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Abstract

Modern multi-object tracking (MOT) predomi-
nantly relies on the tracking-by-detection paradigm
to construct object trajectories. Traditional MOT at-
tacks primarily degrade detection quality in specific
frames only, lacking efficiency, while state-of-the-
art (SOTA) approaches induce persistent identity
(ID) switches by manipulating object positions dur-
ing the association phase, even after the attack ends.
In this paper, we reveal that these SOTA attacks
can be easily counteracted by adjusting distance-
related parameters in the association phase, expos-
ing their lack of robustness. To overcome these
limitations, we propose BankTweak, a novel ad-
versarial attack targeting feature-based MOT sys-
tems to induce persistent ID switches (efficiency)
without modifying object positions (robustness).
BankTweak exploits a critical vulnerability in the
Hungarian matching algorithm of MOT systems
by strategically injecting altered features into fea-
ture banks during the association phase. Exten-
sive experiments on MOT17 and MOT20 datasets,
combining various detectors, feature extractors,
and trackers, demonstrate that BankTweak sig-
nificantly outperforms SOTA attacks up to 11.8
times, exposing fundamental vulnerabilities in the
tracking-by-detection framework.

1 Introduction
Multi-object tracking (MOT) is a fundamental perception
task aimed at constructing motion trajectories of objects
across consecutive frames. Modern DNN-based tracking-by-
detection frameworks consist of two stages: detecting objects
of interest in each frame (detection) and associating these de-
tections with existing trajectories (association) [Wojke et al.,
2017]. In the association phase, a CNN-based model (e.g.,
OSNet [Zhou et al., 2019]) extracts object features, which
are stored in a feature bank if matched using feature-based
similarity or motion-based IoU (Intersection over Union).
Feature-based matching initially pairs objects with the high-
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Figure 1: (a) Comparison between existing adversarial attacks 1⃝– 4⃝
and BankTweak 5⃝, (b) the principles behind ID switch induction in
Hijacking 3⃝ and the F&F attack 4⃝, and (c) the diagram presenting
the features of adversarial attacks.

est feature similarity, followed by motion-based IoU match-
ing for unmatched objects.

Despite the widespread application and significance of
MOT systems, studies on adversarial attacks and defense
mechanisms remain limited, falling into two categories: i)
targeting the detection phase to generate false negatives and
false alarms, and ii) state-of-the-art (SOTA) attacks disrupting
the association phase to cause identity (ID) switches by ma-
nipulating object positions. Category i) attacks, such as the
false negative (FN) attack [Lu et al., 2017] ( 1⃝ in Fig. 1) and
Daedalus [Wang et al., 2021] ( 2⃝), degrade detection perfor-
mance in attacked frames by generating false negatives and
false alarms, respectively. However, as these methods focus
solely on the detection phase, their effects are limited to the
targeted frames, lacking efficiency. For instance, in FN attack
and Daedalus scenarios (Fig. 1(a)), the object with ID 1 re-
tains the same ID in post-attack frames, resulting in no impact
on post-attack accuracy.

In category ii), Hijacking [Jia et al., 2020] ( 3⃝) disrupts
the Kalman filter [Kalman, 1960] by manipulating detection
boxes away from their correct velocity, potentially triggering
ID switches. The F&F attack [Zhou et al., 2023] ( 4⃝) removes
the target object and surrounds it with false alarms, result-
ing in persistent ID switches even after the attack concludes.
As shown in Fig.1(b), these attacks increase the Mahalanobis
distance [De Maesschalck et al., 2000] between the measured
and predicted positions in the post-attack frame. This distance
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exceeds the matching boundary, leading to misidentification
and the assignment of a new (false) ID (e.g., ID 2). A key mis-
understanding of such SOTA attacks is the assumption that
persistent ID switches can only be caused by shifting object
positions beyond the matching boundary.

In this paper, exploiting this misunderstanding, we first re-
veal that increasing the Mahalanobis distance threshold (ex-
panding the matching boundary) in prediction models, such
as the Kalman filter, effectively counteracts category ii) at-
tacks with minimal accuracy loss (as detailed in Sec. 4),
thereby exposing their inherent lack of robustness. Then,
overcoming the inherent limitations in i) and ii), we propose
BankTweak, a novel adversarial attack that establishes a new
paradigm for MOT attacks by inducing persistent ID switches
(efficiency) while preserving object positions (robustness).
This is achieved through a two-step process: (i) injecting tar-
geted features into the feature bank of selected object pairs
without causing ID switches (Step 1: groundwork), and (ii)
exploiting this setup to induce permanent ID switches (Step 2:
ID Switch). As described in Sec. 3 and illustrated in Figs. 3(b)
and (c), inducing persistent ID switches independently of ob-
ject positions is inherently challenging due to the properties
of feature banks. However, BankTweak overcomes this lim-
itation by exploiting vulnerabilities in the Hungarian match-
ing algorithm used by feature-based MOT systems. Notably,
BankTweak is capable of simultaneously attacking multiple
object pairs within a single frame

As an additional key advantage, unlike the F&F attack,
which increases the risk of detection by defenders by gener-
ating numerous false alarm objects, BankTweak completely
avoids producing false alarms, thereby significantly enhanc-
ing its stealth. Moreover, unlike the Hijacking attack re-
quiring model-specific design like Kalman filter informa-
tion, BankTweak does not rely on such specifics, ensur-
ing greater generality. Fig. 1(c) represents the characteristics
of MOT attacks, including BankTweak. Importantly, Bank-
Tweak is not tailored to a specific tracker, making it com-
patible with most DNN-based tracking-by-detection methods
that use a feature bank and a two-stage association approach
(i.e., feature-based and subsequent IoU-based).

To demonstrate the applicability, BankTweak is applied
to three multi-object trackers (DeepSORT [Wojke et al.,
2017], StrongSORT [Du et al., 2023], and MOTDT [Chen
et al., 2018]) using a diverse set of detectors: one-stage
(YOLOX [Ge et al., 2021]), two-stage (Faster R-CNN [Ren et
al., 2015]), anchor-free (FoveaBox [Kong et al., 2020]), and
transformer-based (DETR [Zhu et al., 2021]), along with four
feature extractors (OSNet [Zhou et al., 2019], ResNet [He et
al., 2016], MobileNet [Howard, 2017], and MLFN [Chang
et al., 2018]). Comprehensive experiments conducted on the
MOT17 [Milan et al., 2016] and MOT20 [Dendorfer et al.,
2020] datasets demonstrate that our approach significantly
outperforms SOTA attacks up to 11.8 times, revealing the vul-
nerability of the tracking-by-detection framework to Bank-
Tweak.

Our contributions are as follows.

• We reveal that increasing the Mahalanobis distance
threshold in MOT systems, effectively counteracts

SOTA attacks with minimal accuracy loss.

• We propose BankTweak, a novel adversarial attack
characterized by efficiency and robustness, with benefits
of practicality and generality.

• We demonstrate BankTweak’s applicability by deploy-
ing it to multiple combinations of MOT trackers with
detectors, achieving superior performance over existing
attacks in extensive public dataset experiments.

2 Related Work
Multi-object tracking (MOT) aims to construct object motion
trajectories across frame sequences [Luo et al., 2021]. Most
MOT methods utilize the tracking-by-detection paradigm,
featuring online (real-time) and offline (post-refinement) ap-
proaches [Zhang et al., 2022; Zhou et al., 2020; Dai et
al., 2021]. Detectors identify objects, while trackers asso-
ciate them using motion (e.g., Kalman filter [Kalman, 1960])
and appearance cues [Zhang et al., 2021]. Transformer-based
methods [Meinhardt et al., 2022; Sun et al., 2020] now inte-
grate detection and association.

Adversarial attacks are studied in detection, tracking, and
segmentation [Wang et al., 2021; Jia et al., 2020; Xie et
al., 2017], with some real-world demonstrations [Xu et al.,
2020]. Attacks on single-object tracking often target accu-
racy, and detection attacks cause missed/false detections.
However, MOT’s complexity poses challenges for these
methods. Specific MOT attacks include targeting the Kalman
filter [Jia et al., 2020] or inducing ID switches via detection
failures, as with the F&F attack [Zhou et al., 2023].

3 Method
3.1 Attack Formulation
We consider tracking-by-detection MOT systems, consist-
ing of detection and association phases, discussed in Sec. 1.
BankTweak operates under the assumption of a white box
attack, with the attacker knowing the detector and feature ex-
tractor models for the iterative execution of detection and fea-
ture extraction across attack frames. BankTweak only needs
five frames for an attack without any false alarms (addressing
stealth), and does not necessitate motion prediction of ob-
jects (addressing generality). A common attack scenario of
BankTweak can be a man-in-the-middle attack, where input
packets are intercepted via DNS spoofing, perturbed, and then
re-injected into a server-based CCTV system.

Consider an input video comprised of N sequential
RGB frames I ∈ RW×H×3, represented as V =
{I1, I2, · · · , IN}. We target a sequence of five consecu-
tive frames starting from the (t+1)-th frame (for 1≤t) for
our attack, denoted by S = {It+1, It+2, It+3, It+4, It+5}.
Let Ĩt be a frame created by adding a perturbation δ
to It. By incorporating perturbations into every frame
in S, we generate S̃ = {Ĩt+1, Ĩt+2, Ĩt+3, Ĩt+4, Ĩt+5}
(for t+5<N ). Substituting S in V with S̃ yields Ṽ =
{I1, I2, · · · , It, Ĩt+1, Ĩt+2, · · · , Ĩt+5, It+6, It+7 · · · , IN}.

For the given target input frame I , the detector D(·|θD) pa-
rameterized by θD, feature extractor E(·, ·|θE) parameterized

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 1 BankTweak attack
Input: target frame sequence S, object detector D(·), feature
extractor E(·, ·) Output: perturbed frame sequence S̃

1: S̃ = [ ]
2: for I from It+1 to It+5 in S do
3: F∗ = E(D(I), I) /* get targeted feature set and

loss function (Sec. 3.2) */
4: F,L ←− get targeted features(F∗) /* solve

perturbation with Eqs. (1) and (2) */
5: Ĩ ←− solve perturbation(F,L, I,D(·), E(·, ·))
6: S̃.append(Ĩ)
7: end for
8: return S̃

by θE , and target features F, BankTweak finds perturbation
δ formulated by

δ = argmin
δ,||δ||∞<ϵ

L(E(D(I + δ|θD), I + δ|θE),F), (1)

where D(·|θD) processes an input frame I to identify the de-
tected object set O and E(·, ·|θE) extracts feature set F∗ from
O. BankTweak uses PGD to iteratively derive a perturbation
δ that minimizes L under an ℓ∞-norm constrain (L will be
further detailed in Sec. 3.3), which is

δr+1 = clip[−ϵ,ϵ]∩[−I,1−I]

(δr + αsgn(∇δL(E(D(I + δ|θD), I + δ|θE),F))),
(2)

where α and ϵ represent the amount of change per pixel
and the maximum change allowed, respectively, while∇ and
sgn(·) are functions for performing the gradient operation and
extracting the sign of the gradient, respectively. BankTweak
initializes the first perturbation δ to zero and iterates R times
to compute the final δ. During these iterations, δ must adhere
to an ℓ∞-norm constraint, ensuring the perturbed frame Ĩ re-
mains within the [0, 1] range.

Alg. 1 outlines the attack process of BankTweak. It takes
as input the target frame sequence S, object detector D(·),
and feature extractor E(·, ·), producing the perturbed frame
sequence S̃ as output. For each input frame I , BankTweak
performs the detection to obtain the object set O and then
conducts feature extraction based on O to extract the feature
set F∗ (Line 3). Subsequently, it determines the designated F
and L for each attack frame based on F∗ (Line 4). Utilizing
the derived F, L, and the models D(·) and E(·, ·), it computes
the perturbed frame Ĩ using Eqs. (1) and (2) (Line 5), which
is then added to S̃. The detector D(·) is used for cropping
the detected object from the input image after performing de-
tection, and the perturbation is determined through the model
E(·, ·) (Line 5). This procedure is repeated for the length of
the input frame sequence S, which is five (i.e., from It+1 to
It+5), and ultimately returns the perturbed frame sequence S̃
(Line 8).

3.2 BankTweak Mechanism
The primary objective of BankTweak is to switch the IDs
of target objects A⃝ and B⃝, ensuring these changes remain
constant, even after the completion of the attack. This pro-
cess unfolds in two steps. (i) Initially, BankTweak system-
atically injects perturbed features into the feature banks of
A⃝ and B⃝, without initiating an ID switch. This prepara-
tory action lays the groundwork for the next step. (ii) Sub-
sequently, leveraging the altered feature banks established in
(i), BankTweak executes the ID switch for A⃝ and B⃝, effec-
tively achieving the intended consistent ID switch even af-
ter the attack. Fig. 2 presents the overall process by which
BankTweak induces an ID switch between a pair of objects
A⃝ and B⃝. For a clean frame It, features A and B are ex-
tracted from objects A⃝ and B⃝, respectively, and are assigned
ID 1 and ID 2. These features are then stored in the fea-
ture banks of their corresponding objects. Consider A|B as
feature A generated from B through an adversarial exam-
ple mechanism (e.g., PGD [Madry et al., 2017]), which ap-
pears as B to humans but is identified as A by the deployed
model. BankTweak selects the object pair A⃝ and B⃝ for an
ID switch in each frame It, fundamentally choosing A⃝ and
B⃝ randomly without awareness of the Mahalanobis distance
threshold, thereby satisfying generality.

Step 1: Groundwork. It performs the following for the first
three attacked frames:

Ĩt+1: Define X and Y as the dummy features that ex-
hibit a significantly large cosine distance from A and
B, ensuring they are distinctly different. By definition,
X|A and Y |B have a high cosine distance (e.g., 0.9)
from A and B, respectively, and are injected into the
feature banks of A⃝ and B⃝ through IoU matching; it is
assumed that features are only considered for feature-
based matching when they have a cosine distance of 0.5
or less (called cosine distance threshold).

Ĩt+2: It places B|A into A⃝’s feature bank and Y |B|B
into B⃝’s feature bank, leveraging the very low cosine
distance between Y |B|B and Y |B (e.g., 0.02 in Fig. 2)
once it is inserted into B⃝’s bank in Ĩt+1. Being gener-
ated from A, B|A exhibits a relatively low cosine dis-
tance (e.g., 0.07 in Fig. 2).

Ĩt+3: It places A|B into B⃝’s feature bank and X|A|A
into A⃝’s feature bank using the similar property in Ĩt+2.

Fig. 3(a) presents our experimental result for two distinct sce-
narios, each featuring varying converging cosine distances
when a source feature is subjected to up to 150 perturbations
to derive a specific target feature, as outlined in Eq. (4). For
instance, when producing Y |B|B|A (in Ĩt+4), the source fea-
ture is A, targeting the feature Y |B|B (in Ĩt+2). Conversely,
Y |B|B is derived from B, resulting in a cosine distance of
0.07 between Y |B|B|A and Y |B|B due to the disparity in
their source features. On the other hand, for the production
of Y |B|B (in Ĩt+2), B acts as the source feature with Y |B
(in Ĩt+1) as the target. Here, Y |B, created from the same
source B, leads to a minimal cosine distance of 0.02 between
Y |B|B and Y |B. It might seem straightforward to induce an
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Figure 2: Overall process by which BankTweak induces a persistent ID switch between a pair of objects A⃝ and B⃝, even after the attack ends,
across five frames from Ĩt+1 to Ĩt+5. In step 1, Desired generated features are first injected into the feature banks of A⃝ and B⃝ in Ĩt+1–Ĩt+3.
In step 2, a ID switch incurs in Ĩt+4–Ĩt+5 by exploiting a vulnerability in the Hungarian matching method, where ID allocation for objects
relies on matching across frames with lower average cosine distance. The persistent ID switch continues to occur in the post-attack frames,
Ĩt+6 through Ĩt+n, where objects A⃝ and B⃝ remain present.

ID switch by injecting B|A and A|B into the feature banks
of A⃝ and B⃝ in Step 1. However, Fig. 3(b) illustrates that be-
cause the feature banks of A⃝ and B⃝ already include A and
B, any ID switch in Ĩt+1 reverts to the original IDs by Ĩt+2

post-attack.
Step 2: ID Switch. This step involves the following for the
next two frames:

Ĩt+4: It places Y |B|B|A into A⃝’s feature bank without
creating any perturbation for B⃝. B in Ĩt+4 demonstrates
a significantly low cosine distance (i.e., 0.02) to B in It,
whereas Y |B|B|A exhibits a high cosine distance (i.e.,
0.9) with the features in A⃝’s bank. Given the cosine dis-
tances of 0.07 between Y |B|B|A and Y |B|B, and 0.07
between B and B|A, the Hungarian algorithm [Kuhn,
1955] allocates IDs based on the lower average cosine
distance, prompting an ID switch.

Ĩt+5: It places X|A|A|B into B⃝’s feature bank, and sim-
ilarly, no perturbation is created for A⃝. Similar reason-
ing to Ĩt+4 causes an ID switch for Ĩt+5.

As a result, from It+6 onward, A in A⃝ matches with A hav-
ing ID 2 in Ĩt+5 (rather than A with ID 1 in It), and B in B⃝
matches with B having ID 1 in Ĩt+4 (rather than B with ID 2
in It), thus continuous ID switches occur without further at-
tacks. One might assume that directly injecting A and B into
the feature banks of A⃝ and B⃝ for Ĩt+4 in Step 2 is a straight-
forward approach to trigger an ID switch. However, as shown
in Fig. 3(c), such an action does not lead to an ID switch due
to the pre-existing A and B in the respective feature banks
of A⃝ and B⃝. To this end, BankTweak employs a meticulous
strategy that exploits the vulnerability (i.e., ID allocation on

lower average cosine distance) of the Hungarian algorithm in
Step 2, based on the groundwork conducted in Step 1.

3.3 Solving Perturbations
BankTweak employs cosine distance to evaluate the similar-
ity between the features of two objects, facilitating the cre-
ation of the target feature set F from an initial feature set F∗,
which is derived by

C(A,B) = 1− A ·B
|A||B|

, (3)

where A and B are feature vectors of two distinct ob-
jects, each in R1×512. Eq. (3) produces values within the [0,
2] range, with lower values denoting higher similarity and
higher values indicating greater dissimilarity between the fea-
tures of two objects.

For a frame I , which includes multiple objects, we define
the extracted feature set as F∗ and its target feature set as
F. For each feature F ∗

i ∈ F∗, Fi ∈ F represents its corre-
sponding target feature. BankTweak computes the loss for
each feature set F∗, aggregates these losses, and applies the
perturbation collectively. This process employs a specific loss
function formulated as

Ls(F∗,F) =
∑

F∗
i ∈F∗,Fi∈F

C(F ∗
i , Fi), (4)

Ld(F∗,F) = −
∑

F∗
i ∈F∗,Fi∈F

C(F ∗
i , Fi). (5)

For each feature F ∗
i ∈ F∗ and its target feature Fi ∈ F,

the loss Ls signifies that a lower value increases the simi-
larity between F ∗

i and Fi. Conversely, a higher value of Ld
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Figure 3: (a) Comparison of cosine distance for two cases involving
the same and different object sources, and (b)–(c) two attack failure
scenarios of BankTweak.

decreases the similarity between F ∗
i and Fi. For instance, the

goal for Ĩt+1 is to generate X|A and Y |B, thus the target fea-
ture set F = {F1 = A,F2 = B}, and X|A and Y |B are
created to have the maximum possible cosine distance from
A and B, respectively, using Eq. (5). On the other hand, for
Ĩt+2, aiming to generate B|A and Y |B|B, the target feature
set F = {F1 = B,F2 = Y |B}, and B|A and Y |B|B are
produced to be as close as possible to A and B, respectively,
using Eq. (4). The feature sets F∗, target feature set F, and the
loss function for each attack frame are determined as follows.

Ĩt+1: F∗ = {F ∗
1 = A,F ∗

2 = B} and F = {F1 = A,F2 = B}
with Ld(F∗,F),

Ĩt+2: F∗ = {F ∗
1 = A,F ∗

2 = B} and F = {F1 = B,F2 = Y |B}
with Ls(F∗,F),

Ĩt+3: F∗ = {F ∗
1 = A,F ∗

2 = B} and F = {F1 = X|A,F2 = A}
with Ls(F∗,F),

Ĩt+4: F∗ = {F ∗
1 = A} and F = {F1 = Y |B|B}

with Ls(F∗,F), and
Ĩt+5: F∗ = {F ∗

1 = B} and F = {F1 = X|A|A}
with Ls(F∗,F).

4 Evaluation
4.1 Experiment Setting
Metrics. We compare the performance of the consid-
ered approaches regarding efficiency, robustness, and stealth.
BankTweak inherently ensures generality as it does not re-
quire any information about the prediction model. For ef-
ficiency, we use standard MOT accuracy metrics such as
IDF1 [Ristani et al., 2016] and HOTA [Luiten et al., 2021].
IDF1 is defined as IDF1 = 2 × TP

2×TP+FP+FN , where TP,
FP, and FN are true positives, false positives, and false neg-
atives. HOTA is given by HOTA =

√
DetA · AssA, with

DetA = TP
TP+FN+FP and AssA = 1 − IDsw

GTtrack , where IDsw
is the number of ID switches and GTtrack is the total number
of tracklets in the ground truth. These metrics exclude attack
frames for accuracy. For robustness, we measure accuracy by
varying the Mahalanobis distance threshold. For stealth, we
measure ρDet and ρID to evaluate the system’s ability to reduce
new objects (mainly false alarms) during attack frames. ρDet

is the ratio of the average detection increase per attack frame
to the ground truth GTt, while ρID quantifies the increase in
ID counts.

45

55

65

75

55

65

75

45

65

85

ID
F1

Clean Daedalus F&F attack BankTweak

(a) Mahalanobis
      thresholds-DS

(b) Mahalanobis 
      thresholds-SS

(c) Mahalanobis 
      thresholds-MD

×5 ×10 ×15 ×20 ×30 Max×5 ×10 ×15 ×20 ×30 Max ×5 ×10 ×15 ×20 ×30 Max

FN attack

60

70

80

55

65

75

55

65

75

85

ID
F1

1.5DGT 2DGT 3DGT 4DGT

Clean Daedalus F&F attack BankTweak

(d) False alarm limits-DS (e) False alarm limits-SS (f) False alarm limits-MD

Hijack

Hijack

No Limit1.5DGT 2DGT 3DGT 4DGT No Limit 1.5DGT 2DGT 3DGT 4DGT No Limit

Figure 4: IDF1 scores across (a)–(c) varying Mahalanobis distance
thresholds and (d)–(f) false alarm limits for three distinct trackers.

Dataset. Experiments are conducted using the MOT17 and
MOT20 pedestrian tracking datasets. Each dataset is split
into two halves: one for training the considered detection
model and the other for evaluation. The MOT17 and MOT20
datasets are further divided into 30-frame segments, yielding
83 and 148 segments, respectively. Experiments target each
segment’s (15–19)-th frames for attacks to accumulate fea-
tures in the objects’ feature banks over five frames, ensuring
accurate evaluation of BankTweak’s potential effects in prac-
tical tracking applications.

Implementation Details. To demonstrate the applicabil-
ity, BankTweak is applied to three prominent multi-object
trackers (DeepSORT, StrongSORT, and MOTDT denoted by
DS, SS, and MD, respectively) with one-stage (YOLOX),
two-stage (Faster-RCNN), anchor-free (FoveaBox) and trans-
former (DETR) detectors. We consider OSNet, ResNet, Mo-
bileNet, and MLFN as feature extractors. The feature-based
matching threshold is λapp = 0.2, and IoU-based matching
threshold is λIoU = 0.7. Attack parameters are ϵ = 4/255
and α = 1/255. In BankTweak, dissimilarity loss Ld suc-
ceeds when feature similarity exceeds λapp = 0.2, and simi-
larity loss Ls requires cosine distance to be less than λapp =
0.2. Empirically, iterations for Ld are set to Rd = 10, and for
Ls, Rs = 150.

4.2 Comparison to Existing Methods
We evaluate our approach against four existing attacks: the
FN attack, Daedalus, Hijacking, and F&F attack.

Efficiency and Robustness. Tab. 1 shows attack perfor-
mance under the maximum Mahalanobis distance threshold,
counteracting Hijacking and F&F attack with minimal accu-
racy drop (see Figs. 4(a)–(c)) for YOLOX and OSNet. The
experimental results for combinations with other detectors
and feature extractors are provided in the supplementary ma-
terial. Tab. 1 demonstrates that BankTweak significantly de-
creases the IDF1 and HOTA score across all trackers. For
instance, BankTweak reduces the IDF1 score by 13.57 for
SS on MOT17, compared to 1.15 for F&F, achieving up to
an 11.8-fold (13.57/1.15) improvement. It also significantly
increases IDsw (e.g., 1847% for MD on MOT20) while de-
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Dataset Tracker Attacker IDF1 HOTA IDsw DetA AssA FN FP ρID ρDet

MOT17 DS Clean 79.78 66.73 173 58.35 77.57 0.304 0.022 0.93 0.82
FN attack 78.90 (-0.88) 66.10 (-0.63) 193 (+11%) 57.95 76.70 0.307 0.025 0.00 0.00
Daedalus 74.48 (-5.30) 63.28 (-3.45) 382 (+120%) 57.08 71.23 0.311 0.033 7.18 2.01
Hijacking 75.37 (-4.41) 63.32 (-3.41) 394 (+127%) 57.51 70.84 0.305 0.029 0.93 0.82

F&F 72.03 (-7.75) 61.60 (-5.13) 493 (+184%) 56.57 68.11 0.313 0.039 3.13 2.59
Ours 58.01 (-21.77) 51.15 (-15.58) 877 (+406%) 54.30 56.25 0.336 0.057 0.92 0.82

SS Clean 75.41 64.38 111 54.28 77.82 0.342 0.096 0.93 0.83
FN attack 75.43 (+0.02) 64.43 (+0.05) 96 (-13%) 54.21 78.02 0.342 0.096 0.00 0.00
Daedalus 74.68 (-0.73) 63.86 (-0.52) 136 (+22%) 54.10 76.77 0.342 0.099 7.18 2.01
Hijacking 74.32 (-1.09) 63.75 (-0.63) 163 (+46%) 54.03 76.68 0.345 0.098 0.93 0.77

F&F 74.26 (-1.15) 63.43 (-0.95) 158 (+42%) 53.84 76.02 0.344 0.103 3.13 2.59
Ours 61.84 (-13.57) 54.35 (-10.03) 712 (+541%) 52.94 56.77 0.353 0.109 0.92 0.84

MD Clean 71.77 62.70 326 51.27 78.39 0.348 0.157 0.93 0.83
FN attack 70.87 (-0.90) 62.05 (-0.65) 343 (+5%) 50.32 78.27 0.357 0.169 0.00 0.00
Daedalus 69.76 (-2.01) 60.77 (-1.93) 293 (-10%) 48.88 76.94 0.368 0.183 7.18 4.2
Hijacking 68.66 (-3.11) 60.25 (-2.45) 399 (+22%) 48.69 76.28 0.372 0.189 0.93 1.11

F&F 69.68 (-2.09) 60.87 (-1.83) 271 (-16%) 48.37 78.18 0.370 0.188 3.14 3.03
Ours 57.75 (-14.02) 50.21 (-12.49) 937 (+187%) 45.80 56.47 0.387 0.189 0.92 0.92

MOT20 DS Clean 85.8 69.40 1821 63.66 76.89 0.216 0.014 0.94 0.89
FN attack 85.95 (+0.15) 69.28 (-0.12) 1576 (-13%) 63.46 76.85 0.216 0.014 0.00 0.00
Daedalus 73.47 (-12.48) 62.73 (-6.67) 7778 (+327%) 62.25 64.52 0.227 0.023 1.48 1.28
Hijacking 72.85 (-12.94) 61.22 (-8.18) 8061 (+442%) 61.97 61.60 0.228 0.022 0.89 0.84

F&F 66.03 (-19.77) 58.29 (-11.11) 10990 (+503%) 61.05 56.93 0.235 0.040 3.19 3.02
Ours 58.54 (-27.26) 51.11 (-18.29) 16669 (+815%) 58.34 46.00 0.264 0.054 0.92 0.88

SS Clean 86.63 69.97 943 64.05 77.52 0.215 0.014 0.94 0.89
FN attack 86.55 (-0.08) 70.01 (+0.04) 978 (+3%) 64.26 77.38 0.212 0.015 0.00 0.00
Daedalus 85.00 (-1.63) 69.02 (-0.94) 1850 (+96%) 63.91 75.63 0.214 0.018 1.48 1.16
Hijacking 83.69 (-2.93) 68.34 (-1.62) 2658 (+181%) 63.86 74.23 0.215 0.018 0.89 0.85

F&F 83.95 (-2.68) 68.38 (-1.59) 2411 (+155%) 63.66 74.48 0.216 0.021 3.19 2.87
Ours 69.38 (-17.25) 58.90 (-11.07) 10014 (+961%) 62.95 55.97 0.223 0.024 0.92 0.88

MD Clean 88.93 73.017 828 66.46 81.45 0.177 0.019 0.94 0.89
FN attack 88.00 (-0.93) 72.20 (-0.81) 1272 (+53%) 65.60 80.71 0.182 0.026 0.00 0.00
Daedalus 85.06 (-3.87) 69.49 (-3.52) 2150 (+159%) 62.92 77.92 0.204 0.051 1.48 1.55
Hijacking 85.30 (-3.62) 69.84 (-3.17) 2292 (+176%) 63.41 78.13 0.200 0.047 0.89 1.29

F&F 84.40 (-4.53) 68.69 (-4.32) 1717 (+107%) 61.58 77.84 0.215 0.066 3.19 2.87
Ours 66.10 (-22.83) 52.88 (-20.13) 16129 (+1847%) 55.34 51.74 0.267 0.127 0.92 0.88

Table 1: Experiment result of YOLOX and OSNet with maximum Mahalanobis distance threshold

creasing AssA, alongside a reduction in the detection met-
ric DetA. As demonstrated by Tab. 1, unlike FN attack and
Daedalus, BankTweak significantly affects performance by
altering object IDs during attacks, with these changes persist-
ing post-attack and resulting in a noticeable decline in IDF1
scores. Also, Hijacking and F&F attacks shift an object’s po-
sition before the attack, creating a significant Mahalanobis
distance from its original location after the attack, but in-
creasing the Mahalanobis distance threshold (expanding the
matching boundary) can neutralize the attack. BankTweak
thrives when the matching boundary is expanded, ensuring
the targeted object pair falls within this expanded boundary,
enhancing performance.

Stealth. BankTweak induces ID switches by altering the
feature banks of individual objects, effectively reducing ac-
curacy without generating false alarms. Tab. 1 illustrates that
BankTweak keeps the object count stable during an attack,
as evidenced by the ρDet and ρID metrics, closely aligning
with the Clean scenario. For instance, detected object values
on DS for Clean and BankTweak closely match (ρDet at 0.93
vs 0.92), similar to the tracked object values (ρID remains at
0.82 for both). In contrast, Daedalus shows a marked effect on
these metrics, with ρDet jumping from 0.93 to 7.18 and ρID

for tracked objects rising from 0.82 to 2.01, demonstrating a

significant difference.
Applicability. In Tab. 1, against DS on MOT17, the
Daedalus and F&F attacks reduce the IDF1 score by 5.3 and
7.75, respectively. In contrast, the reductions against SS are
more modest, at 0.73 and 1.15, while for MD, the scores
decrease by 2.01 and 2.09. These variations arise from the
distinct matching strategies employed by each tracker. DS
prioritizes matching newly tracked objects, which can result
in previously tracked objects being incorrectly matched with
false alarms during an attack. Conversely, SS and MD treat
all tracked objects equally, reducing the likelihood of incor-
rect ID assignments. BankTweak, capable of attacking any
tracker that employs a feature bank, operates effectively re-
gardless of a tracker’s specific matching procedures.

4.3 Ablation Study
Varying Mahalanobis Distance Threshold. In feature-
based matching, trackers check if detected objects are within
the tracked objects’ matching boundary, set by a threshold
λm. The Kalman filter models each tracked object’s motion
details (e.g., center, width, and height) using a chi-square
distribution, represented by the probability density function
f(x). The matching boundary is where 95% of position val-
ues are concentrated around the distribution’s mean within
a λm distance. Figs. 4(a)–(c) show IDF1 variations as λm
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Method Clean w/o Step 2 Ours

Tracker DS SS MD DS SS MD DS SS MD

IDF1 79.78 75.43 71.77 77.52 72.44 68.31 58.01 61.84 57.75

Table 2: Impact of Step 2 in BankTweak.

ϵ 4/255 16/255

Rs 20 40 60 80 100 120 140 10 20

IDF-1 68.5 65.34 63.65 64.63 63.2 63.84 63.32 67.6 59.4

Table 3: Varying combinations of Rs and ϵ with Rs = 10.

increases (e.g., ×5 indicates λm × 5), noting that a higher
λm expands the matching boundary, with “Max” occurring
when

∫ λm

0
f(x)dx = 1. Clean and the FN attack experience

minimal IDF1 changes with rising thresholds. Conversely,
Daedalus and the F&F attack encounter an IDF1 increase and
a notable decline in attack success as the threshold grows.
BankTweak shows a high enhancement of the attack’s ef-
fectiveness at higher thresholds, indicating its reliance on the
matching boundary to facilitate ID switches.

Quantity of Allowable False Alarms. To evaluate attack
effectiveness against stealth, we limited the number of false
positives each attacker could generate. Figs. 4(d)–(f) plot
IDF1 against the maximum number of objects for DS, SS,
and MD, respectively, with DGT representing the actual ob-
ject count per attack frame and 2DGT , 3DGT , and 4DGT

denoting multiples of this number. The F&F attack typically
generates four false positives per targeted object; instead of
reducing these numbers, we constrained the targeted objects
per frame. Clean and BankTweak do not generate additional
objects, hence their IDF1 scores remain unaffected by the ob-
ject limit. Daedalus and the F&F attack, however, show a no-
table IDF1 decrease with more false positives, although less
significant than with BankTweak.

Impact of Step 2. As detailed in Fig. 3(c), Step 2 is cru-
cial for BankTweak. Tab. 2 shows that ID switches occur
less without Step 2, resulting in a smaller IDF1 reduction.
For DS, omitting Step 2 results in a minor IDF1 drop (79.78
to 77.52), while including it reduces IDF1 by 21.77 points
(79.78 to 58.01), underscoring Step 2’s importance.

Number of Iterations. Tab. 3 shows the effect of vary-
ing BankTweak’s Rs on IDF1. Increasing Rs leads to a
greater reduction in IDF1, indicating that more iterations
significantly enhance BankTweak’s attack efficiency. Tab. 3
shows that increasing ϵ (in Eqs. (1) and (2)) dramatically re-
duces Rs needed to generate perturbations (which also re-
duces latency) while maintaining attack performance. For in-
stance, with ϵ = 4/255 (default), accuracy drops from 77.4
to 63.3. With ϵ = 16/255, accuracy drops to 67.6 and 59.4
for Rs = 10 and Rs = 20, respectively.

5 Conclusion
This paper proposes BankTweak, a novel adversarial attack
on multi-object trackers, targeting feature extractors during
association to induce persistent ID switches. Our method re-
mains robust under heightened Mahalanobis distance thresh-

(a) Cosine distance on ℒ𝑠
    for promising pair in (c)

Transfer-based attack (perturbation with ResNet,
                                          inference with OSNet)White-box attack

(b) Cosine distance on ℒ𝑑
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Figure 5: Experimental analysis of transfer-based attack for feature
extractor

olds and does not depend on false alarms or motion prediction
for effectiveness. We demonstrate the versatility of Bank-
Tweak across various combinations of detectors, feature ex-
tractors, and trackers. Comprehensive experiments on public
datasets validate BankTweak’s effectiveness and explore a
diverse range of attack tactics.

Limitation. While there has been significant research on
black box attacks in classification problems [Mi et al., 2023;
Liang et al., 2022], there has been little progress in MOT at-
tacks due to its inherent challenge [Ding et al., 2024]. Con-
sequently, an MOT attack based on black-box methodolo-
gies has yet to be proposed. Although BankTweak is also
a white-box attack, as illustrated in Fig. 5(c), a transfer-based
black-box attack on BankTweak can be feasible when ob-
ject pairs (A and B) for an ID switch have similar features.
This is because generating similar features for A from B (or
vice versa) is easier, and creating untargeted features (e.g., X
and Y) is simpler than targeting generation. Figs. 5(a) and (b)
show that, while less effective than a white-box attack, this
approach meets the necessary thresholds for BankTweak in
a transfer-based attack. Thus, a black-box attack will work if
it finds object pairs with similar features to those of the de-
ployed detector. Research on attacking MOT, targeting multi-
ple objects simultaneously, is still in its early stages. Notable
studies include the F&F attack and Hijacking, both white-box
attacks, while BankTweak significantly addresses their limi-
tations.
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