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Abstract
Graph anomaly detection (GAD), which aims to
identify nodes in a graph that significantly de-
viate from normal patterns, plays a crucial role
in broad application domains. However, existing
GAD methods are one-model-for-one-dataset ap-
proaches, i.e., training a separate model for each
graph dataset. This largely limits their applica-
bility in real-world scenarios. To overcome this
limitation, we propose a novel zero-shot general-
ist GAD approach UNPrompt that trains a one-
for-all detection model, requiring the training of
one GAD model on a single graph dataset and
then effectively generalizing to detect anomalies
in other graph datasets without any retraining or
fine-tuning. The key insight in UNPrompt is that
i) the predictability of latent node attributes can
serve as a generalized anomaly measure and ii)
generalized normal and abnormal graph patterns
can be learned via latent node attribute predic-
tion in a properly normalized node attribute space.
UNPrompt achieves a generalist mode for GAD
through two main modules: one module aligns
the dimensionality and semantics of node attributes
across different graphs via coordinate-wise nor-
malization, while another module learns general-
ized neighborhood prompts that support the use of
latent node attribute predictability as an anomaly
score across different datasets. Extensive experi-
ments on real-world GAD datasets show that UN-
Prompt significantly outperforms diverse compet-
ing methods under the generalist GAD setting, and
it also has strong superiority under the one-model-
for-one-dataset setting. Code is available at https:
//github.com/mala-lab/UNPrompt.

1 Introduction
Graph anomaly detection (GAD) has attracted extensive re-
search attention in recent years [Pang et al., 2021; Qiao et
al., 2024] due to the broad applications in various domains
such as spam review detection in online shopping networks

∗Corresponding author: Guansong Pang (gspang@smu.edu.sg).

[McAuley and Leskovec, 2013; Rayana and Akoglu, 2015]
and malicious user detection in social networks [Yang et al.,
2019]. To handle high-dimensional node attributes and com-
plex structural relations between nodes, graph neural net-
works (GNNs) [Kipf and Welling, 2016; Wu et al., 2020]
have been widely exploited for GAD due to their strong
ability to integrate the node attributes and graph structures.
These methods can be roughly divided into two categories,
i.e., supervised and unsupervised methods. The former for-
mulates GAD as a binary classification problem and aims
to capture anomaly patterns under the guidance of labels
[Tang et al., 2022; Peng et al., 2018; Gao et al., 2023].
By contrast, due to the difficulty of obtaining these class la-
bels, the latter category takes the unsupervised approach that
aims to learn normal graph patterns, e.g., via data reconstruc-
tion or other proxy learning tasks that are related to GAD
[Qiao and Pang, 2023; Liu et al., 2021b; Ding et al., 2019;
Huang et al., 2022].

Despite their remarkable detection performance, these
methods need to train a dataset-specific GAD model for
each graph dataset. This one-model-for-one-dataset paradigm
limits their applicability in real-world scenarios since train-
ing a model from scratch can incur extensive computation
costs and require a large amount of labeled data for su-
pervised GAD methods on each dataset [Liu et al., 2024;
Qiao et al., 2024]. Training on a target graph may not even
be possible due to data privacy protection and regulation. To
address this limitation, a new one-for-all anomaly detection
(AD) paradigm, called generalist anomaly detection [Zhu and
Pang, 2024; Zhou et al., 2024], has been proposed for im-
age AD with the emergence of foundation models such as
CLIP [Radford et al., 2021]. This new direction aims to learn
a generalist detection model on auxiliary datasets so that it
can generalize to detect anomalies effectively in diverse tar-
get datasets without any re-training or fine-tuning. This paper
explores this direction in the area of GAD.

Compared to image AD, there are some unique challenges
for learning generalist models for GAD. First, unlike image
data where raw features are in the same RGB space, the node
attributes of graphs from different applications and domains
can differ significantly in node attribute dimensionality and
semantics. For example, as a shopping network dataset, Ama-
zon contains the relationships between users and reviews, and
the node attribute dimensionality is 25. Differently, Face-
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Original

(a) Visualization (b) BWGNN (d) UNPrompt(c) TAM
Normalized

Figure 1: (a) Visualization of two popular GAD datasets: Facebook and Amazon, where the node attributes are unified into a common se-
mantic space via our proposed normalization compared to the original heterogeneous raw attributes. (b)-(d) The anomaly scores of BWGNN
(normal probability), TAM (local affinity), and UNPrompt (latent attribute predictability) on the two datasets, where the methods are all
trained on Facebook and tested on Amazon under the zero-shot setting. It is clear that BWGNN and TAM struggle to generalize from Face-
book to Amazon, while UNPrompt can learn well to generalize across the datasets.

book, a social network dataset, describes relationships be-
tween users with 576-dimensional attributes. Second, gen-
eralist AD models on image data rely on the superior gener-
alizability learned in large visual-language models (VLMs)
through pre-training on web-scale image-text-aligned data
[Zhu and Pang, 2024; Zhou et al., 2024], whereas there are no
such foundation models for graphs [Liu et al., 2023a]. There-
fore, the key question here is: can we learn generalist models
for GAD on graph data with heterogeneous node attributes
and structure without the support of foundation models?

To address these challenges, we propose UNPrompt, a
novel generalist GAD approach that learns Unified Neighbor-
hood Prompts on a single auxiliary graph dataset and then
effectively generalizes to directly detect anomalies in other
graph datasets under a zero-shot setting. The key insight
in UNPrompt is that i) the predictability of latent node at-
tributes can serve as a generalized anomaly measure and ii)
graph-agnostic normal and abnormal patterns can be learned
via latent node attribute prediction in a properly normal-
ized node attribute space. UNPrompt achieves this through
two main modules, including coordinate-wise normalization-
based node attribute unification and neighborhood prompt
learning. The former module aligns the dimensionality of
node attributes across graphs and transforms the semantics
into a common space via coordinate-wise normalization, as
shown in Figure 1(a). In this way, the diverse distributions of
node attributes are calibrated into the same semantic space.
On the other hand, the latter module focuses on modeling
graph-agnostic normal and abnormal patterns across differ-
ent graph datasets. This is achieved in UNPrompt by learning
generalized graph prompts in the normalized attributes of the
neighbors of a target node via a latent node attribute predic-
tion task. In doing so, UNPrompt, being trained on a single
graph with a small GNN, can yield effective anomaly scores
for detecting anomalous nodes in diverse unseen graphs with-
out any re-training, as shown in Figure 1(b)-(d).

Overall, the main contributions of this paper are summa-
rized as follows. (1) We propose a novel zero-shot generalist
GAD approach, UNPrompt. To the best of our knowledge,
this is the first method that exhibits effective zero-shot GAD
performance across various graph datasets. There is concur-
rent work on generalist GAD [Liu et al., 2024], but it can only
work under a few-shot setting. (2) By unifying the hetero-
geneous distributions in the node attributes across different
graphs, we further introduce a novel neighborhood prompt
learning module that utilizes a neighborhood-based latent
node attribute prediction task to learn generalized prompts.
This enables the zero-shot GAD of UNPrompt across differ-
ent graphs. (3) Extensive experiments on real-world GAD
datasets show that UNPrompt significantly outperforms state-
of-the-art competing methods under the zero-shot generalist
GAD. (4) We show that UNPrompt can also work in the con-
ventional one-model-for-one-dataset setting, outperforming
state-of-the-art models in this popular GAD setting.

2 Related Work
Graph Anomaly Detection. Existing GAD methods can
be roughly categorized into unsupervised and supervised ap-
proaches [Qiao et al., 2024]. The unsupervised methods
are typically built using data reconstruction, self-supervised
learning, and learnable graph anomaly measures [Qiao et al.,
2024; Liu et al., 2022]. The reconstruction-based approaches
like DOMINANT [Ding et al., 2019] and AnomalyDAE [Fan
et al., 2020] aim to capture the normal patterns in the graph,
where the reconstruction error in both graph structure and at-
tributes is utilized as the anomaly score. CoLA [Liu et al.,
2021b] and SL-GAD [Zheng et al., 2021] are representative
self-supervised learning methods assuming that normality is
reflected in the relationship between the target node and its
contextual nodes. The graph anomaly measure methods typi-
cally leverage the graph structure-aware anomaly measures to

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

learn intrinsic normal patterns for GAD, such as node affinity
in TAM [Qiao and Pang, 2023]. In contrast to the unsuper-
vised approaches, the supervised approaches have shown sub-
stantially better detection performance in recent years due to
the incorporation of labeled anomaly data [Liu et al., 2021a;
Chai et al., 2022]. Most supervised methods concentrate on
the design of propagation mechanisms and spectral feature
transformations to address the notorious over-smoothing is-
sues [Tang et al., 2022; Gao et al., 2023; Chai et al., 2022].
Although both approaches can be adapted for zero-shot GAD
by directly applying the trained GAD models to the target
datasets, they struggle to capture generalized normal and
abnormal patterns for GAD across different graph datasets.
There are some works on cross-domain GAD [Ding et al.,
2021; Wang et al., 2023] that aim to transfer knowledge
from a labeled graph dataset to a target dataset, but it is a
fundamentally different problem from generalist GAD since
cross-domain GAD requires training on both source and tar-
get graph datasets.
Graph Prompt Learning. Prompt learning, initially devel-
oped in natural language processing, seeks to adapt large-
scale pre-trained models to different downstream tasks by in-
corporating learnable prompts while keeping the pre-trained
models frozen [Liu et al., 2023b]. Specifically, it designs
task-specific prompts capturing the knowledge of the corre-
sponding tasks and enhances the compatibility between in-
puts and pre-trained models to improve the pre-trained mod-
els in downstream tasks. Recently, prompt learning has been
explored in graphs to unify multiple graph tasks [Sun et al.,
2023; Liu et al., 2023c] or improve the transferability of
graph models on the datasets across the different domains [Li
et al., 2024; Zhao et al., 2024] which optimize the prompts
with labeled data of various downstream tasks [Fang et al.,
2024; Liu et al., 2023c]. Although being effective in popular
graph learning tasks like node classification and link predic-
tion, they are inapplicable to generalist GAD due to the unsu-
pervised nature and/or irregular distributions of anomalies.
Generalist Anomaly Detection. Generalist AD has been
very recently emerging as a promising solution to tackle
sample efficiency and model generalization problems in AD.
There have been a few studies on non-graph data that have
large pre-trained models to support the generalized pattern
learning, such as image generalist AD [Zhou et al., 2024;
Zhu and Pang, 2024]. However, it is a very challenging task
for graph data due to the lack of such pre-trained models.
Recently, a concurrent approach, ARC [Liu et al., 2024],
introduces an effective framework that leverages in-context
learning to achieve generalist GAD without relying on large
pre-trained GNNs. Unlike ARC which focuses on a few-shot
GAD setting, i.e., requiring the availability of some labeled
nodes in the target testing graph dataset, we tackle a zero-shot
GAD setting, assuming no access to any labeled data during
inference stages.

3 Methodology
3.1 Preliminaries
Notations. Let G = (V, E) be an attributed graph with N
nodes, where V = {v1, v2, . . . , vN} represents the node set

and E is the edge set. The attributes of nodes can be de-
noted as X = [x1,x2, . . . ,xN ]T ∈ RN×d and the edges
between nodes can be presented by an adjacency matrix
A ∈ {0, 1}N×N with Aij = 1 if there is an edge between vi
and vj and Aij = 0 otherwise. For simplicity, the graph can
be represented as G = (A,X). In GAD, the node set can be
divided into a set of normal nodes Vn and a set of anomalous
nodes Va. Typically, the number of normal nodes is signif-
icantly larger than the anomalous nodes, i.e., |Vn| ≫ |Va|.
Moreover, the anomaly labels can be denoted as y ∈ {0, 1}N
with yi = 1 if vi ∈ Va and yi = 0 otherwise.

Conventional GAD. Conventional GAD typically focuses
on model training and anomaly detection on the same graph.
Specifically, given a graph G, an anomaly scoring model f :
G → R is optimized on G in a supervised or unsupervised
manner. Then, the model is used to detect anomalies within
the same graph. The model is expected to generate higher
anomaly scores for abnormal nodes than normal nodes, i.e.,
f(vi) < f(vj) if vi ∈ Vn and vj ∈ Va.

Generalist GAD. Generalist GAD aims to learn a gener-
alist model f on a single training graph so that f can be
directly applied to different target graphs across diverse do-
mains without any fine-tuning or re-training. More specifi-
cally, the model is optimized on Gtrain with the corresponding
anomaly labels ytrain. After model optimization, the learned
f is utilized to detect anomalies within different unseen tar-
get graphs Ttest = {G(1)

test , . . . ,G
(n)
test } which has heterogeneous

attributes and/or structures to Gtrain, i.e., Gtrain ∩Ttest = ∅. De-
pending on whether labeled nodes of the target graph are pro-
vided during inference, the generalist GAD problem can be
further divided into two categories, i.e., few-shot and zero-
shot settings. We focus on the zero-shot setting where the
generalist models cannot get access to any labeled data of the
testing graphs during both training and inference.

3.2 Overview of UNPrompt
The framework of UNPrompt is illustrated in Figure 2,
which consists of two main modules, coordinate-wise
normalization-based node attribute unification and neighbor-
hood prompt learning. For all graphs, the attribute unification
aligns the dimensionality of node attributes and transforms
the semantics into a common space. Then, in the normalized
space, the generalized latent attribute prediction task is per-
formed with the neighborhood prompts to learn generalized
GAD patterns. Specifically, UNPrompt aims to maximize the
predictability of the latent attributes of normal nodes while
minimizing those of abnormal nodes. In this paper, we evalu-
ate the predictability via the similarity. In doing so, the graph-
agnostic normal and abnormal patterns are incorporated into
the prompts. During inference, the target graph is directly fed
into the learned models after node attribute unification with-
out any re-training or labeled nodes of the graph. For each
node, the predictability of latent node attributes is directly
used as the normal score for final anomaly detection.

3.3 Node Attribute Unification
Graphs from different distributions and domains significantly
differ in the dimensionality and semantics of node attributes.
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Figure 2: Overview of UNPrompt. During training, the neighborhood prompts are optimized to capture generalized patterns by maximizing
the predictability of the latent attributes of normal nodes while minimizing that of abnormal nodes. At the inference stage, the learned prompts
are directly applied to the testing nodes, and the latent attribute predictability is used for GAD.

The premise of developing a generalist GAD model is to
unify the dimensionality and semantics of node attributes into
the same space. To address this issue, we propose a simple
yet effective node attribute unification module that consists of
feature projection and coordinate-wise normalization.
Feature Projection. To address the inconsistent attribute
dimensions across graphs, various feature projection methods
can be utilized, such as singular value decomposition [Stew-
art, 1993] (SVD) and principal component analysis [Abdi and
Williams, 2010] (PCA). Formally, given the attribute matrix
X(i) ∈ RN(i)×d(i)

of any graph G(i) from Gtrain ∪ Ttest, we
transform it into X̃(i) ∈ RN(i)×d

′

with the common dimen-
sionality of d

′
,

X(i) ∈ RN(i)×d(i) Feature−−−−−→
Projection

X̃(i) ∈ RN(i)×d
′

. (1)

Coordinate-wise Normalization. Besides the inconsistent
attribute dimensionality, the divergent node attribute seman-
tics and distributions of different graphs pose significant chal-
lenges for generalist GAD. A recent study [Li et al., 2023]
has demonstrated that semantic differences across datasets
are mainly reflected in the distribution shifts and calibrat-
ing the distributions into a common frame helps learn more
generalized AD models. Inspired by this, we propose to
use coordinate-wise normalization to align the semantics and
unify the distributions across graphs. Specifically, the trans-
formed attribute matrix X̃(i) is shifted and re-scaled to have
mean zeros and variance ones via the following equation:

X̄(i) =
X̃(i) − µ(i)

σ(i)
, (2)

where µ(i) = [µ
(i)
1 , . . . , µ

(i)

d′ ] and σ(i) = [σ
(i)
1 , . . . , σ

(i)

d′ ] are
the coordinate-wise mean and variance of X̃(i) of the graph
G(i). In this way, the distributions of normalized attributes
along each dimension are the same within and across graphs,
as shown in Figure 1(a). This helps to capture the generalized
normal and abnormal patterns for generalist GAD.

3.4 Neighborhood Prompt Learning
Latent Node Attribute Predictability as Anomaly Score.
In this paper, we reveal that the predictability of latent node
attributes can serve as a generalized anomaly measure, and
highly generalized normal and abnormal graph patterns can
be learned via latent node attribute prediction in the normal-
ized attribute space with neighborhood prompts. The key in-
tuition of this anomaly measure is that normal nodes tend
to have more connections with normal nodes of similar at-
tributes due to prevalent graph homophily relations, resulting
in a more homogeneous neighborhood in the normal nodes
[Qiao and Pang, 2023]. By contrast, the presence of anoma-
lous connections and/or attributes makes abnormal nodes de-
viate significantly from their neighbors. Therefore, for a tar-
get node, its latent attributes (i.e., node embedding) are more
predictable based on the latent attributes of its neighbors if
the node is a normal node, compared to abnormal nodes. The
neighborhood-based latent attribute prediction is thus used
to measure the normality for GAD. As shown in our exper-
iments (see Figures 1(b)-(d) and Tables 1), it is a generalized
anomaly measure that works effectively across graphs. How-
ever, due to the existence of irrelevant and noisy attribute in-
formation in the original attribute space, the attribute predic-
tion is not as effective as expected in the simply projected
space. To address this issue, we propose to learn discrimina-
tive prompts via the latent attribute prediction task to enhance
the effectiveness of this anomaly measure.

To achieve this, we first design a simple GNN g, a neigh-
borhood aggregation network, to generate the aggregated
neighborhood embedding of each target node. Specifically,
given a graph G = (A, X̄), the aggregated neighborhood em-
beddings for each node are obtained as follows:

Z̃ = g(G) = ÃX̄W , (3)

where Z̃ is the aggregated representation of neighbors, Ã =
(D)−1A is the normalized adjacency matrix with D being a
diagonal matrix and its elements Dkk =

∑
j Akj , and W is

the learnable parameters. Compared to conventional GNNs
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such as GCN [Kipf and Welling, 2016] and SGC [Wu et al.,
2019], we do not require Ã to be self-looped and symmetri-
cally normalized as we aim to obtain the aggregated represen-
tation of all the neighbors for each node. To design the latent
node attribute prediction task, we further obtain the latent at-
tributes of each node as follows:

Z = X̄W , (4)
where Z serves as the prediction ground truth for the latent at-
tribute prediction task. The adjacency matrix A is discarded
to avoid carrying neighborhood-based attribute information
into Z which would lead to ground truth leakage in this pre-
diction task. We further propose to utilize the cosine similar-
ity to measure this neighborhood-based latent attribute pre-
dictability for each node:

si = sim(zi, z̃i) =
zi(z̃i)

T

∥zi∥∥z̃i∥
, (5)

where z and z̃i are the i-th node embeddings in Z and Z̃
respectively. A higher similarity denotes that the target node
can be well predicted by its neighbors and indicates the target
is normal with a higher probability. Therefore, we directly
utilize the similarity to measure the normal score of the nodes.
GNN Pre-training. To build generalist models, we pre-
train the above neighborhood aggregation network via graph
contrastive learning due to the ability to obtain robust and
transferable models [You et al., 2020; Zhu et al., 2020] across
graphs. Without pre-training, the dataset-specific knowledge
would be captured by the model as it is directly optimized
based on the neighborhood-based latent attribute prediction
of normal and abnormal nodes, limiting the generalizability
of the model to other graphs.
Neighborhood Prompting via Latent Attribute Predic-
tion. After the pre-training, we aim to further learn more
generalized normal and abnormal patterns via prompt tun-
ing. Thus, we devise learnable prompts appended to the at-
tributes of the neighboring nodes of the target nodes, namely
neighborhood prompts, for learning robust and discriminative
patterns that can detect anomalous nodes in different unseen
graphs without any re-training during inference.

Specifically, neighborhood prompting aims to learn some
prompt tokens that help maximize the neighborhood-based
latent prediction of normal nodes while minimizing that of
abnormal nodes simultaneously. To this end, the prompt is
designed as a set of shared and learnable tokens that can
be incorporated into the normalized node attributes. For-
mally, the neighborhood prompts are represented as P =

[p1, . . . ,pk]
T ∈ RK×d

′

where K is the number of vector-
based tokens pi. For each node in G = (A, X̄), the node
attributes in the unified feature space are augmented by the
weighted combination of these tokens, with the weights ob-
tained from K learnable linear projections:

x̂i = x̄i +
K∑
j

αjpj , αj =
e(wj)

Txt
i∑K

l e(wl)Txt
i

, (6)

where αj denotes the importance score of the token pj in
the prompt and wj is a learnable projection. For conve-
nience, we denote the graph modified by the graph prompt

as G̃ = (A, X̄ + P ). Then, G̃ is fed into the frozen pre-
trained model g to obtain the corresponding aggregated em-
beddings Z̃ and node latent attributes Z via Eq.(3) and Eq.(4)
respectively to measure the attribute predictability. To further
enhance the representation discrimination, a transformation
layer h is applied on the learned Z̃ and Z to transform them
into a more anomaly-discriminative feature space,

Z̃ = h(Z̃) , Z = h(Z) . (7)

The transformed representations are then used to measure the
latent node attribute predictability with Eq.(5). To optimize
P and h, we employ the following training objective,

min
P,h

∑
ℓ(zi, z̃i) , (8)

where ℓ(zi, z̃i) = −sim(zi, z̃i) if yi = 0, and ℓ(zi, z̃i) =
sim(zi, z̃i) if yi = 1.

3.5 Training and Inference of UNPrompt
Training. Given Gtrain, a neighborhood aggregation network
g is optimized via graph contrastive learning. Then, the
neighborhood prompts P and the transformation layer h are
optimized to capture the graph-agnostic normal and abnormal
patterns while keeping the pre-trained model g frozen. In this
way, the transferable knowledge of the pre-trained g is main-
tained, while the neighborhood prompt learning helps learn
the generalized normal and abnormal patterns.
Inference. During inference, given G(i)

test ∈ Ttest, the node at-
tributes are first aligned. Then, the test graph G(i)

test is aug-
mented with the learned neighborhood prompt P and fed
into the model g and the transformation layer h to obtain the
neighborhood aggregated representations and the latent node
attributes. Finally, the similarity (Eq.(5)) is used as the nor-
mal score for anomaly detection. Note that the inference does
not require any further re-training and labeled nodes of G(i)

test.

4 Time Complexity Analysis
UNPrompt consists of GNN pre-training, neighborhood
prompt learning, and the transformation layer. The over-
all time complexity is O(4E1(|A|dh + Ndhd

′
+ 6Nd2h) +

2E2(|A|dh+Ndhd
′
+2KNd

′
+Nd2h)), where dh is the num-

ber of hidden units, |A| returns of the number of edges of the
Gtrain, N is the number of nodes, d

′
represents the predefined

dimensionality of node attributes, E1 is the number of pre-
training epoch, K is the size of prompt and E2 is the training
epochs for prompt learning. Theoretical and empirical results
on computational cost are presented in the supplementary1.

5 Experiments
5.1 Performance on Zero-shot Generalist GAD
Datasets. We evaluate UNPrompt on several real-world
GAD datasets from diverse social networks, online shop-
ping co-review networks, and co-purchase networks. Specif-
ically, the social networks include Facebook [Xu et al.,

1https://github.com/mala-lab/UNPrompt/blob/main/
UNPrompt Supplementary.pdf
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Metric Method Dataset
Amazon Reddit Weibo YelpChi Aamzon-all YelpChi-all Disney Avg.

AUROC

Unsupervised Methods
AnomalyDAE (ICASSP’20) 0.5818±0.039 0.5016±0.032 0.7785±0.058 0.4837±0.094 0.7228±0.023 0.5002±0.018 0.4853±0.003 0.5791
CoLA (TNNLS’21) 0.4580±0.054 0.4623±0.005 0.3924±0.041 0.4907±0.017 0.4091±0.052 0.4879±0.010 0.4696±0.065 0.4529
HCM-A (ECML-PKDD’22) 0.4784±0.005 0.5387±0.041 0.5782±0.048 0.5000±0.000 0.5056±0.059 0.5023±0.005 0.2014±0.015 0.4721
TAM (NeurIPS’23) 0.4720±0.005 0.5725±0.004 0.4867±0.028 0.5035±0.014 0.7543±0.002 0.4216±0.002 0.4773±0.003 0.5268
GADAM (ICLR’24) 0.6646±0.063 0.4532±0.024 0.3652±0.052 0.3376±0.012 0.5959±0.080 0.4829±0.016 0.4288±0.023 0.4755

Supervised Methods
GCN (ICLR’17) 0.5988±0.016 0.5645±0.000 0.2232±0.074 0.5366±0.019 0.7195±0.002 0.5486±0.001 0.5000±0.000 0.5273
GAT (ICLR’18) 0.4981±0.008 0.5000±0.025 0.4521±0.101 0.5871±0.016 0.5005±0.012 0.4802±0.004 0.5175±0.054 0.5051
BWGNN (ICML’22) 0.4769±0.020 0.5208±0.016 0.4815±0.108 0.5538±0.027 0.3648±0.050 0.5282±0.015 0.6073±0.026 0.5048
GHRN (WebConf’23) 0.4560±0.033 0.5253±0.006 0.5318±0.038 0.5524±0.020 0.3382±0.085 0.5125±0.016 0.5336±0.030 0.4928
XGBGraph (NeurIPS’23) 0.4179±0.000 0.4601±0.000 0.5373±0.000 0.5722±0.000 0.7950±0.000 0.4945±0.000 0.6692±0.000 0.5637
GraphPrompt (WebConf’23) 0.4904±0.001 0.4677±0.001 0.6135±0.008 0.3935±0.002 0.3215±0.001 0.4976±0.000 0.5192±0.002 0.4719
UNPrompt (Ours) 0.7525±0.016 0.5337±0.002 0.8860±0.007 0.5875±0.016 0.7962±0.022 0.5558±0.012 0.6412±0.030 0.6790

AUPRC

Unsupervised Methods
AnomalyDAE (ICASSP’20) 0.0833±0.015 0.0327±0.004 0.6064±0.031 0.0624±0.017 0.1921±0.026 0.1484±0.009 0.0566±0.000 0.1688
CoLA (TNNLS’21) 0.0669±0.002 0.0391±0.004 0.1189±0.014 0.0511±0.000 0.0861±0.019 0.1466±0.003 0.0701±0.023 0.0827
HCM-A (ECML-PKDD’22) 0.0669±0.002 0.0391±0.004 0.1189±0.014 0.0511±0.000 0.0861±0.019 0.1466±0.003 0.0355±0.001 0.0777
TAM (NeurIPS’23) 0.0666±0.001 0.0413±0.001 0.1240±0.014 0.0524±0.002 0.1736±0.004 0.1240±0.001 0.0628±0.001 0.0921
GADAM (ICLR’24) 0.1562±0.103 0.0293±0.001 0.0830±0.005 0.0352±0.001 0.1595±0.121 0.1371±0.006 0.0651±0.012 0.0951

Supervised Methods
GCN (ICLR’17) 0.0891±0.007 0.0439±0.000 0.1109±0.020 0.0648±0.009 0.1536±0.002 0.1735±0.000 0.0484±0.000 0.0977
GAT (ICLR’18) 0.0688±0.002 0.0329±0.002 0.1009±0.017 0.0810±0.005 0.0696±0.001 0.1400±0.002 0.0530±0.004 0.0780
BWGNN (ICML’22) 0.0652±0.002 0.0389±0.003 0.2241±0.046 0.0708±0.018 0.0586±0.003 0.1605±0.005 0.0624±0.003 0.0972
GHRN (WebConf’23) 0.0633±0.003 0.0407±0.002 0.1965±0.059 0.0661±0.010 0.0569±0.006 0.1505±0.005 0.0519±0.003 0.0894
XGBGraph (NeurIPS’23) 0.0536±0.000 0.0330±0.000 0.2256±0.000 0.0655±0.000 0.2307±0.000 0.1449±0.000 0.1215±0.000 0.1250
GraphPrompt (WebConf’23) 0.0661±0.000 0.0334±0.000 0.2014±0.004 0.0382±0.000 0.0666±0.000 0.1542±0.000 0.0617±0.001 0.0888
UNPrompt (Ours) 0.1602±0.013 0.0351±0.000 0.6406±0.026 0.0712±0.008 0.2430±0.028 0.1810±0.012 0.1236±0.031 0.2078

Table 1: AUROC and AUPRC results on seven real-world GAD datasets with the models trained on Facebook only. For each dataset, the best
performance per column within each metric is boldfaced, with the second-best underlined. “Avg” denotes the average performance.

2022], Reddit [Kumar et al., 2019] and Weibo [Kumar et al.,
2019]. The co-review networks consist of Amazon [McAuley
and Leskovec, 2013], YelpChi [Rayana and Akoglu, 2015],
Amazon-all and YelpChi-all. Disney [Sánchez et al., 2013] is
a co-purchase network.

Competing Methods. Since there is no zero-shot general-
ist GAD method, a set of state-of-the-art (SotA) unsupervised
and supervised competing methods are employed for com-
parison. The unsupervised methods comprise reconstruction-
based AnomalyDAE [Fan et al., 2020], contrastive learning-
based CoLA [Liu et al., 2021b], hop prediction-based HCM-
A [Huang et al., 2022], local affinity-based TAM [Qiao and
Pang, 2023] and GADAM [Chen et al., 2024]. Supervised
methods include two conventional GNNs – GCN [Kipf and
Welling, 2016] and GAT [Veličković et al., 2017] – and three
SotA GAD GNNs – BWGNN [Tang et al., 2022], GHRN
[Gao et al., 2023] and XGBGraph [Tang et al., 2023]. As a
graph prompting method, GraphPrompt [Liu et al., 2023c] is
also used. Following [Liu et al., 2024; Qiao and Pang, 2023;
Qiao et al., 2024], two widely-used metrics, AUROC and
AUPRC, are used to evaluate the performance of all meth-
ods. For both metrics, the higher value denotes the better
performance. Moreover, for each method, we report the aver-
age performance with standard deviations after 5 independent
runs with different random seeds.

Implementation Details. For a fair comparison, the com-
mon dimensionality is set to eight for all methods, and SVD
is used for feature projection. The number of GNN layers
is set to one and the number of hidden units is 128. The
transformation layer is implemented as a one-layer MLP with
the same number of hidden units. The size of the neigh-
borhood prompt is set to one. Results for other hyperpa-
rameter settings are presented in the supplementary. For all

baselines, their recommended optimization and hyperparam-
eter settings are used. Note that GraphPrompt is a graph
prompting method. To adapt it for generalist GAD, after pre-
training, we further perform the prompt learning in the source
graph for supervised GAD. Then, the pre-trained model and
learned prompts are used for generalist anomaly detection.
UNPrompt and all competing methods are trained on Face-
book and then directly tested on the other GAD datasets.
Facebook is used in the training since its anomaly patterns
are more generic.

Main Results. The results of all methods are presented
in Table 1 and we can have the following observations.
(1) Under the proposed generalist GAD scenario where a
model is trained on a single dataset and evaluated on seven
other datasets, all the competing baselines fail to work well,
demonstrating that it is very challenging to build a generalist
GAD model that generalizes across different datasets under
the zero-shot setting. (2) For supervised methods, the simple
GCN achieves better performance than the specially designed
GAD GNNs. This can be attributed to more dataset-specific
knowledge being captured in these specialized GAD mod-
els, limiting their generalization capacity to the unseen testing
graphs. (3) Unsupervised methods perform more stably than
supervised methods across the target graphs. This is because
the unsupervised objectives are closer to the shared anomaly
patterns across graphs compared to the supervised ones, es-
pecially for TAM which employs a fairly generalized local
affinity-based objective for GAD. (4) Despite being a graph
prompting method, GraphPrompt fails to achieve promising
performance for zero-shot generalist GAD. This is because no
label information is provided and no further model optimiza-
tion is performed during the inference. (5) The proposed UN-
Prompt demonstrates strong and stable generalist GAD ca-
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Method Amazon Reddit Weibo YelpChi Avg.
UNPrompt 0.7525 0.5337 0.8860 0.5875 0.6899
w/o Normalization 0.4684 0.5006 0.1889 0.5620 0.4300
w/o Pre-training 0.5400 0.5233 0.5658 0.4672 0.5241
w/o Prompt 0.5328 0.5500 0.4000 0.4520 0.4837
w/o Transformation 0.7331 0.5556 0.7406 0.5712 0.6501

Table 2: AUROC results of UNPrompt and its four variants.

pacity across graphs from different distributions and domains.
Specifically, UNPrompt achieves the best AUROC perfor-
mance on 5 out of 7 datasets, and the average performance
outperforms the best-competing method by over 9%. The su-
periority is attributed to i) the proposed coordinate-wise nor-
malization effectively aligns the features across graphs, and
ii) the shared generalized normal and abnormal patterns are
well captured in the neighborhood prompts.

Ablation Study. To evaluate the importance of each
component in UNPrompt, we design four variants, i.e.,
w/o coordinate-wise normalization, w/o graph contrastive
learning-based pre-training, w/o neighborhood prompts, and
w/o transformation layer. The results of these variants are re-
ported in the Table 2. Due to the page limits, four datasets
are used, including Amazon, Reddit, Weibo and YelpChi.
From the table, we can see that all four components contribute
to the overall superior performance of UNPrompt. More
specifically, (1) without the coordinate-wise normalization,
the method fails to calibrate the distributions of diverse node
attributes into a common space, leading to large performance
drop across all datasets. (2) Besides the semantics alignment,
the graph contrastive learning-based pre-training ensures our
GNN network is transferable to other graphs instead of over-
fitting to the training graph. As expected, the performance of
the variant without pre-training also drops significantly. (3) If
the neighborhood prompts are removed, the learning of latent
node attribute prediction is ineffective for capturing gener-
alized normal and abnormal patterns. (4) The variant with-
out the transformation layer achieves inferior performance on
nearly all the datasets, demonstrating the importance of map-
ping the features into a more anomaly-discriminative space.

Sensitivity w.r.t the Neighborhood Prompt Size. We eval-
uate the sensitivity of UNPrompt w.r.t the size of the neigh-
borhood prompts i.e., K. We vary K in the range of [1, 9]
and report the results in Figure 3(a). It is clear that the per-
formances on Reddit, Weibo and YelpChi-all remain stable
with varying sizes of neighborhood prompts while the other
datasets show slight fluctuation, demonstrating that the gen-
eralized normal and abnormal patterns can be effectively cap-
tured in our neighborhood prompts even with a small size.

Prompt learning using latent attribute prediction vs. al-
ternative graph anomaly measures. To further justify the
effectiveness of latent attribute predictability on learning gen-
eralized GAD patterns in our prompt learning module, we
compare our learnable anomaly measure to the recently pro-
posed anomaly measure, local node affinity [Qiao and Pang,
2023]. All modules of UNPrompt are fixed, with only the
latent attribute prediction task replaced as the maximization
of local affinity as in TAM. The results are presented in Fig-

1 2 3 4 5 6 7 8 9
Size of Prompt
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Figure 3: (a) AUROC results of UNPrompt w.r.t. varying neighbor-
hood prompt size. (b). The AUROC performance of generalist GAD
with different prompt learning objectives.

Method Dataset
Amazon Facebook Reddit YelpChi Amazon-all YelpChi-all Avg.

iForest 0.5621 0.5382 0.4363 0.4120 0.1914 0.3617 0.4169
ANOMALOUS 0.4457 0.9021 0.5387 0.4956 0.3230 0.3474 0.5087
DOMINANT 0.5996 0.5677 0.5555 0.4133 0.6937 0.5390 0.5615

CoLA 0.5898 0.8434 0.6028 0.4636 0.2614 0.4801 0.5402
SL-GAD 0.5937 0.7936 0.5677 0.3312 0.2728 0.5551 0.5190
HCM-A 0.3956 0.7387 0.4593 0.4593 0.4191 0.5691 0.5069
ComGA 0.5895 0.6055 0.5453 0.4391 0.7154 0.5352 0.5716

TAM 0.7064 0.9144 0.6023 0.5643 0.8476 0.5818 0.7028
UNPrompt (Ours) 0.7335 0.9379 0.6067 0.6223 0.8516 0.6084 0.7267

Table 3: AUROC results of unsupervised GAD methods.

ure 3(b). We can see that the latent attribute predictability
consistently and significantly outperforms the local affinity-
based measure across all graphs, demonstrating its superior-
ity in learning generalized patterns for generalist GAD.

5.2 Performance in Unsupervised GAD
UNPrompt can also be easily adapted to conventional unsu-
pervised GAD. Experimental details are provided in the sup-
plementary. The results of comparing UNPrompt to SotA un-
supervised methods are presented in Table 3. Despite being a
generalist method, UNPrompt also works very well as a spe-
cialized GAD model. UNPrompt substantially outperforms
all the baselines on all datasets. Particularly, the average per-
formance of UNPrompt surpasses the best-competing method
by over 2%, showing that the latent node attribute predictabil-
ity is a generalized GAD measure that also holds for different
graphs under unsupervised settings.

6 Conclusion
In this paper, we propose a novel zero-shot generalist GAD
method that trains one detector on a single dataset and can
effectively generalize to other unseen target graphs without
any further re-training or labeled nodes of target graphs dur-
ing inference. The attribute inconsistency and the absence of
generalized anomaly patterns are the main obstacles for gen-
eralist GAD. To address these issues, two main modules are
proposed, i.e., coordinate-wise normalization-based attribute
unification and neighborhood prompt learning. The first mod-
ule aligns node attribute dimensionality and semantics, while
the second module captures generalized normal and abnor-
mal patterns via the neighborhood-based latent node attribute
prediction. Extensive experiments on both generalist and un-
supervised GAD demonstrate the effectiveness of UNPrompt.
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