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Abstract

Due to the high similarity between camouflaged in-
stances and the surroundings and the widespread
camouflage-like scenarios, the recently proposed
camouflaged instance segmentation (CIS) is a chal-
lenging and relevant task. Previous approaches
achieve some progress on CIS, while many over-
look camouflaged objects’ color and contour nature
and then decide on each candidate instinctively.
In this paper, we contribute a Mixture-of-Queries
Transformer (MoQT) in an end-to-end manner for
CIS based on two key designs (a Frequency En-
hancement Feature Extractor and a Mixture-of-
Queries Decoder). First, the Frequency Enhance-
ment Feature Extractor is responsible for captur-
ing the camouflaged clues in the frequency domain.
To expose camouflaged instances, the extractor en-
hances the effectiveness of contour, eliminates the
interference color, and obtains suitable features si-
multaneously. Second, a Mixture-of-Queries De-
coder utilizes multiple newly initialized experts of
queries (a group of queries considered an expert)
in each layer for spotting camouflaged characteris-
tics with cooperation. These experts collaborate to
generate outputs with the mixture-of-queries mech-
anism, refined hierarchically to a fine-grained level
for more accurate instance masks. Coupling these
two components enables MoQT to use multiple ex-
perts to integrate effective clues of camouflaged ob-
jects in both spatial and frequency domains. Exten-
sive experimental results demonstrate our MoQT
outperforms 19 state-of-the-art CIS approaches on
both COD10K and NC4K datasets.

1 Introduction

Camouflage is a naturally evolved strategy for animals to hide
themselves via adapting their body’s coloring to match the
surroundings, which is used for hunting prey or avoiding de-
tection by natural enemies, as shown in Figure 1(a). Since
there is a lot of demand for understanding the widespread
camouflage-like scenarios, (e.g., polyp segmentation [Fan et
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Figure 1: The Nature of Camouflaged Objects. Careful contrast of
the camouflaged inputs (a) and the corresponding ground truth (b),
color (c) (reconstructed with only amplitude component of Fourier
transformation) and contour (d) (reconstructed with only phrase
component of Fourier transformation) information shows the im-
portant priori principle of camouflaged objects: Low-level statis-
tics like color contain more information from the surroundings while
high-level semantics like contour tend to preserve more camouflaged
characteristics.

al., 2020b], lung infection segmentation [Fan et al., 2020c],
search-and-rescue work [Turi¢ ef al., 2010], manipulated im-
age/video detection and segmentation [Xu and Feng, 2023;
Zhang et al., 2024]), the task of predicting the location
and instance-level masks of camouflaged objects (i.e., Cam-
ouflaged Instance Segmentation, CIS) has been proposed.
Therefore, CIS is worth studying and has gradually received
more attention in recent years. However, it also has chal-
lenges due to high intrinsic similarities between the target ob-
jects and the background.

Compared to the tremendous development in generic in-
stance segmentation [Bolya et al., 2019; Wang et al., 2020a;
Wang et al., 2020b; Ren et al., 2015; He et al., 2017;
Cai and Vasconcelos, 2019; Chen et al., 2019], camouflaged
instance segmentation remains an under-explored issue, and
only a few efforts have been made to study it in the past three
years [Pei et al., 2022; Luo ef al., 2023; Dong et al., 2023;
Li et al., 2024; Le et al., 2023]. CFL [Le et al., 2021] is a
first attempt. It is a two-stage method that fuses general in-



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.

Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Predict Predict
Pt gy i 8
‘g o ] o = =] = 8
.................. e e I

Vanilla Décoder Layer “ MoQ Decoder Layer *‘{ EO0OD: O0O0mO: -
........................................................... 1 P
o 5] = o = =) = =) Layer-3 new initialized experts
----------------- -ﬁ---------------------‘ ,,,,,,,,,,,,,,,,,,ﬁ,,,,,,,,,,,,,,,,,,,,, _ _

Vanilla D&coder Layer “ MoQ Decoder Layer < EOOD ! oomo: -
___________________________________________________________ D | e
1 O o O o ! f Layer-2 new initialized experts
_________________ ﬁ""“""""""""

Vanilla Decoder Layer “TEncoded | MoQ Decoder Layer *{ ‘mDOom DDID
---------------------------------------- Features —======r=r=rmmmseoebreemme ey Layer-1 new initialized experts
| ] L I L L3 A W Ll L

Queries Queries
(a) b

Figure 2: The illustration of the standard transformer decoder and Mixture-of-Queries Transformer decoder. (a) There are only a group of
queries regarded as candidates initialized before feed into standard transformer decode. (b) There are multiple new initialized groups of
queries (a group of queries considered an expert) in each Mixture-of-Queries decoder layer for explicitly refining the candidates, where each

layer includes a standard decoder layer and a mixture-of-queries layer.

stance segmentation methods for camouflaged instance seg-
mentation but has limited performance. Subsequently, OS-
Former [Pei et al., 2022] is proposed as the first one-stage
method for CIS. It takes advantage of a transformer network,
which achieves a flexible framework that can be trained end-
to-end for camouflaged instance segmentation. Recently, DC-
Net [Luo et al., 2023] has been proposed to segment cam-
ouflaged instances via explicit de-camouflaging and achieves
CIS by jointly modeling pixel-level camouflage decoupling
and instance-level camouflage suppression. In the same pe-
riod, UQFormer [Dong et al., 2023] adopts a typical DETR-
like architecture [Carion ef al., 2020] and exploits the infor-
mation on object edges.

Although the aforementioned works have made some
progress, two fundamental inspirations have not been taken
into account: the priori of camouflage principles and the hu-
man habit of segmenting camouflaged instances. (1) The pri-
ori of camouflage principles: Only when you know how to
camouflage can you see through camouflage. Many years
ago, zoologists discovered that animals can camouflage them-
selves by matching their colors or patterns with the back-
ground. To look deeper into camouflage, we sample some
images of camouflaged animals and analyze them thoroughly.
Since it is hard to spot camouflaged objects in the surround-
ings, we perform the Fourier transform on these images to
discover some clues in the frequency domain. We first de-
compose these camouflaged images into phrase and ampli-
tude components and reconstruct images from only phrase
component and amplitude component, respectively, presented
in Figure 1. It is easy to find that the phase component of the
Fourier spectrum preserves high-level semantics (contours
and semantics) of original images, while the amplitude com-
ponent contains low-level statistics (colors and styles). There-
fore, enhancing the influence of contours and eliminating the
interference of colors would certainly benefit the performance
on CIS. (2) The human habit of segmenting camouflaged in-
stances: When humans segment a camouflaged image, their
visual system instinctively sweeps across the scene and de-
termines some candidates. Then, the visual system gradually
searches for valuable clues throughout the scene to obtain ac-

curate segmentation masks. For some heavily camouflaged
scenes with highly accurate segmentation like some medical
image datasets [Fu et al., 2019], it may even refine the masks
labeled by multiple experts. Gradually refining and integrat-
ing the decisions of multiple experts are potentially effective
for CIS. Therefore, it makes sense to take full advantage of
both inspirations of (1) and (2) for improving the performance
of the CIS task.

Motivated by the above discussions, we proposed a
Mixture-of-Queries Transformer (MoQT) trained in an end-
to-end manner for CIS, which includes a Frequency Enhance-
ment Feature Extractor (FEFE) based on modeling the col-
ors and contours of camouflaged instances and a Mixture-
of-Queries Decoder (MoQ Decoder) in transformer architec-
ture referring to the segmentation process of multi-experts
collaboration. First, inspired by the camouflage principles
discussed above, we design a Frequency Enhancement Fea-
ture Extractor to capture more clues of camouflaged instances
in the frequency domain. Specifically, we propose to adopt
Fourier spectrum amplitude and phase to model image color
information and contour information, respectively, as shown
in Figure 1. With the help of color and contour informa-
tion, we design a contour enhancement module and a color
removal module, which can increase the contour effect while
eliminating color interference. This mechanism in the fre-
quency domain is suitable for debunking the principle of an-
imal camouflaging, which is reasonable for providing gains
on CIS. Second, for the Mixture-of-Queries Decoder, which
is different from the standard DETR framework, we design
multiple expert groups of queries inspired by the success of
Mixture-of-Experts (MoE) mechanism. In DETRs, object
queries are wonderful designs in decoders, which have two
roles: a) candidates for objects and b) interaction with en-
coded features. And there are only a group of queries re-
garded as candidates initialized before feeding into the stan-
dard transformer decoder, as shown in Figure 2(a). These
candidates are refined for segmentation by learning the pa-
rameters of each decoder layer, where each decoder layer
determines whether the refined candidates are suitable for
final prediction. Differently, we design multiple groups of
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queries (a group of queries considered an expert) in each de-
coder layer for explicitly refining the candidates, which can
be illustrated in Figure 2(b). In each layer, there is an ex-
pert from the last layer and several new initialized experts.
And we propose a gating network in each decoder layer to
mix these experts, deciding which newly initialized experts
are selected to refine candidates explicitly for the next layer
forwarding. The gating network accepts the encoded features
as input, and the output is the weights of recombination of
the various experts. This mechanism can refine outputs hi-
erarchically to a fine-grained level via a mixture of experts,
which can generate more accurate instance masks, as shown
in Figure 2(b). In favor of these two designs, our method can
utilize multiple expert queries to integrate effective clues of
camouflaged objects in both spatial and frequency domains,
which can achieve outstanding segmentation performance.

In summary, our main contributions are three-folds. (1) We
propose a Mixture-of-Queries Transformer (MoQT) trained
in an end-to-end manner for CIS, which takes advantage of
the priori of camouflage principles and refers to the human
habit of segmenting camouflaged instances. To the best of
our knowledge, this is the first attempt to introduce MoE into
DETR-like frameworks for segmentation. (2) We proposed
a Frequency Enhancement Feature Extractor (FEFE) and a
Mixture-of-Queries Decoder (MoQ Decoder) for our MoQT,
where FEFE is used for color removal and contour enhance-
ment. The MoQ Decoder aims to mix multiple groups of
queries hierarchically to provide more accurate predictions.
(3) Extensive experimental results on COD10K and NC4K
show consistent performance gains compared with 19 base-
line methods and verify the superiority of our method.

2 Related Work
2.1 Camouflaged Object Detection

Camouflaged Object Detection is usually considered as one
of the most important origins of CIS and aims to identify
the camouflaged objects from the background and has wit-
nessed the development of art and biology [Fan et al., 2020a;
Le et al., 2019]. Early research [Pan er al., 2011; Sengot-
tuvelan et al., 2008] in COD mainly uses handcrafted fea-
tures (e.g., gradient, texture, and intensity features) to tell
the camouflaged objects from their surroundings. Later, deep
learning (DL) improves COD’s performance in an end-to-end
manner, and plenty of DL-based methods [Pang et al., 2022;
Yang et al., 2021; Xu et al., 2021; Zhong et al., 2022; Mei et
al.,2021; Ren et al., 2021] have been proposed. For example,
ZoomNet [Pang et al., 2022] discusses how to capture camou-
flaged objects in complex surroundings in a multi-scale man-
ner. Moreover, UGTR [Yang et al., 2021] combines the bene-
fits of both Bayesian learning and transformer-based reason-
ing to handle camouflaged object detection with probabilistic
and deterministic information. Some works [Xu et al., 2021;
Zhong et al., 2022] even go beyond the RGB domain and ex-
plore frequency clues for better performance. In this paper, a
Frequency Enhancement Feature Extractor, which refines fre-
quency clues with contour enhancement and color removal, is
adopted and allows full rein to both the camouflaged charac-
teristics and the surrounding textures.

2.2 Camouflaged Instance Segmentation

Camouflage Instance Segmentation (CIS) learns most lessons
from traditional instance segmentation. The purpose of in-
stance segmentation is to assign pixel-level mask predic-
tion for various instances. Nowadays, instance segmentation
methods can be roughly divided into two parts: One-stage
approaches [Bolya er al., 2019; Wang et al., 2020a; Wang
et al., 2020b] and two-stage approaches [Ren et al., 2015;
He et al., 2017; Cai and Vasconcelos, 2019; Chen et al.,
2019]. Two-stage methods apply mask segmentation after
proposal region detection, such as Faster R-CNN [Ren er al.,
2015], Mask R-CNN [He et al., 2017], Cascade R-CNN [Cai
and Vasconcelos, 2019], and HTC [Chen et al., 2019]. CFL
[Le er al., 2021], the first attempt in CIS, also applies two-
stage instance segmentation methods. However, one-stage
methods show faster inference than two-stage methods and
achieve comparable performance. For example, YOLACT
[Bolya et al., 2019] adopts two parallel tasks to produce non-
local prototype masks with adaptive coefficients. Further-
more, SOLO [Wang et al., 2020a] and SOLO-v2 [Wang et
al., 2020b] predict the instances’ center and then decouple
the instance masks with kernel feature learning. Recently,
researchers have found transformers [Cheng et al., 2021;
Cheng et al., 2022] show excellent performance on instance
segmentation with the assistance of attention mechanisms and
instance-specific prototypes. Therefore, transformer-based
methods like OSFormer [Pei et al., 2022], DCNet [Luo et
al., 2023] and UQFormer [Dong et al., 2023] utilize trans-
formers in CIS and achieve great progress. Inspired by [Pei
etal.,2022; Luo et al., 2023; Dong et al., 2023], our Mixture-
of-Queries Transformer (MoQT) introduces a Mixture-of-
Queries Decoder (MoQ Decoder) in the transformer decoder
to combine the capabilities of multi-experts hierarchically,
which enhances camouflage semantics and refines details of
instance masks.

3 Method

3.1 Architecture Overview

The overall framework of our proposed model is presented
in Figure 3. The whole architecture of our method is a typi-
cal MaskFormer-like [Cheng et al., 2021] model, composed
of a Frequency Enhancement Feature Extractor (FEFE), a
Pixel Decoder, and a Mixture-of-Queries decoder (MoQ De-
coder). In the FEFE, we get valuable multi-scale features
enhanced by the Fourier transform for revealing the camou-
flaged clues, where the phase component and amplitude can
be used for modeling the information of contours and colors,
respectively. We use a contour Enhancement Module (CEM)
and a Color Remove Module (CRM) to mine the potential in-
formation of contours and eliminate the interference of colors
for capturing clues of camouflaged instances. Then, the Pixel
Decoder (based on FPN [Lin ef al., 2017]) gradually upsam-
ples low-resolution features from the output of the backbone
to generate high-resolution per-pixel embeddings. The MoQ
Decoder computes from per-pixel embeddings and some ini-
tialized experts (a series of queries) to get the output predic-
tion. Specifically, in MoQ Decoder, we propose a Mixture-
of-Queries Layer (MoQ Layer) after each decoder layer and
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Figure 3: The Architecture of Our Proposed Model. Our method mainly consists of a Frequency Enhancement Feature Extractor (FEFE),
a Pixel Decoder, and a Mixture-of-Queries Decoder (MoQ Decoder). (1) The FEFE captures suitable camouflaged clues with the contour
enhancement and color remove modules in the frequency domain. (2) The Pixel Decoder is the same as previous works, based on the
FPN architecture, which is used to gradually upsample low-resolution features from the output of the FEFE to generate high-resolution per-
pixel embeddings. (3) The MoQ Decoder determines object candidates by multiple cooperation expert queries and hierarchically refines the

instance masks with encoded features.

transform M experts (each expert includes N queries) via
self and cross attention mechanisms, where the MoQ Layer
is used to combine the M experts of queries hierarchically.
Finally, following previous work, we use a mask head and a
matching algorithm to output the CIS prediction.

3.2 Frequency Enhancement Feature Extractor

As mentioned in our Introduction, the camouflage clues are
mainly comprised of high-level semantics (e.g., contours and
semantics) and low-level statistics (e.g., colors and styles),
which can be reflected by the phrase and amplitude compo-
nents of Fourier spectrum, respectively. As shown in Fig-
ure 1, it is believed that enhancing the influence of contours
and eliminating the interference of colors would certainly
benefit the performance of segmenting the camouflaged in-
stances. Thus, to explore the camouflaged clues, we design
FEFE (Frequency Enhancement Feature Extractor) to model
the colors and contours of camouflaged objects, where the
phrase and amplitude components are applied to identify the
camouflaged semantics from surroundings in FEFE. Specifi-
cally, suppose H and W are the height and width of the in-
put, and the Fourier transformation 7 (z) performed on each
channel with a given camouflaged image = € R3>*#*W can
be denoted as:

H-1W-1 , ‘
Fla)=Y 3 ali,jle 2w = Az)e’P@,
i=0 j=0

(1)
where J represents the imaginary unit, A(z) (modeling col-
ors) and P(z) (modeling contours) are the amplitude and
phrase components.

Then, we can get multi-scale image features FF ¢
RHXWXC | ¢ {2.3,4,5} extracted from a backbone net-
work with the origin image x. Besides, we feed .A(x) into a

lightweight CNN and a 1 x 1 convolution to obtain the global
camouflaged color information F .., € R, and eliminate
its interference via Color Remove Module (CRM). While for
the phrase component P(z), due to that P(x) includes some
information on contours and textures, extracting multi-scale
features of P(x) can present unique advantages to mining
camouflaged clues. Thus, we feed P(x) into the backbone
and obtain hierarchical features F¥_ . 'k € {2,3,4,5} to
explore the effects of contours as much as possible by the
Contour Enhancement Module (CEM). Formally, the process
of FEFE, including CRM and CEM for each scale feature
F ¢ {F2 F3 F* F°}, can be expressed as:

Fenhance = >\F @ M(JOlOT‘ + (1 - )\)F @ Mcontour;

Mecotor =0 COHV(?W&C((F - Fcolo7')2))7

Mcontour = 5 COHV (5(MLP(an§(Fcontour))) © F)v

()

where avg_c and avg_s indicate average pooling along spatial
and channel axis, and ¢ is an activation function. CRM and
CEM are designd to generate M ;o and M op¢0ur, T€SpEC-
tively. With the above module, we can get multi-scale refined
features F’e“n hanees & € {2,3,4,5}. Further, to acquire more
fine-grained features for more accurate segmentation, we fuse
Fr ok € {2,3,4,5} by feeding these features into the
pixel decoder based on FPN [Lin er al., 2017] architecture,
which is used to gradually upsample low-resolution features
from the output of the FEFE to generate high-resolution per-

pixel embeddings X € R * 1 %€,

3.3 Mixture-of-Queries Decoder (MoQ Decoder)

In order to capture camouflaged instances, the popular
transformer-based architecture like MaskFormer [Cheng er
al., 2021] and Mask2Former [Cheng et al., 2022], proposes
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COD10K-Test NC4K-Test

Methods AP AP, APn [ AP APsy APr Params(M)
Mask R-CNN [He et al., 2017] 250 555 204 | 27.7 58.6 227 439
MS R-CNN [Huang et al., 2019] 30.1 572 287 | 31.0 587 294 60.0
Cascade R-CNN [Cai and Vasconcelos, 2019] | 25.3  56.1 21.3 | 295 60.8 24.8 71.7
HTC [Chen et al., 2019] 28.1 563 25.1 | 29.8 59.0 26.6 76.9
BlendMask [Chen et al., 2020] 282 564 252 | 277 567 242 35.8
Mask Transfiner [Ke et al., 2022] 28.7 563 264 | 294 56.7 27.2 443
YOLACT [Bolya et al., 2019] 243 533 19.7 | 32.1 653 27.9 -
CondInst [Tian e al., 2020] 30.6 636 261 | 334 674 294 34.1
Querylnst [Fang et al., 2021] 28.5 60.1 23.1 | 330 667 294 -
SOTR [Guo et al., 2021] 279 587 24.1 | 293 61.0 256 63.1
SOLOvV2 [Wang ef al., 2020b] 325 632 299 | 344 659 31.9 46.2
MaskFormer [Cheng et al., 2021] 38.2 65.1 379 | 446 719 458 45.0
Mask2Former [Cheng et al., 2022] 394 677 38.5 | 458 73.6 475 439
OSFormer [Pei e al., 2022] 41.0 71.1 408 | 425 725 423 46.6
DCNet [Luo et al., 2023] 45.3 707 475 | 528 77.1 56.5 53.4
UQFormer [Dong et al., 2023] 452 716 46.6 | 472 742 492 37.5
CamoFourier [Le et al., 2023] 435 748 427 | 449 75.6 443 -
MSPNet [Li et al., 2024] 39.7  69.8 39.8 | 41.8 71.8 423 48.1
AQS [Dong et al., 2024] 448 720 464 | 48.1 743 50.4 34.4
Ours 480 730 51.8 | 547 785 59.0 61.6

Table 1: Performance Comparison of Various Methods. The best results are in bold.
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Figure 4: Illustration of the proposed Mixture-of-Queries Layer with
a gated network to output the weights of each expert. The output is
the weighted mixture of each input experts.

a set of queries to identify whether each pixel belongs to a
camouflaged instance. Meanwhile, as discussed in our In-
troduction, humans may segment camouflaged instances by
gradually searching and multi-person collaboration. Inspired
by the discussion, we propose a Mixture-of-Queries Decoder
(MoQ Decoder) for hierarchically segmenting camouflaged
instances.

Mixture-of-Queries Mechanism: Different from the stan-
dard Transformer decoder architecture, in each layer, we in-
troduce a Mixture-of-Quries Layer (MoQ Layer) after the
original decoder layer, and initialize M experts E;, i €
[1, M|, where each expert contains N queries ¢;, ¢ € [0, N —
1], ¢; € RY. Each query is responsible for an object can-
didate. So, we have E; = {qo0,q1, " ,qn—-1}> ¢ € R,
Further, the detailed architecture of the designed MoQ Layer
is illustrated in Figure 4, where the gated network G outputs
a sparse (M + 1)-dimensional vector G(z) € RM*! to in-
dicate the weights of each expert. Therefore, given the in-
put of each decoder layer £ and the M initialized experts
[E1, Ea,-- -, Ep], the output y of the MoQ Layer can be
written as follows:

y = E - softmax(G(X)), 3

where X is the output of pixel decoder, and G(X)
indicates the output of the gated network and E =

[E',Ey, Ea, -+, Ey]. E' is the output of the standard trans-
former decoder layer fed with E. Besides, the forward pro-
cess of each MoQ Decoder Layer (including a original de-
coder layer and a MoQ layer) can be formulated as:

Q=W . E, K=wK.x, v=w".x
E’' = LN (E + crossattention(Q, K, V)),

E' =[E',Ey, Es, -, Eyl - softmax(G(X)),
O = LN(E' + MLP (E')),

4)

where LN is layer normalization and MLLP denotes the multi-
layer perception network. During the training process, to pro-
vide deep supervision, we follow Mask2Former to adopt aux-
iliary losses with additional mask prediction heads and Hun-
garian match loss after each MoQ Layer.

3.4 Objective Function

As shown in Figure 3, with the fused feature X' € Ra*xGx0
output by Pixel Decoder and the instance candidates E e
RNXC generated by the MoQ Decoder, we can finally ob-
tain the segmentation map, which can be formulated as:

Mask = X x F. ®)

To train the whole network, following DETR [Carion et al.,
20201, we adopt a Hungarian matching algorithm to match a
ground truth label with each predicted segment instance. If no
suitable label exists, a special label (“no object”) is assigned.
Therefore, including the instances and mask supervision, the
objective function contains three terms: Cross-entropy Loss
Lc g for the instance score, Focal Loss £ focq: and Dice Loss
L 4;ce for the mask predictions after each MoQ Layer, written
as:

L
ACtotal = Z ‘CC'E +a- ACfocal + 5 . Kdice; (6)
=0

where L means the amount of decoder layers. By default, we
seta=20and g = 1.
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COD10K-Test NC4K-Test
AP AP;5y AP;; | AP AP;y APy5

4 458 713 493 | 532 778 573
v/ | 471 728 506 | 539 780 58.1
v vV | 480 730 518 | 547 785 590

FEFE MoQ

Table 2: Performance Comparison of Proposed Modules. We per-
form an ablation study on COD10K and NC4K to validate our pro-
posed modules’ effectiveness. “FEFE” and “MoQ” represent Fre-
quency Enhancement Feature Extractor and Mixture-of-Queries De-
coder, respectively.

Method Backbone CODIOK NC4K
OSFormer 41.0 42.5
DCNet ResNet-50 45.3 52.8
Ours 48.0 54.7
OSFormer 42.0 44 .4
DCNet ResNet-101 46.8 53.5
Ours 48.6 554
OSFormer 47.7 50.2
DCNet Swin-Tiny 50.3 56.3
Ours 51.4 58.1
OSFormer 52.1 56.7
DCNet Swin-Small 52.3 58.4
Ours 53.2 59.2

Table 3: Performance Comparison of Various Backbones. We eval-
vate multiple methods’ performance with various backbones on
CODI10K and NC4K.

4 Experiments

4.1 Experimental Setups

Following the mainstream works of CIS [Dong er al., 2023;
Luo et al., 2023], we evaluate our method in two datasets:
CODI10K and NC4K. CODI10K includes 3040 training im-
ages and 2026 testing images, while NC4K contains 4121 test
images for evaluating the generalization of proposed models.
To provide a fair comparison, we train models in the training
set in COD10K, and meanwhile test models in both test sets
of COD10K and NC4K, which is a standard setting proposed
in previous works [Luo er al., 2023; Pei et al., 2022]. In or-
der to comprehensively evaluate the models, We use A Ps,
APrs5, and AP scores as evaluation metrics to quantify the
performance of our method and baselines [Luo et al., 2023;
Dong et al., 2023; Pei et al., 2022]. Besides, it is free to check
the supplementary material for more details of the method
and experiments.

4.2 Comparison with State-of-the-Art Methods

The CIS task is a relatively novel task that has been proposed
in recent years, and only a few previous works are involved
in this task, such as OSFormer [Pei et al., 2022], DCNet [Luo
et al., 2023], and UQFormer [Dong et al., 2023]. Conse-
quently, we also adopt several popular generic instance seg-
mentation methods as baselines on the CIS task for a more
comprehensive test. And for a fair comparison, the backbone
of these methods is configured as ResNet-50. The perfor-
mance comparison results are shown in Section 3.2. It is easy
to observe that our proposed model can consistently outper-
form the state-of-the-art methods by a large margin on both
CODI10K and NC4K test sets.

COD10K-Test NC4K-Test

Decoder Layers AP AP, ADn | AP APy, ADr Params(M)
2 465 720 502 |[535 781 577 547
4 47.0 723 510 | 536 783 578 57.9
6 480 730 51.8 | 547 785 590 61.6
8 475 724 513 | 537 784 579 65.4
10 469 715 500 | 534 78.0 571 68.4
12 472 720 502 | 538 782 58.1 71.2

Table 4: Performance Comparison of Various Number of Decoder
Layers. We apply various numbers of decoder layers, and the per-
formance is shown as follows. The best results are in bold.

(1) Results on COD10K. As shown in Section 3.2, we
compare our proposed model with 6 CIS models (i.e., OS-
Former [Pei et al., 2022], DCNet [Luo et al., 20231, etc.),
13 generic instance segmentation models. Our model can
achieve 51.8% in APr5, which outperforms the second best
method DCNet [Luo er al., 2023] by 4.3% in AP75. In AP,
our model also gets a performance improvement of 2.6%.
Notice that our method does not achieve the highest value
in AP, instead of a comparable performance of 73.0% in
APs5p. These results indicate that our method can acquire
more accurate segmentation masks of camouflaged objects.

(2) Results on NC4K. Likewise, we evaluate these meth-
ods on NC4K dataset, and the results on this test set reflect
the generalization ability of these models. Our model yields
59.0% in APrs5, while the previous best method DCNet is
56.5%, which demonstrates that our method gets an obvious
gain of 2.5% in A Pr5, suggesting a great generalization abil-
ity of our model as well. In AP, our model achieves the high-
est performance metrics of 54.7%, surpassing the second best
method (DCNet) by 1.9%. Besides, our model also obtains a
1.35% improvement in A Psq. The overall metrics of various
AP values reflect our method’s obvious superiority over other
baselines.

4.3 Ablation Studies and Visualizations

To look deeper into our proposed method, in this section, we
present a series of ablation studies to demonstrate the effec-
tiveness of each proposed module.

Effectiveness of proposed modules. To explore the effec-
tiveness of the proposed FEFE and MoQ Decoder, we val-
idate the importance of each component by removing them
one at a time. As shown in Section 3.4, the performance with-
out MoQ Decoder drops by 2.2 % in AP, 1.7% in AP4p,,
and 2.5% in AP, p,. on COD10K-Test. On NC4K-Test, the
metrics of AP, APsg and APy5 are also reduced by 1.5%,
0.7% and 1.7%, respectively. Similarly, if the components
of FEFE are ablated, there is a drop in segmentation perfor-
mance as well. For example, on COD10K-Test, the perfor-
mance just achieves 47.1% in AP, 72.8% in APs5q and 50.6%
in APr5, which are consistently lower than that without any
modules ablated (as shown in the last row of Section 3.4). The
reduced performance demonstrates that these two proposed
modules can capture clues of camouflaged instances and pro-
vide accurate segmentation. With both modules, our method
can lead to huge performance gains in evaluation metrics.

Various backbones. To further explore the potential of
our model, we equip it with different feature extractor back-
bones, such as ResNet-50 [He et al., 2016], ResNet-101 [He
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Figure 5: Performance Comparison of Various Numbers of Queries
in Each Expert. AP and AP75 of our MoQT with various numbers
of queries on COD10K-Test (a) and NC4K-Test (b) are shown.

et al., 20161, SwinTransformer-Tiny (Swin-Tiny) [Liu et al.,
2021], and SwinTransformer-Small (Swin-Small) [Liu et al.,
2021]. For a fair comparison with baselines, all these mod-
els are pretrained on ImageNet-1k. The results are presented
in Section 3.4. With the same backbone, our method shows
the best performance among compared baselines, which in-
dicates our method outperforms the state-of-the-art methods.
For example, when ResNet-101 is the backbone, the metrics
of AP of our method are 48.6% and 55.4% on COD10K and
NC4K datasets, respectively, while the second best method
just reaches 46.8% and 53.5%. With a larger backbone, the
results also prove that our method has the potential for further
improvement.

Analysis of the number of decoder layers. We apply
auxiliary losses after each decoding layer, as formulated in
Equation (6). Hence, the number of decoder layers L is im-
portant for the segmentation performance. As presented in
Section 3.4, we vary the number of decoder layers, picked
from the set {2,4,6,8,10,12}. We find that the overall per-
formance of the model improves with the increase of L. And
when L = 6, the model can get the best performance. There
is no additional performance gain when the L continues to
increase, which may be caused by limited data to train the
model for further improvement.

Ablation on the number of queries. Object queries
are essential in the transformer architecture for prediction.
Therefore, we study the performance with different numbers
of queries in each expert group. As shown in Figure 5, we
change the number of queries from 10 to 40 and evaluate the
performance metrics of AP and APr5 in both COD10K and
NC4K test sets. In fact, the number of queries in each group
should be larger than the actual count of objects to avoid in-
stance fusion, which is determined by the dataset distribution.
Moreover, it can be seen that when the number is set as 10,
our model obtains the best performance on both datasets. For
example, when the number is 10, AP and APr5 is 47.99%
and 51.77% on COD10K, respectively. Meanwhile, AP and
AP;s reach 54.73% and 58.97%.

Impacts about Hyper-parameters. We study the impacts
of the Hyper-parameters « and /3 in Equation (6). On both
CODI10K and NC4K datasets, when o = 20, the best perfor-
mance is achieved, proved by the metrics of AP = 47.99%
and 54.73%, respectively, shown in Figure 6(a). Therefore,
we choose a = 20 in our method by default. For the hyper-
parameter /3, we change the value of 8 from 0.1 to 2, and the
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Figure 6: Ablation Studies on Hyper-parameters of « (a) and 3 (b),
presented in Equation (6).

Figure 7: Visualizations of Various Methods. Different colored
masks indicate different instances.

results as presented in Figure 6 (b). It can be seen that the
model gets the best performance when 8 = 1. Therefore, to
get the best performance, we set « as 20, and (3 as 1.

Visualization Results. To comprehensively evaluate our
method, we also present some qualitative analysis, as shown
in Figure 7. We visualize the segmentation masks of vari-
ous methods, including OSFormer [Pei et al., 2022], DCNet
[Luo et al., 2023], and our method, to demonstrate the perfor-
mance wtih qualitative results. It can be seen that our method
performs better than previous methods, which can be proved
by the clear boundaries and accurate masks of our method
(shown in the last row of Figure 7). In short, our method not
only improves the evaluation metrics on two datasets but also
gains in visual results of segmentation masks.

5 Conclusion

In this paper, we propose a novel Mixture-of-Queries Trans-
former (MoQT) for camouflaged instance segmentation.
MoQT applies a Frequency Enhancement Feature Extractor
for feature extraction in the frequency domain, with the as-
sistance of a contour enhancement module and a color re-
moval module. Besides, a Mixture-of-Queries Decoder uses
multiple expert groups of queries as candidates and shares se-
mantic information with transformer encoder features. Multi-
scale features enable MoQT to refine prediction hierarchi-
cally and get fine-grained instance masks with collaboration
of multiple groups of queries. Compared with plenty of state-
of-the-art baselines, our proposed MoQT shows outstanding
performance on two benchmark datasets, demonstrating the
proposed method’s effectiveness.
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