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Abstract

Boolean circuits in d-DNNF (determinstic Decom-
posable Negation Normal Form) enable tractable
probabilistic inference, motivating research into
compilers that transform arbitrary Boolean circuit
into this form. However, d-DNNF compilers com-
monly require the input to be in conjunctive nor-
mal form (CNF), which means that a user must
first convert their Boolean circuit into CNF. In this
work, we argue that d-DNNF compilation would
substantially benefit from reasoning over the orig-
inal input circuit’s structure, rather than solely re-
lying on its CNF representation. To this end, we
adapt an existing compiler and implement an opti-
misation that becomes more readily available once
we reason over the input circuit: the identifica-
tion and elimination of don’t care variables. We
empirically demonstrate the effectiveness of this
approach, achieving a significant improvement in
both the number of solved instances and the size of
the resulting circuits.!

1 Introduction

Boolean functions are compactly represented by Boolean cir-
cuits. Beyond size, their practical utility also depends on
structural properties [Darwiche and Marquis, 2002]. In this
work, we focus specifically on the class of d-DNNF (deter-
ministic Decomposable Negation Normal Form) circuits, as
they facilitate tractable probabilistic inference [Chavira and
Darwiche, 2008; Derkinderen et al., 2024].

Existing d-DNNF compilers, which compile arbitrary in-
put to d-DNNF, can be categorized as either bottom-up or top-
down. The former rely on an apply-operation that allows the
circuit to be built incrementally but also restricts the class of
produced d-DNNF circuits [Darwiche, 2011]. The latter ap-
proaches do not rely on an apply operator and instead use the
traces of a CDCL-based model counting algorithm [Huang
and Darwiche, 2005; Lagniez and Marquis, 2017a; Korhonen
and Jirvisalo, 2023]. We will focus on the latter, top-down
compilers.

!This article has been accepted for publication at the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI2025).

Top-down compilers require input circuits in conjunctive
normal form (CNF), a standard assumption they inherit from
the CDCL algorithm on which they are based. This assump-
tion is made possible by the Tseitin transformation [Tseitin,
1983], which transforms any circuit into an equisatisfiable
CNF prior to compiling. As a downside, however, structural
information of the input circuit is lost, or becomes less ap-
parent, exactly due to this transformation [Thiffault et al.,
2004]. Retaining such information can enhance preprocess-
ing [Lagniez er al., 2020], and mitigate inefficiencies that
arise during compilation. For example, [Derkinderen, 2024]
demonstrated that parts of the compiled circuit are not perti-
nent, needlessly increasing the circuit size.

Our primary contribution is a novel compiler that lever-
ages information from the original input circuit. We ar-
gue that d-DNNF compilers are more effective when they
reason about this circuit rather than solely its CNF repre-
sentation, and we consequently advocate for directing com-
piler development towards this approach. To support this,
we adapt a compiler to retain the original circuit and study
an optimisation that, as a consequence, becomes more read-
ily available. This optimisation builds on the observation
that don’t care variables—circuit gates that become discon-
nected from the output during compilation—can be elimi-
nated. While this idea has previously been explored in the
context of circuit satisfiability solving [Thiffault er al., 2004;
Drechsler et al., 2009], we are the first to show its efficacy
in the domain of knowledge compilation for d-DNNF cir-
cuits. Importantly, our implementation maintains both the
original input circuit and its CNF representation. This allows
our method to benefit from existing data structures and algo-
rithms, while enabling seamless integration into other state-
of-the-art CDCL-based d-DNNF compilers.

To evaluate our approach, we modified the compiler d4
[Lagniez and Marquis, 2017a]. Experiments on a variety of
benchmarks involving probabilistic inference problems mod-
eled as circuits reveal significant computational benefits. In
many cases, the computational overhead and size of the re-
sulting d-DNNF circuits are reduced by up to an order of
magnitude compared to the baseline d4.

The remainder of the paper is organized as follows. First,
we present the formal preliminaries. Then, we describe the
theoretical basis and provide implementation details. Next,
we describe the experimental protocol used in our empirical
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Figure 1: Example of circuits.

evaluations and discuss the results. Finally, we conclude the
paper by highlighting potential directions for future research.

2 Background

A Boolean function f(X) over a set of n Boolean variables
X maps each instantiation of X to a Boolean value {T, L}.
An instantiation that f maps to T is called a model of f. We
use Mods(f) to refer to the set of models of f. The computa-
tional problem of determining the number of models of f, is
called model counting. A literal [ is an instantiated Boolean
variable =, which we denote using x or its negation —zx.

A circuit X represents a Boolean function as a rooted di-
rected acyclic graph, denoted as a tuple of nodes and edges
(N, E), wherein each leaf node is a literal or a Boolean con-
stant (T or L), and each internal node is a gafe with type
negation (—), conjunction (A) or disjunction (V), each with
the usual semantics. We define conjunction and disjunction
gates to have at least two inputs (incoming edges), and a nega-
tion gate to have exactly one input. When each gate of > only
has one output (i.e., one outgoing edge), we call 3 a formula.
Without loss of generality, we assume that each circuit that
has to be compiled has a single sink, denoted as sink(X). We
use Vars(X) to denote the set of Boolean variables that ¥
uses in its leaf nodes. For convenience, we may additionally
use the equivalence symbol < with the usual semantics, and
may use X to refer to the Boolean function f that it represents.
For instance, we may use Mods(X) in place of Mods(f).

Conditioning circuit ¥ on literal ¢, denoted as E| ¢, 18 equiv-
alent to replacing each occurrence of ¢ in X with T, and —¢
with L. We use Jz.3 to denote existential quantification of
x, which is semantically equivalent to |, V X|—,.. We extend
this to a set operation 3.X.3.

Example 1. Figure I presents two circuits. Figure la depicts
the formula > = ((—a V d) A =b) V (a A (b V —¢)) over
Vars(X) = {a,b,c,d}, while Figure 1b illustrates ¥,.

By imposing constraints on the circuit structure, we define
specific families of representation languages. In this work,
we focus on CNF and d-DNNF circuits. CNF (conjunctive
normal form) is a particular type of circuit that represents a
conjunction of clauses, where each clause is a disjunction of
literals. CNF is an appealing language because any circuit can
be transformed into a CNF formula in polynomial time and
size using the Tseitin transformation [Tseitin, 1983]. This
transformation introduces a new auxiliary variable z for each

V- and A-gate, making the variable equivalent to the gate’s
output. Consequently, any other gate that refers to this output
can instead refer to z. Because of this, we can assume that
there are no explicit negation gates, as A- and V-gates can
simply refer to input literal -z instead of the gate that other-
wise negates x explicitly. The Tseitin transformation results
in a set of equivalences of the form /& A, ¢; or (<\/, (5,
which can easily be transformed into CNF.

Example 2 (Example 1 cont’d). Consider the circuit ¥ from

Example 1. The Tseitin transformation T introduces five
fresh variables {x1, ..., x5} for ¥, each defined as follows:
1< aVvVd 19 bV e r3 < b ATy

e alNTo X5 23V 2y
Since ¥ must be satisfied, we set x5 < T.

Unfortunately, CNF does not allow for a polynomial-time
consistency test (unless P=NP), making it unsuitable as a tar-
get representation language. In contrast, d-DNNF (determin-
istic Decomposable Negation Normal Form) is a compelling
choice due to its support for tractable probabilistic inference
[Darwiche and Marquis, 2002]. d-DNNF consists of Boolean
circuits where each input is either a literal or a Boolean con-
stant (L or T), and each internal gate is either a decompos-
able A-gate or a deterministic V-gate. In a decomposable gate
of the form A(Ny,..., Ng), no common variable is shared
between the subcircuits rooted at N; and IV; for all ¢ # j.
In a deterministic gate of the form V(Ny, ..., Ni), the sub-
circuits rooted at N; and N; are jointly inconsistent for all
i # j. The size of a circuit X, denoted by |X|, is its number
of gates. d-DNNF is universal, as it can accommodate every
propositional theory [Darwiche, 2002].

In this paper, we focus on compilers that take CNF for-
mulas as input and compile them into d-DNNF circuits. In
state-of-the-art d-DNNF compilers, the circuit is derived from
the trace of an exhaustive search conducted by a CDCL SAT
solver. The Conflict-Driven Clause Learning (CDCL) algo-
rithm was originally designed to solve satisfiability problems,
determining whether a model exists [Silva and Sakallah,
1996]. However, it can be adapted for model counting [Birn-
baum and Lozinskii, 1999] and, by leveraging the trace of the
procedure [Huang and Darwiche, 2005], it can function as a
d-DNNF compiler.

The algorithm operates by iteratively branching on literals
(making decisions) until either all clauses are satisfied or a
conflict arises. When a conflict occurs, the algorithm iden-
tifies its root cause and generates a conflict clause, which is
added to the search process. It then backtracks to an earlier
decision point and continues. A particularly useful optimiza-
tion for model counting and d-DNNF compilation is compo-
nent decomposition and component caching [Bacchus et al.,
2003]. A component is a subset of clauses that does not share
any variables with clauses outside the component, allowing
it to be solved independently. Component decomposition in-
volves regularly partitioning the remaining clauses into inde-
pendent components, solving each separately, and combin-
ing the results using a A-gate. Additionally, by incorporating
a caching mechanism, the algorithm can reuse results from
previously solved components. In the context of compilation,
this leads to more succinct d-DNNF circuits with a non-tree
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structure.

3 Circuit Aware Compilation

The assumption that the input circuit is a CNF formula is in-
grained in several aspects of CDCL-based compilers. For ex-
ample, most variable ordering heuristics and component rep-
resentations have been designed specifically for CNF. In this
work, we argue for the development of compilers capable of
reasoning about more general input circuits. To support this,
we adapt an existing compiler to preserve the original cir-
cuit X and reason about it. Importantly, to leverage the ef-
ficient implementations already proposed for CNF formulas,
we maintain both the circuit and its CNF version. This way,
each part of the compiler can reason using the most suitable
representation.

This approach allows us to dynamically eliminate gates
from X that have become irrelevant. The key challenge lies
in determining the conditions under which this elimination is
possible. In the following sections, we present theoretical in-
sights that define these conditions, followed by the introduc-
tion of the algorithms designed to efficiently identify gates for
removal. Such algorithms have previously been used in the
context of solving circuit satisfiability problems [Thiffault ez
al., 2004], but have not yet been applied to model counting
and knowledge compilation prior to this work.

3.1 Theoritical Insights

Currently, compiling a circuit ¥ into a d-DNNF involves
translating it to a CNF formula ® using the Tseitin encod-
ing and then running a d-DNNF compiler on . Due to the
Tseitin encoding, the formula ® introduces additional vari-
ables X that were not present in the original circuit .

Two strategies can be envisioned to obtain the d-DNNF cir-
cuit representing > from ®. The first strategy involves com-
piling the formula 3X.®, treating the variables in Vars(X)
as the set of projected variables in ®. Although this ap-
proach is appealing because the resulting d-DNNF would be
constructed using only the variables in Vars(X), it may be
less efficient in practice. This inefficiency arises from the
added constraints on the branching heuristic, which dictates
the order in which variables can be selected as decisions,
thereby making the problem more challenging. This chal-
lenge is also reflected in the literature, where upper bounds
on the time complexity of model counting for formulas with
fixed treewidth k are significantly higher for projected model

counting (e.g., O(2%) for standard versus O(?zk) for pro-
jected model counting) [Fichte ez al., 2023].

The second strategy bypasses this branching heuristic lim-
itation by compiling the formula & directly. This approach
is feasible because the variables in X are derived from the
variables in Vars(X). The key advantage of this strategy is
that it allows for direct ‘branching’ on gates. As a side ef-
fect, the resulting d-DNNF A is not structurally equivalent to
> but is query-equivalent. This means that while queries are
formulated using the variables in Vars(X), the answers will
remain the same. Specifically, there is a one-to-one mapping
between the models of A and the models of X.

-a d b -c
(a) (b)

Figure 2: Figure 2a illustrates the circuit from Figure 1a, with gates
assigned to Boolean variables via the Tseitin translation. Figure 2b
shows the residual circuit obtained after conditioning on {5, z4}.

Both strategies overlook the underlying circuit structure
they represent, meaning that certain information is not di-
rectly accessible to the d-DNNF compiler. For instance, the
compiler may not easily recognize that some gates do not af-
fect the circuit’s overall consistency. To illustrate this situa-
tion, consider the following example:

Example 3 (Example 2 cont’d). Consider the circuit in Fig-
ure 2a with Boolean variables from the Tseitin translation in
Example 2. If variables x5 and x4 are true in the CNF for-
mula, the subcircuit —b A (—a V d) becomes irrelevant, as
shown in Figure 2b.

Even though it is clear from inspecting the circuit that the
valuation of z3 is irrelevant, this insight is not as easily de-
rived when dealing with the set of equivalences generated
by the Tseitin encoding. The Boolean function encoded by
the set of equivalences I'y = {25 & T,24 & T,17 &
—aVd, e & bV e, x5 & —bATy, x4 < alxy | differs from
thatof Ty = {z5 © T,24 & T,22 & DV, 24 & aNTa},
with Mods(T'1) # Mods(I's). However, since our goal is
to compile a d-DNNF that is query-equivalent, the follow-
ing theorem demonstrates that it is possible to remove dis-
connected gates while preserving the set of projected models.
We define a disconnected gate as a gate whose output neither
serves as the input to another gate, nor is fixed to a Boolean
constant. The variable associated with such a gate is called a
don’t care variable [Thiffault ez al., 2004].

Proposition 1. Let X be a Boolean circuit and ' = T (%) the
set of equivalences representing Y. through the Tseitin encod-
ing, where X denotes the set of Tseitin variables. If the output
of a gate g in 3. neither serves as the input to another gate nor
is fixed to a Boolean constant, then there exists a one-to-one
mapping between Mods(X) and Mods(T'\ {z, < @:¢;}),
where & € {V,\} and x4 € X is the Tseitin variable repre-
senting gate gin I

Proof. Without loss of generality, assume @& = V (the proof
for @ = A follows similarly). First, note that if gate g is
disconnected in Y, removing it does not alter the models of
>.. This is because g does not impose any constraints on
the valuation of its input variables, given that there are no
constraints on the valuation of g’s output. Consequently, the
circuit ', obtained by removing g, has the same models as
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%, ie., Mods(X) = Mods(X'). By using the same Tseitin
variables to identify common gates in ¥ and X', we have
'\ {zy & Vil;} = T(X'). Due to the properties of the
Tseitin encoding, there exists a one-to-one mapping between
Mods(¥') and Mods(I' \ {z, < V;¥¢;}), and therefore, also
between Mods(X) and Mods(I'\ {z4 < V¢;}). O

The gate elimination rule can be applied iteratively until
no disconnected gates remain in the circuit. However, detect-
ing whether a disconnected gate exists requires scanning the
entire circuit, potentially necessitating a quadratic number of
steps in the worst case to ensure that no gates are discon-
nected. This process can be particularly time-consuming for
large circuits.

3.2 Implementation Details

To improve the efficiency of identifying gates that can be
removed using the gate elimination rule, we introduce the
CircuitManager object. This specialized utility inte-
grates efficient data structures and algorithms tailored for this
purpose, allowing seamless incorporation into state-of-the-art
d-DNNF compilers.

To integrate our approach into compilers that only handle
CNF formulas, we must efficiently coordinate the two en-
gines: the CNF engine and the circuit engine, modelled by
the CircuitManager. The CNF engine primarily facili-
tates the efficient retrieval of information for the compilation
process, such as identifying connected components, manag-
ing the current formula, and computing heuristics. This en-
gine is continuously updated at each decision node by push-
ing the literals assigned as true by the compiler. Additionally,
when the compiler backtracks, the CNF engine is updated by
restoring the formula to its previous state.

To synchronize the two engines, the circuit engine must be
updated in tandem with the CNF engine. When a set of lit-
erals L is assigned to true in the CNF engine, the circuit en-
gine must determine which gates in the circuit become deac-
tivated. We distinguish between two types of such gates: the
set R of gates that become resolved due to literal assignment
L (i.e., the constraint represented by the gate has become sat-
isfied), and the set D that subsequently become disconnected.
This distinction aids in identifying disconnected gates, as the
disconnection is triggered by resolving an ancestor gate.

Example 4 (Example 3 cont’d). When assigning {x5, x4} to
true in Example 3, the gate associated with x5 is resolved
(x5 € R), such that xs and subsequently x1 both become
disconnected {x3,x1} € D.

In the following discussion, on how to determine R and D,
we assume that the circuit ¥ = (N, E) has been translated
into a CNF formula using the Tseitin encoding 7. This trans-
lation allows us to uniquely identify each gate in the circuit
by the literal associated with it.

Example 5 (Example 2 cont’d). The circuit ¥ = (N, E)
labeled by T in Example 2 consists of the following elements:
N ={a,b,c,d,—a,—b,—c,~d, 21, T, T3, 4,75} and E =
{(.%'27 .%'4), (.’173, 1‘5)) ($4a $5), (_'aa l‘]_), (_‘07 .’IIQ), (_‘b7 .'173)7

(dv xl)a (ba I2)a (Ila 'T3)a (a7 I4)}

Algorithm 1: initWatches

Input: a circuit ¥ = (N, E).

Output: the set of gates that are not watched.
1 G+ {geN|Hd, g € E}
2 Let watches be an empty map
sforge N\{ge N|H¢,g) € E}do
4 watches[g] ={¢ e N\ G| (¢,9) € E}
5 G + G Uwatches|g]

6 return N \ {G U sink(X)}

To determine R, we consider for each literal [ € L the ac-
tive gates it is involved in (either as output or input) and apply
the following rules. A A-gate g is resolved if its Tseitin vari-
able x4 is assigned to true, or x, is assigned to false and at
least one of the input literals to g is also assigned to false. In
case of the former, the CNF engine will propagate the input
literals of g to also become true, so these must not be checked
anymore. Similarly, a V-gate ¢ is resolved if its Tseitin vari-
able z, is assigned to false, or if z, is assigned to true and
at least one of the input literals to g is also assigned to true.
To efficiently apply these rules, we can reuse data structures
already present in the CNF engine.

As the gates in R are resolved, they become inactive and
may cause a child gate to become disconnected. Rather than
verifying for each child whether any of its outputs are still
active to determine disconnection, we propose a more ef-
ficient mechanism akin to the concept of watched literals
[Moskewicz et al., 2001]. Thus, for each circuit gate ¢’, we
designate exactly one parent gate g to watch it, called the sen-
tinel of ¢'.

To achieve this, CircuitManager includes a mapping
of watch lists, denoted as watches. This structure links each
gate g € N to a list watches]g| that contains all gates mon-
itored by g. We initialize this watches data structure by in-
voking the method initWatches, depicted in Algorithm 1.
This function begins by initializing the set G as all nodes
without incoming edges (i.e., non-gate nodes), as these nodes
cannot function as a sentinel and must also not be watched
(line 1). Then, the function iterates over all gates g (line 3),
populating watches[g] with the child gates that g will be the
sentinel of (line 4). Importantly, each gate is only watched
by one sentinel, so we also use G to track the gates that are
already being watched (line 5). Finally, this function returns
the set of gates that are not being watched (line 6). If we as-
sume that the initial input circuit has no disconnected gates,
then this will always return the empty set.

Example 6 (Example 2 cont’d). Consider the circuit
Y described in Example 2 with gates {xi,xa,...,T5}.
The watches data structure is then initialized as follows.
watches[r;] = watches[zs] =) watches|z;] = {1}
watches[zs]) = {x3, 24} watches[zy] = {22}

To complete the initialization of the CircuitManager
object, we introduce an array named isActiveGate to
track the status of each gate. This array maps each gate in
Y. (identified by its corresponding literal) to a Boolean value,
initially set to t rue for all gates, indicating that they are ac-
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Algorithm 2: propagate

Input: a circuit ¥ = (N, E), and a set of deactivated
gates R.
Output: the set of gates that are deconnected.
1 D0
2 for g € R do isActiveGate[g| = false
3 while dg € R do

s | R+ R\{g}

s | foreach ¢’ € watches[g] do

6 if isActiveGate[g'] = false or z is
assigned then continue

7 if39” € Ns.t. (¢',9") € E and
isActiveGatelg”’] = true then

8 | watches[g”] + watches[g”] U {¢'}

else

9 Add {¢'} into R and D

10 L isActiveGate[g'] = false

1 Remove all active gates from watches|g]

12 return D

tive. If a gate becomes inactive, its corresponding value in
isActiveGate is set to false. Additionally, we main-
tain a stack S to monitor changes made to isActiveGate
during each invocation of the propagate function.

We use the propagate function outlined in Algorithm 2
to effectively determine D using the watches data structure.
The primary goal of propagate is to maintain an invari-
ant: each gate not yet assigned to true or false must be
monitored by one active gate. It takes as input the circuit ¥
and the set R of gates that have been deactivated. The func-
tion returns the set D of gates identified as deactivated after
considering the changes in R. After invoking this function,
the CNF engine can remove all clauses corresponding to the
gates g € D.

The function begins by initializing D as () (line 1) and
marking all gates in R as deactivated (line 2). Since these
are deactivated, we must reconsider the sentinel of all active
gates ¢’ they watch, i.e., all active gates in watches[g] (line
5 and 6). We can either assign these gates a new sentinel that
is still active (line 7 and 8), or, if none is available anymore,
add them to D to indicate that they have become disconnected
(line 9 and 10). In the latter case, we also add them to R such
that their watched gates are re-examined (line 3 and 9). An
exception to this is when the watched gate ¢’ is not discon-
nected but connected to a constant (i.e., when the compilation
process already assigned x4 to true or false; line 6). Af-
ter processing, all active gates are removed from watches|g]
(line 11) since the responsibility of watching them has been
transferred to other gates that are still active. Finally, the
function returns the set D of newly deactivated gates.

Synchronizing both engines during the backtrack phase
only requires reactivating gates that were deactivated due to
the assignment of literals in L. This process is efficiently
managed using a stack S. Each time literals are pushed onto
the CNF engine, the corresponding elements from R U D are
also pushed onto S. During backtracking, gates can be reac-

tivated by processing .S in reverse order and by updating the
data structure isActiveGate accordingly.

4 Related Work

We are not the first to recognize the advantages of reasoning
over the original input circuit. This insight has been previ-
ously explored in the context of related problems, such as
determining circuit satisfiability [Silva and Guerra e Silva,
1999; Ganai et al., 2002; Lu et al., 2003; Wu et al., 2007,
Drechsler et al., 2009; Zhang et al., 2021; Hu and Chu, 2023].
We specifically point out the work of [Thiffault ez al., 20041,
which has similarly investigated the elimination of don’t care
variables in the context of circuit satisfiability. In the domain
of model counting and d-DNNF compilation, however, there
exists little work that leverages the input circuit during the
compilation process itself, aside from preprocessing steps.

For example, [Lagniez er al., 2020] introduced a prepro-
cessing technique that uses gate information to optimize the
input CNF formula by eliminating variables that are function-
ally dependent on others. Their approach starts with an in-
put CNF formula and then extracts the original gate informa-
tion to apply their optimization. This underscores the value
of retaining the original input circuit structure. While their
work primarily uses structural information in preprocessing,
our approach innovatively eliminates gates dynamically dur-
ing the compilation process itself.

Regarding the gate elimination, [Derkinderen, 2024]
presents related work on eliminating tautological subcircuits
in a compiled d-DNNF. Such subcircuits may emerge when
performing existential quantification of the Tseitin variables
after compilation. In contrast to our approach, which detects
and eliminates subcircuits during compilation, their method
operates post-compilation through a bottom-up evaluation of
the d-DNNF circuit. By detecting irrelevant gates during
compilation, our approach reduces compilation time. Addi-
tionally, our method targets a slightly different type of irrele-
vant subcircuit.

Information on which variables are Tseitin variables can be
exploited. For instance, to compile via projected knowledge
compilation [Lagniez and Marquis, 2019], instead of via the
regular compilation task. However, as mentioned in the pre-
vious section, in this setting the compilers are more limited
as they cannot branch on every variable. Similarly, blocking
clause elimination (BCE) [Lagniez et al., 2024] could be used
in this setting to eliminate clauses that do not affect the re-
sult, but this again restricts the variables that can be branched
on. In contrast, our approach allows the compiler to branch
on both input and Tseitin variables, a benefit we empirically
demonstrate through our comparison in the next section.

[Dubray et al., 2023] explores projected model counting in
the context of Horn clauses—clauses with at most one pos-
itive literal. Because of this restriction they can easily de-
tect don’t care variables as part of their propagation process.
However, their work does not address compilation and fo-
cuses solely on Horn clauses, thus limiting their reasoning to
CNF formulas.
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5 Experiments

To empirically assess the benefits of eliminating don’t care
variables, we conducted experiments using 549 instances of
probabilistic inference problems modeled as circuits. These
instances, as well as the code, are available at [Derkinderen
and Lagniez, 2025]. The instances are grouped into eight
datasets:

e dnf: 4 instances of formulas in disjunctive normal
form (DNF), that originate from the domain of neuro-
symbolic Al [Maene and De Raedt, 2023].

* noisy: 7 instances of a noisy-OR probabilistic query,
with an increasing number of parents.

e bnkr: 12 instances of a Bayesian network [Scutari,
2023] query, encoded as a ProbLog program.

e games: J instances of a probabilistic query in a
ProbLog program that models a game of chance.

e grid: 28 instances of a probabilistic query in a
ProbLog model of a power grid network [Wiegmans,
2016], adapted from [Latour et al., 2019].

e raki 142 instances from [Kiesel and Eiter, 2023]: “a
new set of benchmarks using two tools to translate
(probabilistic) logic programs to CNFs [Janhunen and
Niemelid, 2011; Eiter et al., 2021] on standard bench-
marks from probabilistic logic programming”.

* smokers includes two benchmark sets for probabilistic
queries in an influence network, modelled as a ProbLog
program. The first set contains 109 instances with net-
works provided by the networkx package [Hagberg et
al., 2008], which were converted into directed influence
networks by randomly assigning directions. The sec-
ond set contains 220 instances of an influence network
randomly generated using the Extended Barabasi-Albert
Graph algorithm from the networkx package.

* verilog: 24 instances of the ISCAS85 and the EPFL
Combinational Benchmark Suite [Sweeney, 2020].

Our experiments ran on Intel Xeon E5-2643 processors at
3.30 GHz with 32 GiB of RAM and Linux CentOS. Each in-
stance had a time-out of 3600 seconds and a 32 GiB memory
limit. We evaluated the runtime performance of the d4 com-
piler (available at https://github.com/crillab/d4v2) with three
input types:

e cnf: d4 receives as input a CNF formula derived from
the circuit translation using Tseitin encoding.

e pcnf: d4 receives an existentially quantified for-
mula from the circuit’s Tseitin encoding, treating non-
existential variables as projected. d4 compiles the pro-
jected CNF into d-DNNF, branching only on projected
variables. We used d4 with the BCE rule.

e circuit: d4 receives the circuit. As d4 cannot na-
tively process circuits, it is translated into CNF to main-
tain all d4 features. Thus, our method operates with two
engines: a circuit engine that processes circuits directly
and a CNF engine that works with the Tseitin transfor-
mations of circuits.

!

102{ —— circuit+ (475) —— pcnf_comp (299)
circuit (326) pcnf_elim (91)
—«— cnf_comp (371) —— pcnf_equiv (320)
1074 —e— cnf_equiv (373) penf (323)

cnf (372)

time (in seconds)

100 200 300 400
number of instances solved

Figure 3: Cactus plot showing the run time of with various settings.

This leads to three primary versions to be tested: cnf,
penf, and circuit. For CNF-based transformations, we
apply three preprocessing methods. equiv involves running
d4 on instances that have been simplified using vivification,
backbone detection, and occurrence elimination [Lagniez and
Marquis, 2017b]. We also consider preprocessing methods
that extend the equiv approach by allowing for the elimi-
nation of existentially quantified variables. This yields two
additional methods: comp and elim. comp eliminates
variables if it does not increase CNF size [Lagniez er al.,
2020], while elim aims to remove all existentially quan-
tified variables. These preprocessing methods can be ap-
plied to cnf and pcnf transformations, resulting in six ver-
sions: cnf_equiv, cnf_comp, cnf_elim, pcnf_equiv,
pcenf_comp, and pcnf_elim. Since cnf_elim and
pcnf_elim are equivalent, only pcnf_elim is used in our
experiments.

The final version we considered, named circuit+, ex-
tends the circuit version by incorporating the previously
presented gate elimination procedure. Deactivated gates in
the circuit engine prompt the CNF engine to remove the cor-
responding clauses.

In summary, our experimental analysis evaluated nine ver-
sions of the d4 compiler. Figure 3 presents a cactus plot il-
lustrating the effectiveness of these different versions. Each
line in the plot represents a different method, with the num-
ber of instances solved indicated in parentheses in the legend.
The plot displays the number of instances completed within a
given CPU time limit, measured in seconds.

The circuit version, which theoretically matches the
performance of cnf, is less efficient in practice, solving 326
instances versus 372 for cnf. This inefficiency is partly due
to managing two engines and the impact of SAT solver sim-
plifications on d4’s heuristics. Eliminating all existentially
quantified variables is not advisable for cnf and pcnf trans-
formations due to excessive memory requirements, leading to
427 memory overflows. The other preprocessing techniques
also prove ineffective, as they do not enhance d4’s perfor-
mance. In fact, applying these preprocessing steps typically
reduces the number of instances that d4 can solve, making
their use generally inadvisable.

Regarding the impact of transformations on compilation
time, communicating the clauses to be removed from the CNF
engine positively affects d4’s performance. Specifically, the
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Figure 4: Pairwise comparison of the run time and d-DNNF circuit size of the compilation process.

circuit+ version solves 475 instances, which is 102 (30%)
more than cnf_equiv (the most effective cnf transforma-
tion version) and 152 (45%) more than pcnf, the most ef-
fective pcn £ transformation version. Additionally, it is note-
worthy that versions based on the pcnf transformation are
generally less efficient. This inefficiency may stem from the
constraints imposed by the branching heuristic, which forces
branching on non-existentially quantified variables, poten-
tially diminishing the compiler’s performance.

To gain further insights into the impact of the trans-
formations, we examined the compilation times and sizes
of the d-DNNF compiled forms generated by circuit+,
cnf_equiv, and pcnf. The results are depicted in the scat-
ter plots shown in Figure 4. Each dot represents an instance,
showing the time (in seconds) needed to solve it or the size (in
number of gates) of the resulting compiled form. Logarithmic
scales are used for both axes. Any instance above the diago-
nal is favorable for circuit+. As illustrated in Figures 4a
and 4b, circuit+ is generally faster than both cnf_equiv
and pcnf. Additionally, Figures 4d and 4e demonstrate that
the size of the compiled d-DNNF formulas is also generally
smaller for circuit+.

Figure 4 also presents a pairwise comparison between
circuit+ and pcnf_elim. Although pcnf_elim is
significantly slower than circuit+ (see Figure 4c) and
reaches the time-out on many instances, Figure 4f reveals that
the size of the d-DNNF circuits that pcnf_elimdid produce
are substantially smaller. This reduction in size can be at-
tributed to the fact that the Tseitin encoding, which replaces

gates with clauses and adds variables, may diminish the ef-
fectiveness of syntactical caching in d4. While investigating
this phenomenon is beyond the scope of this paper, it suggests
promising potential for leveraging circuit-based information
to reduce the size of compiled d-DNNF circuits.

6 Conclusion

We have advocated for the development of d-DNNF compil-
ers that reason directly over the input circuit, as opposed to
solely over a CNF version of it. We have taken a first step in
this direction by adapting the d-DNNF compiler d4 to main-
tain both the original input circuit and its CNF version. This
adaptation enabled us to implement an optimization novel to
compilation: identifying and eliminating don’t care variables,
i.e., gates whose output has become disconnected from the
rest of the circuit. Our empirical evaluation demonstrates the
advantages of this optimization, as it results in solving more
instances with smaller d-DNNF circuits. This suggests that
reasoning directly over the input circuit can enhance compiler
performance.

As a future direction, we plan to further explore the use of
circuit-based information. This includes developing branch-
ing heuristics that specifically prioritize gate elimination. Ad-
ditionally, to reduce the overhead associated with managing
two representation engines, we aim to develop a version of
d4 that eliminates the need for the CNF representation en-
gine entirely. This would remove the constraint of associating
a name with each gate, potentially increasing the number of
cache hits and improving overall efficiency.
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