using Equation (5).
7: Calculate R̂(λ) based on Equation (8).
8: if R̂(λ) ≤ α− ϵ then
9: return λ

10: else
11: Update λ← λ−∆λ†

12: end if
13: end while

4.1 Utility Functions
The design of our loss function in Equation (5) makes the pro-
posed framework more flexible by accommodating different
types of recommender utility functions. Below, we describe
the utility functions for commonly used metrics:

1. Utility for Recall:

Urecall(Itrue(u), πλ(u)) =
|Itrue(u) ∩ πλ(u)|
|Itrue(u)|

. (9)

This utility measures proportion of relevant items included in
prediction set. Here, | · | denotes the cardinality of a set.

2. Utility for Mean Reciprocal Rank:

Umrr(Itrue(u), πλ(u)) =


1

min
{
r(i)

∣∣ i∈Itrue(u)∩πλ(u)
} ,

if Itrue(u) ∩ πλ(u) ̸= ∅,

0, otherwise.
(10)

This utility measures how early the first relevant item ap-
pears in the ranked list. The term r(i) represents the rank of
item i in the prediction set πλ(u).

3. Utility for F1-Score :

UF1(Itrue(u), πλ(u)) =
2|Itrue(u) ∩ πλ(u)|
|Itrue(u)|+ |πmax

λ (u)|
. (11)

This utility balances how many of the relevant items are actu-
ally predicted with how many of the predicted items are truly
relevant. Here, |πmax

λ (u)| is the maximum possible size of
the prediction set for user u at the given threshold λ.

4. Utility for NDCG :

Undcg(Itrue(u), πλ(u)) =

∑|πλ(u)|
i=1

I[i∈Itrue(u)]
log2(i+1)∑|Itrue(u)|

i=1
1

log2(i+1)

. (12)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 2: The K-Adapt Framework. The top portion outlines how λ is calibrated to choose recommendation list lengths under a specified
risk constraint. In the lower left, we compare final recommendations from top-K, other dynamic-K, and K-Adapt (green = relevant, red =
irrelevant), showing how K-Adapt flexibly selects up to a maximum allowable length (max k) while maintaining high relevance. The lower
right plots runtime versus dataset size and max k, illustrating that K-Adapt’s computational overhead remains manageable even as the dataset
size and max k grows, providing superior performance with time efficiency.

This utility measures ranking quality by assigning higher
importance to relevant items appearing earlier in ranked list.
Here, I[i ∈ Itrue(u)] is an indicator function that returns 1 if
item i is relevant, and 0 otherwise. The term log2(i+ 1) is a
position-based discount factor to penalize items ranked lower.

By leveraging utility functions tailored to specific metrics,
Top-Adaptive-K accommodates a wide range of evaluation
criteria such as Recall, MRR, F1, and NDCG.

5 Theoretical Analysis
In the previous sections, we demonstrate how our framework
utilizes trained model fθ(u, i) and a calibration dataset Dcalib
to compute λ∗, which generates a dynamic recommendation
set for each user during testing. However, it remains to be es-
tablished whether λ∗ learned from the empirical risk can sta-
tistically guarantee the expected risk control below the user-
defined threshold. In this section, we theoretically derive the
upper bounds of expected risk to show how it can be approx-
imately controlled by the threshold α with the learned λ∗.

To formalize theoretical guarantee, we use Hoeffding’s in-
equality, which enables uniform probabilistic control over the
deviations between empirical and expected risks [Bentkus,
2004]. By leveraging the finite nature of Λ, which is the set
of λ values, we apply a union bound to establish that the risk
deviation remains bounded with high probability. This result
has been depicted in the following theorem:

Theorem 1 (Expected Risk Control). Let Λ be a finite set of
λ. The expected risk R(λ) is right-continuous in λ, and is
bounded within [0, B] for some B > 0 and all u and λ.

For any η > 0, let δ(ϵ) be the distribution deviation be-
tween the expected and empirical risk such that it satisfies:
2|Λ| exp

(
− 2n δ(ϵ)2

B2

)
≤ η. Then, for λ∗ ∈ Λ, with probabil-

ity at least 1− η we have,

R(λ∗) ≤ α +
B√
2n

√
ln
(

2|Λ|
η

)
.

Proof. We first consider the empirical risk on n+ 1 samples
and using eq. (8):

R̂n+1(λ) =
n

n+ 1
R̂(λ) +

1

n+ 1
Lun+1(λ). (13)

where R̂(λ) is empirical risk based on the first n samples, and
Lun+1

(λ) is loss on the (n+ 1)th sample.
For ϵ > 0, suppose R̂(λ∗) ≤ α − ϵ., then from (13):

R̂n+1(λ
∗) ≤ n

n+ 1
(α− ϵ) +

1

n+ 1
Lun+1(λ

∗).

Multiplying both sides by (n+ 1) and rearranging:

(n+ 1) R̂n+1(λ
∗) ≤ n(α− ϵ) + Lun+1(λ

∗),

Lun+1
(λ∗) ≥ (n+ 1) R̂n+1(λ

∗) − n(α− ϵ).
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Taking expectations on both sides, we get:

E
[
Lun+1

(λ∗)
]
≥ (n+ 1)E

[
R̂n+1(λ

∗)
]
− n (α− ϵ).

Since E[Lun+1
(λ)] = R(λ), we have

R(λ∗) ≥ (n+ 1)E
[
R̂n+1(λ

∗)
]
− n (α− ϵ).

Next, we relate R̂(λ) to R(λ) through Hoeffding’s inequal-
ity. For any fixed λ, Hoeffding’s inequality states:

P
( ∣∣R(λ)− R̂(λ)

∣∣ > δ
)
≤ 2 exp

(
− 2n δ2

B2

)
, (14)

where n is the number of samples, δ is deviation between
expected risk and empirical risk and B is the bound of risk.
Since Λ is a finite set of thresholds, we apply union bound
over all λ ∈ Λ. This results in:

P
(
∃λ ∈ Λ :

∣∣R(λ)− R̂(λ)
∣∣ > δ

)
≤∑

λ∈Λ

P
(∣∣R(λ)− R̂(λ)

∣∣ > δ
)
≤ 2|Λ| exp

(
−2n δ2

B2

)
.

(15)
Hence, equivalently we can say that:

P
(
sup
λ∈Λ

∣∣R(λ)− R̂(λ)
∣∣ ≤ δ

)
≥ 1− 2|Λ| exp

(
− 2n δ2

B2

)
.

We now choose δ = δ(ϵ) to ensure this event has probability
at least 1− η. Concretely, we set

2|Λ| exp
(
− 2n δ(ϵ)2

B2

)
= η,

implying that with probability at least 1− η,

sup
λ∈Λ

∣∣R(λ)− R̂(λ)
∣∣ ≤ δ(ϵ).

In particular, for any specific λ ∈ Λ, |R(λ)− R̂(λ)| ≤ δ(ϵ).

Let us return to λ∗. From R̂(λ∗) ≤ α − ϵ and the bound
|R(λ∗)− R̂(λ∗)| ≤ δ(ϵ), we obtain:

R(λ∗) ≤ R̂(λ∗) + δ(ϵ) ≤ (α− ϵ) + δ(ϵ).

Since ϵ can be arbitrarily small, we typically write

R(λ∗) ≤ α+ δ(ϵ).

Finally, plugging δ(ϵ) = B√
2n

√
ln
(

2|Λ|
η

)
into the above

completes the proof that with probability at least 1− η:

R(λ∗) ≤ α +
B√
2n

√
ln
(

2|Λ|
η

)
Hence Proved.

Remark. From Theorem 1, we can see the expected risk can
be upper bounded by α and a constant term. When the sample

size n → ∞, B√
2n

√
ln
(

2|Λ|
η

)
→ 0, the upper bound of the

expected risk approaches to α.

6 Experiments
In this section, we conduct experiments to validate the effec-
tiveness of the proposed framework. We design experiments
to 1) validate whether the framework can achieve superior
performance by comparing it with the state-of-the-art base-
lines. 2) whether our method can achieve higher time effi-
ciency compared to other baselines, and 3) analyze how the
risk threshold α and the confidence parameter η influence the
performance and the average optimal prediction set sizes.

6.1 Datasets and Baseline Methods
We experiment on three real-world datasets- MovieLens 100k
(Movies) [McAuley et al., 2015], Last.fM (Music) [Cantador
et al., 2011] and AmazonOffice (eCommerce) [Harper and
Konstan, 2015].

To obtain relevance scores, we use five widely recognized
recommender models representing diverse architectures: a)
DeepFM [Guo et al., 2017]; b) LightGCN [He et al., 2020]; c)
GMF [Koren et al., 2009]; d) MLP [Zhang et al., 2019] and e)
NeuMF [He et al., 2017]. To evaluate the effectiveness of K-
Adapt, we compare it against the following baseline models:

• Avg-K method: Utilizes the average of the prediction
set sizes returned by K-Adapt during calibration and
uses it as a fixed k value for all users.

• AttnCut[Wu et al., 2021]: Employs a Bi-LSTM and
Transformer encoder in a classification framework to
predict the optimal cutoff position in ranked lists.

• MtCut [Wang et al., 2022]: Enhances AttnCut using
Multi-gate Mixture-of-Experts (MMoE) model, leverag-
ing multi-task learning for improved cutoff prediction.

• PerK [KWEON et al., 2024]: Utilizes Poisson-
Binomial approximation to compute the expected utility
at each cutoff position in ranked lists.

6.2 Implementation Details
All base recommender models are trained using the Adam op-
timizer for 20 epochs with a learning rate of 0.001 and batch
size of 256. The scores fθ(u, i) generated by these models
serve as inputs for the dynamic k methods. Baseline configu-
rations are as follows: MtCut uses 3 experts with Transformer
layers of size 128, 2 attention heads, a gating mechanism, and
a bi-directional LSTM of size 64; AttnCut uses a Transformer
layer of size 64 with 2 attention heads and a bi-directional
LSTM of size 32; PerK employs a Poisson-Binomial approx-
imation to compute expected utility values. Our framework,
K-Adapt, uses a risk threshold α = 0.05 and confidence pa-
rameter η = 0.05. Held-out training data is split into 60%
calibration and 40% testing. We set a negative sampling rate
of 50 per true interaction and cap recommendation size at 25
items per user. Evaluation is done against Oracle values by
computing the optimal prediction set (the selection of items
that maximizes the metric for each user). Code is publicly
available at https://github.com/kalpiree/Top-Adaptive-K.

6.3 Experimental Results
We evaluate the performance of all methods, i.e. Avg-K, At-
tnCut, MtCut, PerK, and K-Adapt using Recall, MRR, F1,
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BaseModel Method
MovieLens Last.fM AmazonOffice

Recall MRR F1 NDCG Recall MRR F1 NDCG Recall MRR F1 NDCG

DeepFM

Oracle 0.47 0.72 0.37 0.47 0.47 0.70 0.38 0.46 0.52 0.32 0.23 0.28

Avg-K 0.36 0.59 0.23 0.29 0.33 0.50 0.25 0.31 0.32 0.19 0.11 0.20
AttnCut 0.38 0.62 0.29 0.32 0.32 0.58 0.31 0.35 0.33 0.14 0.15 0.16
MtCut 0.39 0.61 0.29 0.32 0.36 0.58 0.31 0.38 0.37 0.15 0.15 0.17
PerK 0.41 0.62 0.30 0.37 0.40 0.61 0.32 0.40 0.44 0.23 0.17 0.21
K-Adapt (Ours) 0.43 0.67 0.33 0.42 0.43 0.65 0.34 0.43 0.48 0.28 0.18 0.23

LightGCN

Oracle 0.50 0.72 0.39 0.45 0.51 0.67 0.39 0.47 0.51 0.34 0.23 0.30

Avg-K 0.35 0.59 0.25 0.33 0.41 0.52 0.30 0.37 0.42 0.23 0.13 0.20
AttnCut 0.37 0.61 0.28 0.36 0.37 0.54 0.31 0.36 0.35 0.23 0.15 0.19
MtCut 0.41 0.64 0.29 0.36 0.39 0.56 0.32 0.38 0.37 0.25 0.15 0.21
PerK 0.43 0.62 0.30 0.38 0.43 0.50 0.32 0.36 0.47 0.27 0.16 0.23
K-Adapt (Ours) 0.45 0.68 0.34 0.40 0.47 0.64 0.34 0.42 0.48 0.29 0.18 0.25

GMF

Oracle 0.41 0.67 0.32 0.38 0.46 0.61 0.37 0.45 0.47 0.28 0.21 0.28

Avg-K 0.17 0.53 0.21 0.20 0.41 0.55 0.31 0.38 0.41 0.21 0.13 0.22
AttnCut 0.29 0.58 0.25 0.31 0.26 0.52 0.32 0.35 0.31 0.20 0.12 0.19
MtCut 0.31 0.60 0.24 0.33 0.27 0.54 0.32 0.37 0.35 0.20 0.12 0.21
PerK 0.35 0.57 0.25 0.32 0.40 0.55 0.32 0.38 0.44 0.18 0.13 0.21
K-Adapt (Ours) 0.38 0.62 0.27 0.34 0.42 0.57 0.34 0.41 0.46 0.24 0.16 0.24

MLP

Oracle 0.48 0.70 0.37 0.43 0.47 0.67 0.40 0.45 0.46 0.30 0.22 0.27

Avg-K 0.25 0.61 0.23 0.30 0.24 0.44 0.19 0.23 0.37 0.16 0.11 0.14
AttnCut 0.39 0.60 0.26 0.31 0.21 0.54 0.30 0.38 0.29 0.18 0.13 0.20
MtCut 0.41 0.60 0.27 0.36 0.23 0.56 0.30 0.40 0.33 0.19 0.13 0.20
PerK 0.41 0.61 0.29 0.38 0.33 0.57 0.34 0.39 0.41 0.18 0.15 0.21
K-Adapt (Ours) 0.44 0.66 0.33 0.40 0.43 0.63 0.37 0.42 0.43 0.26 0.16 0.24

NeuMF

Oracle 0.51 0.74 0.39 0.47 0.50 0.71 0.40 0.49 0.50 0.31 0.23 0.30

Avg-K 0.38 0.61 0.24 0.33 0.31 0.48 0.19 0.25 0.32 0.22 0.12 0.22
AttnCut 0.40 0.63 0.25 0.34 0.35 0.55 0.32 0.39 0.34 0.22 0.15 0.20
MtCut 0.40 0.64 0.26 0.38 0.38 0.57 0.34 0.40 0.37 0.24 0.14 0.19
PerK 0.43 0.62 0.32 0.39 0.42 0.58 0.36 0.42 0.44 0.23 0.16 0.25
K-Adapt (Ours) 0.46 0.69 0.34 0.42 0.45 0.67 0.36 0.44 0.46 0.25 0.18 0.25

Table 1: Performance comparison between K-Adapt (Ours) and baseline methods under various BaseModels (DeepFM, LighGCN, GMF,
MLP, NeuMF), metrics (Recall, MRR, F1, NDCG) across different Datasets (MovieLens, Last.fM, AmazonOffice). For K-Adapt, α and η
are set empirically as 0.05 respectively. Bold indicates best result and underline marks second best.

and NDCG across three datasets: MovieLens, LastFM, and
AmazonOffice, implemented on five base recommendation
models: DeepFM, LightGCN, GMF, MLP, and NeuMF. De-
tailed results are shown in Table 1, from which we make the
following observations:

• The proposed K-Adapt framework consistently outper-

forms all baseline methods and cwith comparable re-
sults to Oracle performance across datasets and metrics,
when controlling risk within α = 0.05 and confidence
1− η = 95%, aligning with theoretical expectations.

• Avg-K serves as a strong baseline but lags behind
dynamic-k methods, especially on dense datasets like
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Method Average Time (in sec)
Movielens LastFM Amazon Office

AttnCut 125.67 601.67 905.88
MtCut 425.13 724.08 1017.15
PerK 1205.78 3905.78 7560.67
K-Adapt (Ours) 24.08 55.27 94.28

Table 2: Average Time (in sec) on Various Datasets

MovieLens, highlighting the need for personalized pre-
diction sizes to optimize user satisfaction.

• Dynamic-k methods such as AttnCut and MtCut sur-
pass Avg-K on dense datasets but degrade on sparser
ones like LastFM and AmazonOffice due to overfitting
because of their reliance on high-dimensional features
(e.g., embeddings).

• PerK outperforms AttnCut and MtCut by modeling user-
specific interaction likelihoods via the Bernoulli-Poisson
framework, enabling better generalization across data
densities. However, it is still inferior to K-Adapt due
to its dependence on determining accurately calibrated
interaction probabilities, which, despite user-wise cali-
bration, may fail to fully adapt to the variability of user
preferences in highly dynamic environments.

• Overall, results highlight K-Adapt’s data- and model-
agnostic design, achieving robust and superior perfor-
mance across all metrics, base models, and datasets.

6.4 Time Efficiency Analysis
We analyze the computational cost (training time) of the Top-
Adaptive-K framework compared to other dynamic-k meth-
ods. Results averaged across all BaseModels are shown in
Table 2. depict that our framework is significantly more time-
efficient, highlighting its scalability. This is because methods
like AttnCut depend on neural architectures such as Bi-LSTM
(h) and Transformer Encoder (d), leading to time complexity
O(u ·n · (h2+d2)), where u is the number of users and n the
prediction set size. MtCut further increases complexity by in-
corporating e experts, leading to O(u · n · (h2 + e · d2)) due
to added model parameters. PerK avoids neural networks and
estimates utilities during calibration, making it lighter during
calibration but computationally expensive at inference, espe-
cially when n or the candidate range of k (m) is large.

In contrast, our framework eliminates neural components
and learns λ during calibration, avoiding runtime optimiza-
tion over k. TAs a result, it has a time complexity of
O(u · n log n), independent of m, making K-Adapt highly
efficient for practical applications.

6.5 Parameter Analysis
We analyze the influence of parameters α (risk threshold) and
η (confidence threshold) on the performance of the K-Adapt
framework, focusing on metrics such as NDCG, F1 score, and
average prediction set size.

Figure 3 reports the impact of risk threshold α varying
from 0.10 to 0.50 (in increments of 0.05) on average predic-

Figure 3: Performance trends on the Last.fm dataset with varying α
and fixed η = 0.1.

Figure 4: Performance trends on the AmazonOffice dataset with
varying η and fixed α = 0.1.

tion set sizes under fixed confidence threshold η = 0.10 using
Last.fM dataset on Recall and MRR metrics respectively. We
observe that as α increases, both average prediction set size
and performance metrics exhibit a decreasing trend. This be-
havior aligns with theoretical expectation, as increasing α re-
laxes the risk threshold, allowing model to generate smaller
prediction sets but at lower performance.

Figure 4 evaluates impact of confidence level η varying
from 0.10 to 0.50 (in increments of 0.05) on average predic-
tion set sizes under fixed risk threshold α = 0.10 using Ama-
zonOffice dataset on F1 and NDCG metrics respectively. We
observe that when η increases, model becomes less conserva-
tive, leading to reduction in both prediction set size and per-
formance metrics. This phenomenon demonstrates the frame-
work’s ability to balance between prediction set tightness and
performance guarantees based on confidence threshold.

This analysis provides insights into prediction control, en-
abling practitioners to adjust prediction set size and perfor-
mance according to desired risk and confidence levels. Addi-
tional plots showing similar trends are available in the code
repository.

7 Conclusion

In this paper, we address limitations of fixed prediction set
sizes in recommender systems, which can lead to user dis-
satisfaction. We propose Top-Adaptive-K, a dynamic frame-
work that determines personalized set sizes via Conformal
Risk Control with theoretical guarantees. Experiments show
that Top-Adaptive-K outperforms heuristic dynamic-k meth-
ods, achieving strong performance with well-tuned risk (α)
and confidence (η) levels. This work lays the groundwork for
reliable, adaptive recommendation sets in diverse RS settings.
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