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Abstract

Despite significant advancements in automated re-
port generation, the opaqueness of text inter-
pretability continues to cast doubt on the reliability
of the content produced. This paper introduces a
novel approach to identify specific image features
in X-ray images that influence the outputs of re-
port generation models. Specifically, we propose
Cyclic Vision-Language Manipulator (CVLM), a
module to generate a manipulated X-ray from an
original X-ray and its report from a designated re-
port generator. The essence of CVLM is that cy-
cling manipulated X-rays to the report generator
produces altered reports aligned with the alterations
pre-injected into the reports for X-ray generation,
achieving the term “cyclic manipulation”. This pro-
cess allows direct comparison between original and
manipulated X-rays, clarifying the critical image
features driving changes in reports and enabling
model users to assess the reliability of the gener-
ated texts. Empirical evaluations demonstrate that
CVLM can identify more precise and reliable fea-
tures compared to existing explanation methods,
significantly enhancing the transparency and appli-
cability of AI-generated reports.

1 Introduction
The automated and precise interpretation of chest X-rays has
transformative potential, poised to enhance the consistency,
quality, and efficiency of current interpretations conducted
by human experts in healthcare. Over the past three years,
substantial efforts have been invested in refining the lan-
guage generation capabilities, aligning visual and linguistic
features, and increasing the accuracy of clinical report find-
ings. The advent of large language models has sparked an-
other wave in report generation, prioritizing linguistic pre-
cision and sophistication [Lee et al., 2023; He et al., 2024;
Liu et al., 2024].

1The appendix for this work is available at https://arxiv.org/abs/
2411.05261.

Figure 1: The overview of using counterfactual explanation for de-
coding the report generated from a target report generator.

Despite these enhancements, the reports generated by these
models often emerge as cryptic outputs from a “black box”,
leaving users with little understanding of the underlying pro-
cesses. Furthermore, the proliferation of diverse models leads
to inconsistent reports when analyzing identical X-rays, rais-
ing concerns about the reliability of these automated sys-
tems. This variability and lack of transparency have impeded
their broader adoption in clinical settings [Hertz et al., 2022;
Müller et al., 2024].

In response, several studies have adopted existing Explain-
able AI (XAI) techniques to uncover the visual features in-
fluencing generated content, thereby aiming to enhance the
trustworthiness of the generated texts. The most widely used
XAI methods in this field typically generate an attribution
map to highlight the influential features related to the gener-
ated contents through cross-attention maps [Liu et al., 2019;
Cao et al., 2023; Chen et al., 2020] or the GradCAM-based
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Figure 2: Overview of applying the proposed Cyclic Vision-Language Manipulator (CVLM) in explaining the report generator and the targets
required for CVLM for counterfactual explanation. In this case, the decoded report generator identifies the abnormal heart contour as a signal
for detecting “cardiomegaly”. After reviewing the features associated with this finding, the radiologist agrees with the generated conclusion
from the report generator.

methods [Alfarghaly et al., 2021; Spinks and Moens, 2019;
Wang et al., 2024]. However, these attribution maps often
fail to highlight fine-grained visual features, instead present-
ing large and coarse areas (see Fig. 1 (A)). More critically,
there is currently no reliable method to verify whether these
attribution maps accurately represent the information utilized
by report generators in producing findings, as there is no
ground truth to confirm what the model has actually learned
[Chase Walker et al., 2024]. These two limitations raise an
important ambiguity: while the highlighted areas in the attri-
bution maps may appear irrelevant to the generated findings,
it remains unclear whether report generators rely on irrele-
vant features or whether the explanation methods misidentify
visual features relative to the content being explained.

To address these limitations and provide a reliable attribu-
tion map that can facilitate the understanding of generated
texts, we propose a model-agnostic counterfactual explana-
tion method to generate attribution maps. This method relies
on the creation of counterfactual images, which modify spe-
cific features in the images to elicit changes in the model’s
decision. Comparing the counterfactual image to the original
enables the identification of crucial features responsible for
the altered decision [Wachter et al., 2017]. Specifically, we
introduce a module called the Cyclic Vision-Language Ma-
nipulator (CVLM) to generate effective counterfactual im-
ages using a text-conditioned diffusion model. The core of
CVLM is to achieve cyclic manipulation: the manipulation
begins with the generated text, and the counterfactual im-
ages derived from this manipulated text must produce a re-
generated report that accurately reflects the same alterations
introduced in the initial report (see Fig. 2 (B)). The compar-
ison between the cyclically generated counterfactual image
and the original X-ray produces a difference map to identify
fine-grained image features. Furthermore, the counterfactual
images, coupled with the altered regenerated report, verify

that the identified features are being utilized by existing re-
port generators in their text generation process. The major
contribution of this paper is the development of a method
capable of identifying feature attributions that can be verified
as being used by the report generator for its generated con-
tent. The identified features may be consistent or inconsistent
with human knowledge, as the absence of “ground truth” for
the features learned by the model. The verified features iden-
tified by our method can assist model developers in locating
relevant visual cues used by the generator, and help human
experts evaluate the reliability of the generated findings by
comparing these features with their own clinical knowledge.
The key contributions of this work are summarized as fol-
lows:

• We propose a CVLM module for cyclic manipulation
of a query X-ray and its generated reports from a des-
ignated report generator. Additionally, we introduce a
cyclic success rate to ensure the generation of effective
counterfactual images for decoding the report generation
process and to quantitatively evaluate the manipulation
effectiveness of CVLM.

• We propose an unsupervised feature localization frame-
work based on the difference map between counter-
factual and initial X-ray images, effectively filtering
noise and identifying key features responsible for re-
sult changes, facilitating the understanding of explana-
tion results without requiring additional human labeling.

• Experiments show that counterfactual images, generated
from manipulated reports, achieve fine-grained feature
identification and verification for the generated contents
from the report generator, which is unattainable with ex-
isting methods.

• Experiments demonstrate that the model-agnostic na-
ture of CVLM allows users to evaluate whether the vi-
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sual features associated with the generated findings are
meaningful for the corresponding content. This capabil-
ity also enables users to compare the reliability of results
across different report generators and make informed de-
cisions on adopting suggestions from various models.

2 Related Work
2.1 Counterfactual Explanation
The most widely applied methods for visual explanation
are post-hoc explanation methods, as their model-agnostic
nature enables them to generalize across different mod-
els. Popular approaches include activation-based meth-
ods, backpropagation-based methods, and perturbation-based
methods. With the recent evolution of generative AI mod-
els, counterfactual explanation methods have emerged as an
advanced perturbation-based approach. These methods gen-
erate counterfactual images that elicit different findings from
the model, enabling users to identify differences between
similar classes—a common challenge in medical image clas-
sification tasks. Applications has emerged in explaining the
classifiers with different modalities in medical image analy-
sis, including X-rays [Atad et al., 2022; Mertes et al., 2022;
Singla et al., 2023; Schutte et al., 2021; Sankaranarayanan
et al., 2022; Maksudov et al., 2025], Magnetic Resonance
Imaging [Tanyel et al., 2023; Fontanella et al., 2023], ultra-
sound [Reynaud et al., 2022], histopathology images [Karras
et al., 2020; Schutte et al., 2021], and Computed Tomog-
raphy [Fang et al., 2024a; Fang et al., 2024b]. Over time,
counterfactual generation methods have evolved from using
variational autoencoders [Rodriguez et al., 2021] and gen-
erative adversarial networks [Lang et al., 2021; Atad et al.,
2022] to leveraging diffusion models [Rombach et al., 2022;
Fang et al., 2024a; Fang et al., 2024b]. While these meth-
ods typically generate counterfactual images to elicit changes
under the guidance of a given classifier, in this work, we
aim to develop a counterfactual generation method driven by
text manipulation. The counterfactual X-ray is designed to
achieve the desired content changes in the regenerated re-
ports.

2.2 Explainability in Report Generation Models
Current report generator models primarily utilize cross-
attention mechanisms to generate text from input images.
Consequently, most report generation methods explain their
outputs by identifying the most relevant image patches for
keywords in the generated report. This is achieved by calcu-
lating distances within the cross-attention architecture, which
serves as the basis for the explanations of the generated key-
words [Wang et al., 2023; Cao et al., 2023; Chen et al.,
2023]. Another category of methods [Alfarghaly et al., 2021;
Spinks and Moens, 2019; Wang et al., 2024] employs Grad-
CAM, a widely used technique, to identify the most activated
features within the image encoder layers and produce attri-
bution maps. However, due to their dependence on interme-
diate layers of deep networks, these attribution maps often
face challenges such as coarse localization and “unverifiable”
accuracy in explaining keyword-specific regions.

In contrast to these approaches, Tanida et al. (2023) pro-
posed a report generation method called RGRG, which sig-
nificantly enhances the interpretability and transparency of
generated reports by tailoring content generation to specific
anatomical regions. However, this approach heavily relies on
the preparation of a large paired dataset comprising anatom-
ical regions and corresponding fine-grained reports for both
the anatomical detection model and the report generation
training. This requirement substantially increases manual
labeling costs and limits the model’s ability to incorporate
larger X-ray-report datasets that lack fine-grained annota-
tions. Additionally, the self-explanatory workflow of RGRG
is not transferable to other report generators with different
generation processes.

In this paper, we aim to propose an explanation method
that achieves fine-grained visual feature localization for gen-
erated key findings as RGRG, while eliminating the need for
extensive labeling. Being model-agnostic, our approach can
enhance the interpretability and transparency of generated re-
ports across a wide range of report generation models.

2.3 Text-controlled Image Editing
In recent years, text-guided image editing has garnered sig-
nificant interest due to its ability to simplify image edit-
ing through natural language input. A substantial body of
work leverages the alignment between text and image em-
beddings within the pretrained large vision-language model
CLIP [Radford et al., 2021]. These methods use changes in
text embeddings before and after editing to infer correspond-
ing changes in image embeddings, enabling the generation of
edited images. DiffusionCLIP [Kim et al., 2022] fine-tunes
generative models using CLIP loss to align changes across the
two modalities. Alternatively, other approaches map changes
in text embeddings directly into the latent space of the im-
age encoder to regenerate the image without altering net-
work parameters [Patashnik et al., 2021; Abdal et al., 2022;
Lyu et al., 2023].

With the emergence of text-conditioned image generation
models such as Stable Diffusion [Rombach et al., 2022], re-
cent works have focused on more efficient text-guided im-
age editing by directly modifying the text prompts used for
image generation. However, a key challenge in these meth-
ods is that minor changes in prompts do not always lead to
correspondingly minor changes in the generated images. To
address this, Prompt-to-Prompt [Hertz et al., 2022] achieved
localized manipulation of generated images by merging inter-
mediate feature maps during inference. Leveraging the paired
images generated by Prompt-to-Prompt, Pix2Pix [Brooks et
al., 2023] further introduced a more user-friendly instructive
editing network. ControlNet [Zhang et al., 2023] trains an ad-
ditional control network that uses auxiliary conditions, such
as sketches or segmentation maps of key objects, to keep the
objects unchanged while editing other image contents via text
manipulation.

While the aforementioned methods edit images based on
the semantic meaning of the modified text, CVLM differs in
its manipulation goal. The manipulation of counterfactual im-
ages by CVLM, driven by the manipulated text, does not need
to align with real-world semantics. Instead, it is specifically
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Figure 3: Overview of applying the proposed Cyclic Vision-Language Manipulator in explaining the report generator and the challenges
existing in developing the CVLM.

designed to elicit consistent changes in the regenerated re-
ports produced by the target report generator. By achieving
cyclic manipulation, the altered images are verified to influ-
ence on the report generator, thereby uncovering whether the
generator relies on clinically recognized features or other bi-
ased features.

3 Method

The overall framework for CVLM and applying it for decod-
ing a target report generator is illustrated in Fig. 3. In the fol-
lowing, we detail the components and application of CVLM
to obtain tailored explanations for a target report generator.

3.1 Development of CVLM

The proposed CVLM module consists of an off-the-shelf re-
port generator that produces reports from a query X-ray and
a conditional diffusion model tailored to manipulate images
based on the findings detected by the report generator. To
achieve the explanation capability of the generated images,
the image generators in CVLM are designed to meet three
specific objectives, as illustrated in Fig. 2: (a) Reconstruc-
tion ability: Ensuring that query images can be accurately
reconstructed from the unmanipulated generated reports. (b)
Minimal image change: Ensuring that altering key findings
in the generated report results in only minimal changes to the
image. (c) Cyclic manipulation: Ensuring that the manipu-
lated image results in consistent alterations in the regenerated
report, completing the cyclic process. To effectively achieve
these objectives, we implemented the following adaptations
based on the advanced capabilities of the text-to-image Sta-
ble Diffusion model [Rombach et al., 2022].

Data Preparation
To enable image manipulation based on the image features
learned for the keywords generated by the report generator,
rather than relying on real image features corresponding to
medical terminology, we inferred the generated reports from
the target report generator on the dataset on which it was
trained. We paired the initial X-rays with the inferred results
and trained the model to reconstruct the initial X-rays using
the generated reports instead of the human-labeled ground-
truth (GT) reports. This model is referred to as the tailored
generation model, which can generate counterfactual X-rays
by removing keywords from the generated reports, enabling
the detection of specific differences responsible for changes
in the findings produced by the target report generator.

Conditioning the reconstruction of the query image on the
generated report is also critical for further feature identifi-
cation, as explained in Fig. 2. For example, as shown in
Fig. 4, training image generators with GT reports of X-ray
images also achieve image manipulation via word manipu-
lation. However, this approach fails to accurately reconstruct
the original query X-ray. In this case, the reconstructed image
from the GT model exaggerates features of “cardiomegaly”
when it is present in the generated report but absent in the GT
report. When “cardiomegaly” is removed from the text to ob-
serve its influence on the image, the GT reports also removes
“cardiomegaly” but introduces more unintended changes to
the initial query image. In contrast, the manipulated result
from tailored model achieves more precise identification of
the features in the initial image that caused the report genera-
tor to generate the finding of “cardiomegaly”.

Furthermore, to facilitate automated manipulation of the
generated reports and align the image features to the gen-
erated contents in the generated reports, we removed the
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I R M

(a) GT model

I R M

(b) Tailored model

Figure 4: Reconstruction (R) and manipulation (M) of the initial im-
age (I) by stable diffusion models trained with ground truth reports
(GT model) and generated reports (tailored model), respectively. For
both models, the reconstruction is conducted using the generated re-
port, and the manipulation involves removing the presence of car-
diomegaly from the prompt.

redundancy and simplified the reports into a predefined
list of 13 abnormalities—Enlarged Cardiomediastinum, Car-
diomegaly, Lung Opacity, Lung Lesion, Edema, Consolida-
tion, Pneumonia, Atelectasis, Pneumothorax, Effusion, Pleu-
ral Other, Fracture, and Support Devices—using the pre-
trained CheXbert classifier [Smit et al., 2020], which is
widely used for evaluating report correctness regarding ma-
jor findings. We then organized the generated reports as a
concatenated list of abnormalities, formatted as: “The lung
with abnormalities O1, ..., ON” where O represents N ab-
normalities produced in the generated reports.

Training Objective
Our training objective follows the Stable Diffusion training
procedure, which is given as below:

LLDM := E
[
∥ϵ− ϵθ (zT , T, τθ(y))∥22

]
, (1)

where zT is the encoded feature of the initial real query X-ray
image from the encoder of a variational autoencoder, τθ is the
text encoder that transforms the prompt to the text embed-
ding. During our training, we leverage the pretrained model
weight for the text embedding and image autoencoder mod-
ules by a stable diffusion model pretrained on MIMIC [Liang
et al., 2023]. During training, we initialize the weight of
UNET architecture by the stable diffusion pretrained weight
“CompVis/stable-diffusion-v1-4” and freeze the parameter in
the image autoencoder.

Real Image Manipulation
To enable the CVLM to explain the generated report of a real
X-ray query, we employ Denoising Diffusion Implicit Mod-
els (DDIM), a non-stochastic variant of Denoising Diffusion
Probabilistic Models (DDPMs), which performs the sampling
process for T steps:

xt−1 =
√
αt−1

(
xt −

√
1− αt · ϵθ(xt, t)√

αt

)
+
√
1− αt−1 − σ2

t · ϵθ(xt, t) + σtϵt (2)

where ϵt ∼ N (0, I) represents a standard normal distribu-
tion, and σt controls the stochasticity of the forward process.
Sharing the same inference formula as DDPM, DDIM sets σt

in Eqn. (2) to zero, allowing for a deterministic reconstruction
without randomness. To reconstruct the initial image, we ap-
proximate the initial noise xT using DDIM Inversion, which
introduces noise to the image through forward diffusion pro-
cess.

3.2 Counterfactual Explanation
While the edited image reflects the manipulation in the report
generator and achieves the desired changes in the regenerated
report, as shown in Fig. 2, we refer to these manipulated X-
rays as “cyclic” counterfactual images. These images are then
utilized to decode the report generation process by identify-
ing the visual feature changes that correspond to the modifi-
cations in the generated report for each query X-ray.

Removal of Visual Abnormality
To detect the underlying visual features associated with the
context generated by the report generator, we modify the re-
organized prompt by removing the findings produced in the
generated report and send it to the image generation model for
counterfactual generation, as shown in Fig. 3 (B). A success-
ful cyclic counterfactual image is defined as one that success-
fully removes the target findings in the regenerated report. We
then leverage these counterfactual images to detect the visual
changes that lead to the reversal of the report findings.

Unsupervised Feature Identification Frame Generation
To facilitate the detection of crucial features that alter the
findings in the regenerated report, we propose an unsuper-
vised method for generating feature identification frames.
This method calculates a frame based on the absolute dif-
ference map between the initial X-ray and its counterfactual,
allowing the observation of visual alterations responsible for
changes in the report while minimizing noise and excluding
isolated points. Specifically, the absolute difference between
the two images is first computed, followed by the application
of a Gaussian blur with a kernel size of H ×W and a thresh-
old L to suppress noise in the difference map. To identify
abnormalities that are semantically represented in the image,
we extract the contours of isolated pixels, group them into
connected components, and retain only the most significant
ones by selecting contours with the largest areas. Finally, the
difference frame is constructed by retaining the top K major
components. An example of the entire workflow is illustrated
in Fig. 5.

4 Experiments
In this section, we first outline the experimental settings, fol-
lowed by the presentation of results. These results include the
effectiveness of CVLM in explaining report contents, com-
parisons of explanation approaches, and ablation studies.
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Figure 5: Image processing pipeline in chest X-ray analysis.

Query Recon Cardiomegaly Device Atelectasis

(a) R2GenCMN: Cardiomegaly, Support Devices, Atelectasis

(b) R2Gen: Enlarged Cardiomediastinum, Support Devices

Figure 6: Explanation results for the same query X-rays with two
different report generators. “(0)” denotes that the finding has been
removed in the regenerated report; blue text indicates false positives
against the ground-truth report.

4.1 Experimental Setting
Dataset and Report generators
In this paper, we developed and evaluated CVLM to de-
code two report generators, R2Gen [Chen et al., 2020] and
R2GenCMN [Chen et al., 2022], in order to detect the vi-
sual features utilized by each within X-ray images. For each
CVLM, we prepared the training dataset using MIMIC-CXR
[Johnson et al., 2019], as it was also used to train both re-
port generators. The dataset comprises 473,057 chest X-ray
images and 206,563 paired reports from 63,478 patients. Fol-
lowing the methodology in the two prior works, we utilized
a subset of the dataset, consisting of 270,790 X-rays, to train
CVLM. A validation set of 2,130 X-rays was used to select
the optimal image generation model, while a test set of 3,858
images and reports was used to generate the corresponding
counterfactual images.

Implementation Details
For developing CVLM, we froze the text encoders and trained
the diffusion model using a batch size of 8 and a learning rate
of 5× 10−5 on a single A6000 GPU with 40 GB of memory.
The model was trained for 100k steps over approximately one
week. The final model for cyclic counterfactual generation
was selected based on the highest PSNR of the reconstructed
images on the validation set. For counterfactual generation,

the DDIM step was set to 50. For frame mask generation, a
Gaussian blur of size 5×5 was applied, and the threshold was
set to 95 ± 10, with the best value selected for each manipu-
lated finding. The number of preserved tokens, K, was fixed
at 5. More details are provided in the online appendix1.

Evaluation Methods
We conduct a thorough evaluation of the proposed method in
the following four steps: (1) We first propose a metric called
Cyclic Rate (CR) to quantitatively assess the effectiveness of
CVLM in generating cyclic counterfactual images for expla-
nation. CR is defined as the success rate of achieving the
intended manipulation in the regenerated report. Specifically,
CR is calculated as the ratio of counterfactual images gen-
erated from reports where a finding is removed, and whose
regenerated report successfully reflects the removal of that
finding, to the total number of manipulations performed; (2)
Next, we apply the feature identification framework to decode
the visual features utilized by two individual report generators
and compare the features they utilize; (3) To further illustrate
the superiority of CVLM in identifying fine-grained and ver-
ifiable features for generated contents, we compare our pro-
posed difference detection frame (introduced in Section 3.2)
with a widely used model-agnosic explanation method Cross-
Attention Map and the explanation results from a state-of-
the-art self-explainable report generator RGRG [Tanida et al.,
2023]. The results are shown in Fig. 6. (4) Finally, we con-
duct ablation studies on the Cyclic Rate of CVLM, analyzing
its performance with respect to inference times (T ), training
durations, and the use of raw reports versus structured reports.

4.2 Results
Success Rate of Cyclic Counterfactual Generation
In Table 1, we first investigate the impact of different train-
ing durations in the cyclic rate (CR) schedule of CVLM on
generating cyclic counterfactual explanations. We then com-
pare the CR settings for R2Gen and R2GenCMN. Specifi-
cally, we evaluate models that achieve the highest reconstruc-
tion quality (measured by PSNR) and those that achieve the
lowest FID score. Our results show that the model with the
best reconstruction ability, when paired with the generated
text, leads to the highest cyclic manipulation effectiveness in
explaining the reports for both R2Gen and R2GenCMN. We
therefore select this checkpoint for report explanation. Both
models achieve a success rate around 0.7, with CVLM for
R2Gen showing a higher manipulation success rate overall.

Comparison of Different Report Generators
We present the visual explanation results from the cyclic
counterfactual X-rays in Fig. 6 for R2Gen and R2GenCMN
respectively. Specifically, we remove the abnormalities from
their generated reports and generate the counterfactuals re-
spectively, and resend the counterfactual images to their re-
spective report generators to see if the abnormalities have
been removed in the generated report. For the query X-ray
in Fig. 6, R2GenCMN detected three abnormalities, while
R2Gen detected two. Both models successfully removed the

1The appendix for this work is available at https://arxiv.org/abs/
2411.05261.
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Support Device

‘endotracheal tube’

Cardiomegaly

‘heart size’

Cardiomediastinum

‘cardiacsilhouette’

Edema

‘vascular congestion’

Lung Opacity

‘opacities’

Consolidation

‘consolidation’

Figure 7: Qualitative comparison with cross attention and RGRG methods on the MIMIC-CXR dataset. 1st row is the initial images, 2nd row
is the counterfactuals generated by CVLM method, 3rd row is the images with the bounding box and the text generated by RGRG method,
and 4th row is the heatmap with the attention entities (the blue text) generated by the cross attention method. Note: The counterfactuals in
the figure all achieve the cyclic manipulation in the regenerated report. In this image, CVLM and attention are model-agnostic explanation
methods applied to the findings in the generated reports from R2GenCMN, which are confirmed to exist in the GT report. In contrast, RGRG
are explainable report generator which generates its report separately based on specific regions.

Remove success GT Model 16k Model 46k

R2GenCMN 0.655 0.690 0.595

Remove success GT Model 14k Model 42k

R2Gen 0.703 0.712 0.665

Table 1: Success rate of CVLM in explaining R2GenCMN and
R2Gen across training checkpoints selected by PSNR and FID. Suc-
cess rates are calculated over 569 findings from 400 images. 14k
and 16k denote best-PSNR checkpoints; other iterations are selected
based on lowest FID.

findings in their respective report generator outputs, and we
can clearly observe the visual features contributing to the gen-
erated findings in their reports.

As “Atelectasis” is the point of disagreement between the
two models, we included the opinions of two radiologists
to provide their judgment and identify the features indica-
tive of its presence. We found that their assessments and the
identified features closely matched the features detected by
R2GenCMN. This suggests that R2GenCMN utilizes clin-
ically recognized features for generating this finding, even
though the ground-truth report from the dataset did not in-

(a) Remove the “cardiomegaly”
sentence from the raw report.

(b) Remove “cardiomegaly”
from the reorganized report.

Figure 8: Manipulation from stable diffusion trained with raw re-
ports and cleaned reports, respectively. For both, the manipulation
is removing the contents about the existence of cardiomegaly from
the prompt. The organized prompt which focuses on the findings
brings significant change while the cardiomegaly is removed.

clude it. This also indicates that the explanations provided
for the generated reports not only validate the findings of the
models but also help identify potential missing findings in
reports produced by humans. By presenting the generated re-
port alongside its feature maps, our approach offers a more
reliable and safer method for utilizing the generated reports
in clinical practice. More cases are given in Appendix B1.
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Benchmark against State-of-the-art Explanations
Fig.7 shows the different explanations generated for vari-
ous abnormalities. Compared to the cross-attention method,
our approach produces more accurate localization of the ma-
jor findings. The heatmaps produced by the cross-attention
method appear unstable; for instance, the findings for car-
diomediastinal silhouette, opacity, vascular congestion, and
consolidation in Fig.7 are not localized within the lung areas.

The RGRG method provides reasonably interpretable re-
sults by associating findings with each anatomical region in
its frame. However, upon examining the contents of its frame,
it appears to have lower sensitivity to abnormalities, likely
due to errors introduced by the pretrained detection model.
While RGRG achieves internal interpretability, its framework
cannot be adapted to other report generators that utilize dif-
ferent models or training datasets. In contrast, our proposed
method offers precise localization explanations across vari-
ous report generation models, as demonstrated in Fig. 6.

Additionally, CVLM not only demonstrates the ability to
identify fine-grained features within X-rays but also effec-
tively manipulates features occurring in multiple locations,
such as opacity. It can also detect large-scale global abnor-
malities, such as enlarged cardiomediastinum, significantly
surpassing the feature identification capabilities of existing
explanation methods.

Ablation Study
We compared the manipulation method within CVLM to
a direct report manipulation approach, where Stable Diffu-
sion is trained directly with unprocessed reports without pre-
cleaning. The results in Fig. 8 indicate that using organized
prompts focused on findings results in significantly better per-
formance compared to removing entire sentences from un-
structured reports. For quantitative comparison, out of a to-
tal of 400 manipulations, the structured report manipulation
achieved a much higher success rate (0.712) than the direct
report manipulation approach (0.449) for the R2Gen model.

Finally, we analyzed the influence of the denoising step T
during diffusion model inference on achieving cyclic success.
We evaluated T values ranging from 20 to 100 and found
that T > 50 yields the highest success rates. For efficiency,
T = 50 was selected. The computation cost and numerical
results are provided in Appendix B1.

4.3 Discussion
Broader Applications
While there is an abundance of X-ray report generators, ex-
isting evaluation metrics primarily focus on assessing the ac-
curacy of the generated language and the detected abnormal-
ities. Our proposed method introduces a novel metric by en-
abling the verification of identified features, facilitating the
comparison of image features used for the generated findings
in the report. This provides a unique approach to evaluating
the trustworthiness of the generated content from different re-
port generators by examining whether they rely on clinically
consistent image features. The proposed method is modality-
agnostic and can be easily extended to report generators for

1The appendix for this work is available at https://arxiv.org/abs/
2411.05261.

other imaging modalities, such as MRI and CT scans, to im-
prove the explainability of generated reports.

Limitation and Future Work
Currently, our method relies on CheXbert, which classifies
only 13 diseases for reorganizing the report. This limita-
tion restricts CVLM to explaining these 13 specific key-
words. However, given the success of large language models
(LLMs), such as GPT-4 [OpenAI, 2023], in accurately or-
ganizing reports, as demonstrated in a recent work [Zhang
et al., 2024], we can easily extend the proposed method to
handle open vocabulary explanations by leveraging LLMs to
extract a broader list of abnormalities from the generated re-
ports, thereby enhancing the flexibility and applicability of
CVLM. Besides, we will include more human experts and re-
turn them the findings from different report generators and
their corresponding visual contexts, to further benchmark the
reliability of the existing report generators.

5 Conclusion
In this paper, we propose a counterfactual generation method
for query X-rays input to the report generator. These coun-
terfactual X-rays modify specific visual features, resulting in
the disappearance of certain major findings in the originally
generated reports. This approach provides users with insights
into the underlying feature patterns utilized by the report gen-
erators. Our method enhances the transparency of automated
reports generated by existing report generators, serving as a
valuable tool for experts to understand and evaluate the trust-
worthiness of AI-based reports. By improving interpretability
and reliability, our approach strengthens confidence in the use
of automated reports in real-world applications.
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