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Abstract
In the data-driven era, collecting high-quality la-
beled data requiring human labor is a common
approach for training data-hungry models, called
crowdsourcing. Recently, end-to-end learning from
crowds has shown its flexibility and practicality.
However, existing works in an end-to-end manner
focus on learning after collecting labels, which re-
sults in noisy annotations and also requires cost. In-
spired by computerized adaptive testing, we argue
that the characteristics of workers should be mined
as soon as possible to make the best use of talents.
To this end, we propose an adaptive learning from
crowds method, AdaCrowd, as a cost-effective so-
lution. Specifically, we propose a probabilistic
model to capture the informativeness of possible
instances for each worker. The informativeness is
considered to be the uncertainty of the annotation
prediction model output in its current status. The
adaptive learning procedure is optimized by maxi-
mizing data likelihood and can be used with exist-
ing crowdsourcing models. Extensive experiments
are conducted on real-world datasets, LabelMe and
CIFAR-10H. The experimental results, e.g., the re-
duction of annotations without performance degra-
dation, demonstrate the effectiveness.

1 Introduction
Recent years have witnessed the remarkable success of deep
neural network training on large-scale datasets [LeCun et
al., 2015; Vaswani et al., 2017]. Crowdsourcing is a useful
way to collect labeled data from human workers for these
data-hungry deep models [Han et al., 2025]. Task owner
pays rewards to workers for their annotations in crowdsourc-
ing platforms, and every annotation carries a cost, e.g., 100
annotations of a text classification task cost 2 Yuan in a
Chinese platform maintained by Netease Fuxi1. However,
the crowd-supervised dataset inevitably contains incorrect,
noisy, and redundant labels, which causes the task budget
to increase [Nguyen et al., 2024; Chen et al., 2022]. The

∗Corresponding author
1https://zb.163.com/mark/task

simplest solution is to conduct an admission test to filter
out insufficient workers. Since this in-advance test intro-
duces additional test costs and wastes workers’ time, many
efforts have been made to reduce crowdsourcing costs ac-
cording to knowledge from data [Wang and Zhou, 2016;
Fang et al., 2018; Yang et al., 2018; Miao et al., 2023].

A popular model training approach in crowdsourcing is the
co-training of target models and label correction mechanisms
in an end-to-end fashion. The basic paradigm is connecting
the crowd layer, i.e., transition matrices of workers, behind
the original classifier [Rodrigues and Pereira, 2018]. This
end-to-end training enables any improvement of deep learn-
ing to be applied in crowdsourcing and shows flexibility and
practicality. Existing works in cost saving focus on model-
ing cost complexity under quality requirements or dynami-
cally determining the price for each worker. However, these
theoretical results under label aggregation, such as majority
voting, are hard to apply in end-to-end deep learning from
crowds, where the hypothesis space and sample complexity
are hard to analyze under the Probably Approximately Cor-
rect framework [Haussler and Warmuth, 1995].

To this end, we aim to save costs with end-to-end
deep learning. Inspired by computerized adaptive testing
(CAT) [Ghosh and Lan, 2021], the main idea is to estimate the
ability of human workers using as few unlabeled instances as
possible. CAT is widely used in education assessments such
as GMAT [Rudner, 2010] and Duolingo [Brenzel and Settles,
2017], where the question is adaptively selected based on stu-
dents’ responses to estimate their ability efficiently. The se-
lection criterion is usually informativeness, e.g., Fisher infor-
mation, where the maximum value means the difficulty of the
exercise equals the ability of the student, and the correct prob-
ability is 50%. However, in crowdsourcing, the labels of in-
stances are unknown initially; therefore, the informativeness
cannot be measured directly.

To tackle the above challenge, we propose an adaptive
learning from crowds method, called AdaCrowd, to effi-
ciently estimate worker parameters and train the target model
using as few annotations as possible. Similar to CAT, the core
goal is to choose the most informative instance from the can-
didate set for workers to label. When the worker labels the se-
lected instance, the model parameter updates, and the new in-
stance is selected for the worker until convergence. Note that
in our method, there is no need to label some instances in ad-
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Instance Pool
Adaptive Task
Assignment

 steps of 
instance selection

:    (             , Dog)

End-to-end Deep Learning

Classification
Model 

Figure 1: A toy example of the adaptive deep learning from crowds: At each annotation step t, an instance x(t) is selected and assigned to
workers for annotating. Their annotations are used for end-to-end training. The updated classifier parameter f (t+1) and worker parameter
A

(t+1)
r are used to select proper instance x(t+1) in the next step t+ 1. After T steps, the crowdsourcing procedure will finish, and the final

classifier f (t) can be used to predict unseen instances.

vance to test the worker’s ability, although this test is adopted
on many platforms. From this perspective, AdaCrowd can be
considered an “unsupervised test”.

Specifically, we first introduce an annotation probabilistic
model to simulate the annotation procedure. Then, the infor-
mativeness of instances is assessed based on the uncertainty
in the prediction model’s outputs. This approach enables a
more strategic allocation of workers to instances, ensuring
that their expertise is leveraged most effectively. The adaptive
learning process in AdaCrowd is fine-tuned by maximizing
data likelihood, making it compatible with existing crowd-
sourcing methodologies.

Through empirical evaluation and visualization on real-
world datasets, including LabelMe and CIFAR-10H, we
showcase the effectiveness of the AdaCrowd. The results
affirm that AdaCrowd can reduce the number of necessary
training annotations without decreasing model performance.

The contributions of this research are summarized as fol-
lows:

• We propose AdaCrowd, a cost-efficient solution for
crowdsourcing. To the best of our knowledge,
AdaCrowd is the first research work on cost-saving in
end-to-end deep learning from crowds.

• To adaptively choose an instance for each worker to an-
notate in every epoch, we incorporate the idea similar to
computerized adaptive testing. We believe our work can
help improve related CAT methods.

• The proposed adaptive crowdsourcing coincides with
the out-of-distribution via Evidence Deep Learning. Our
task is another application of the Theory of Evidence.

2 Related Works
Learning from Crowds. A fundamental model in crowd-
sourcing is the Dawid-Skene (D&S) model [Dawid and
Skene, 1979]. The D&S model assumes that each worker
possesses a confusion matrix, which outlines the probabili-
ties of their annotations matching the true labels. Recently,
the end-to-end models that jointly learn the deep neural net-
work and worker parameters directly arose as an EM-free ap-
proach. The first work in end-to-end models is CrowdLayer
[Rodrigues and Pereira, 2018], which applies the learnable
crowd layer after the classifier for confusion modeling. After

that, TraceReg [Tanno et al., 2019] introduces a regulariza-
tion term in mapping the classifier output onto the worker-
specified output. Besides, CoNAL [Chu et al., 2021] goes
further by distinguishing a common confusion from the indi-
vidual confusion of each worker. Coupled Confusion Correc-
tion [Zhang et al., 2024] simultaneously trains two models
to correct the transition matrices learned from each other.

Active learning has also been introduced in crowdsourc-
ing with different models such as logistic regression [Yan et
al., 2011], Bayesian networks [Zhao et al., 2014], and active
learning with SVM [Zhong et al., 2015]. Our work is nascent
and differs from these works since, in end-to-end learning,
existing methods are hard to scale in deep networks with con-
fusion layers. The proposed approach, adaptively assigning
the best instance to workers, can be seen as a prepositive work
that could serve as a plug-in to enhance existing works.
Crowdsourcing Cost. The pioneering work in crowdsourc-
ing cost-saving is the adaptive task-assigning with gold stan-
dard tasks for classification [Ho et al., 2013]. This work
builds the relationship between the target error rate and the
times of querying humans. After this, SmartCrowd formats
the problem of worker-to-task assignment in knowledge-
intensive crowdsourcing, e.g., Wiki writing, as an optimiza-
tion problem [Basu Roy et al., 2015]. Probably approxi-
mately correct (PAC) is also used to study the cost-saving
effect of crowdsourcing learning theoretically, and an upper
bound for the minimally sufficient number of crowd labels
can be given [Wang and Zhou, 2016]. Then, the cost com-
plexity, also based on PAC, is proposed to model the trade-off
between costs and quality [Fang et al., 2018].

3 Background
3.1 End-to-end Learning from Crowds
Notation. Suppose that there are R workers labeling N in-
stances as belonging to K possible classes. xi ∈ X refers to
the i-th instance, and yri ∈ Y refers to the one-hot label from
the r-th worker on the i-th instance, where X is the instance
space depending on task and Y is the label space, i.e., aK−1
probability simplex is considered:

∀yir ∈ Y :
K∑

k=1

yrik = 1, yrik ≥ 0. (1)
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Educational Test Crowdsourcing Notation

Questions Instances xi

Students Workers Ar

Responses Annotations yri
Item response theory End-to-end deep model Arf(xi)

Test information Uncertainty αri

Question selection Instance selection π

Table 1: Corresponding concepts in crowdsourcing task assignment
and educational test.

We denote the instance set asX = {xi}Ni=1, the annotation
set as Y = {yir}, where yir = [yri1, yri2, . . . , yriK ], and the
unknown instance truth set as Z = {zi}Ni=1. Let us represent
the classifier as f : X → Y , and the workers’ transition
matrices as {Ar}Rr=1, where Ar satisfies that its columns are
conditional probability distributions.
End-to-End Training. In the general end-to-end training
paradigm, classifier f and worker parameters {Ar}Rr=1 are
connected to a deeper network. Note that the classifier is
sequentially combined with a feature extractor and a linear
layer. The objective function is expressed as follows:

min
f ,{Ar}R

r=1

− 1

|Y |
∑

yri∈Y

K∑
k=1

yrik log[Arf(xi)]k. (2)

After proper network initialization, optimal parameters
of crowdlayer {Ar}Rr=1 and classifier f can be estimated
with stochastic gradient descent. Assuming that the ground
truth confusion matrices are {A♮

r}Rr=1, the difference between
the learned parameters {Ar}Rr=1 and {A♮

r}Rr=1 are bounded
[Ibrahim et al., 2023].

3.2 Problem Setting
We focus on cost-saving by reducing the number of annota-
tions in this research work. The intuitive way is improving
the task assignment mechanism, similar to the CAT [Zhuang
et al., 2022]. The correspondence between CAT and crowd-
sourcing task assignment is shown in Table 1. The core con-
cept is instance selection, which makes a decision on which
instance and possible annotation can best help learn the target
model. Here, we give the setting of instance selection.
Instance Selection. Given instance pool X and worker pool
Q, our task is to design a strategy π to select an instance,
i.e., x(t)

r ∼ π(t)(X, r), in each step t according to current
model parameters f (t) and {A(t)

r }Rr=1. The selection strategy
should balance two goals: importance of each instance for
estimating the worker parameter and coverage of all selected
instances for training the target model.

With the instance selection, adaptive crowdsourcing is de-
scribed as follows.
Adaptive Crowdsourcing. At step t (1 ≤ t ≤ T ), there
is one instance x

(t)
r sampled from distribution π(t)(X, r) for

worker r. Then, the worker labels this instance, i.e., gives a
one-hot observation. Both the classifier and worker parame-
ters in step (t + 1) are updated with this new labeled sample

Figure 2: Graphical model of annotation generation. The annotation
yri is a sample from the Dirichlet distribution with parameter αri,
which is influenced by the worker’s parameter Ar and the encoded
instance feature αi.

(x
(t)
r ,y

(t)
r ). The number of steps T may vary with work-

ers. For simplicity and comparability, we set T to be number-
fixed or proportion-fixed as a hyperparameter. After learning
from selected annotations sequentially after T steps, we get
the target model f (T ). The performance of the target model
is measured by computing accuracy in an unseen test set.

4 Method
4.1 Probabilistic Model
To measure the uncertainty of an instance on the current
model state, we model the annotation process as a probabilis-
tic model, as shown in Figure 2. Instead of treating f(xi) as
the softmax output, we take the output f(xi) as the parameter
of the Dirichlet distribution αi about the multinomial prob-
ability of this instance. Therefore, Ar is not the confusion
matrix with the sum of each row equaling 1, but a transfor-
mation matrix without simplex constraint. After labeling by
worker r, the parameter of Dirichlet distribution changes to
αri = Arαi. Then, the annotation can be seen as a sam-
ple from posterior Dirichlet, i.e., pri ∼ Dir(αri). Therefore,
denoting the annotation set as Y , the likelihood of data is:

L(X,Y ) = Epri∼Dir(αri)[
N∏
i=1

∏
yri∈Y

K∏
k=1

yprik

rik ], (3)

where prik = [pri]k.
The likelihood is the function of parameters f , {Ar}Rr=1,

therefore, the maximum likelihood estimation (MLE) of this
probability model is computed by minimizing the negative of
log-likelihood, i.e.,

f , {Ar}Rr=1 = argmin
f ,{Ar}R

r=1

Epri∼Dir(αri)[− logL(X,Y )].

(4)

4.2 Overview of AdaCrowd
The model architecture is illustrated in Figure 3. The main
components are the backbone network, the evidential learning
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(a) AdaCrowd Procedure (b) Evidential Learning (c) Instance Selection

Figure 3: Model overview of AdaCrowd.

module, and the instance selection module. The backbone
network is a task-specific pre-trained model, and the setting
of the backbone is shown in the experiments. We describe the
overview of the modules as follows.

• Evidential Learning Module: We introduce evidential
learning to measure the uncertainty. By modifying the
traditional CrowdLayer, evidential learning can be ap-
plied to existing end-to-end crowdsourcing models. The
modified network is optimized directly by log-likelihood
without sampling.

• Instance Selection Module: We design a mechanism
with uncertainty and evidence for selecting the most
suitable ones for workers. The importance and overall
coverage are both considered for making the best of both
worker parameter estimation and target model training.

4.3 Evidential Learning
Evidential deep learning is currently a popular technique
in out-of-distribution detection, aiming to find samples that
never appear in the training set [Sensoy et al., 2018]. Here we
show how to compute belief and uncertainty for an instance
x ∈ X .

With backbone network f , the last softmax layer is re-
placed with a linear layer, and the output shape is the number
of classes K. Therefore, the output of the backbone is:

e = [ek]
K
k=1 = [e1, e2, · · · , eK ] = f(x). (5)

For each possible class k, the belief mass is denoted as
bk, and the overall uncertainty mass is denoted as u. These
mass values are non-negative, and their summary is 1, i.e.,
u +

∑K
k=1 bk = 1. To construct these mass values, the e is

normalized to (u, b), i.e.,

S =
K∑

k=1

(ek + 1), u =
K

S
, bk =

ek
S
, (6)

where ek is obtained from Eq. (5) and referred to as evidence
because it quantifies the level of support gathered from data
for classifying a sample into a specific class.

Therefore, the above value can be used to define a Dirich-
let distribution with parameter α, where αk = ek + 1. The

density of the Dirichlet distribution is:

Dir(p;α) =
1

B(α)

K∏
i=1

pαi−1
i , (7)

where p is a probability satisfying simplex constraint, αk =
ek +1 = [f(x)]k +1, and the length of Dirichlet distribution
is S in Eq. (6).

In the crowdsourcing setting, we assume the instance is
xi, and the worker’s parameter is Ar. After inference of the
backbone, the CrowdLayer is used to integrate the worker’s
characteristics into the instance’s final annotation, i.e.,

αri = Arαi = Ar(f(xi) + 1), (8)

where 1 is the fulling one array.
According to Eq. (4), the loss function is as follows. For

simplicity, we denote L(xri,yri;f ,Ar) as L(r, i).

L(r, i) =
∫
p∈Sk

[
K∑

k=1

−yrik log (prik)

]
Dir(p;α)dp, (9)

where Dir(p;α) = 1
B(αri)

∏K
k=1 p

αrik−1
rik , and Sk is the open

set of K − 1 simplex.
Similar to the study in [Sensoy et al., 2018], the loss func-

tion is derived as:

L(r, i) =
K∑

k=1

yrik

(
ψ

(
K∑

k=1

αrik

)
− ψ (αrik)

)
, (10)

where ψ(z) ≃ ln z − 1
2z is the digamma function.

To reduce the covariance evidence and probability, the
Kullback–Leibler (KL) divergence [Kullback and Leibler,
1951] is used to regularize the learning process, i.e.,

α̂ri = yri + (1− yri)⊙αri, (11)

DKL(r, i) = KL(Dir(p; α̂ri)||Dir(p; 1)). (12)
The final loss function is:

Loverall(r, i) = L(r, i) + λDKL(r, i), (13)

where λ is a trade-off parameter.
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4.4 Instance Selection
After training, our end-to-end model can infer the belief and
uncertainty mass of possible annotations of instances before
worker labeling. In short, the importance module finds in-
stances with maximum uncertainty. However, only consider-
ing uncertainty will decrease the diversity of instances. The
coverage module leverages belief to cover more instances in
the overall workers’ tasks.
Importance Module. Denote the instance candidates set as
X = {xi}Ni=1. For worker r, in each step t, all instances are
inferred to generate αri. The uncertainty mass is:

uri =
K

Sri
=

K∑K
k=1 αrik

, (14)

where K is the number of classes.
The top-L most uncertain instances are selected as candi-

dates for the coverage module, i.e., X(t)
r = Top(X,uri, L).

With the mild assumptions that (1) annotations are i.i.d.
variables, (2) ground-truth f ♮ exists and is bounded with the
hypothesis set, (3) the near-class specialist exists, and (4) the
near-anchor point exists, we have the following theorem.

Theorem 1. [Ibrahim and Fu, 2021] The optimal solution
of deep learning from crowds exists, and the distance between
this solution f and ground-truth f ♮ is bounded.

However, adaptive training may violate the fourth assump-
tion. For class k, a near-anchor point matching ground-truth
predictor f ♮ may not exist. Therefore, we propose the cover-
age module to alleviate it.
Coverage Module. After obtaining candidates X(t)

r , we ex-
ploit the global belief information to extend the coverage.
The global belief for xi is computed by αi = f (t)(xi) in-
stead of αri. Then, the belief for class k is:

bik =
αik

Si
=

αik∑K
k=1 αik

. (15)

This coverage module bridges workers’ selected instances.
From step 1 to t−1, all labeled instances is saved asX(1:t−1)

with size N ′, and after selecting the new instance x
(t)
r , the

union is {x(t)
r } ∪X(1:t−1). The accumulation of belief mass

is b′ =
∑N ′

i=1 bi.
To improve the class-level coverage, the instance is se-

lected to minimize the variance of b(t), i.e.,

x(t)
r = argmax

xi∈X
(t)
r

Var[bi1 + b′1, bi2 + b′2, · · · , biK + b′K ]. (16)

The pseudo-code of the overall approach is shown in Al-
gorithm 1. It is worth mentioning that after each step, all
collected annotations are trained in E epochs to avoid under-
fitting. The collection procedure is asynchronous and parallel
in the real-world scenario. In our experiments, this sample se-
lection is implemented as training on the whole dataset with
a mask, and the mask is updated after data collection.

Different from the existing evidential learning and active
learning methods, some important features of the proposed
method are discussed in the following perspectives.

Algorithm 1 Pseudo-code of AdaCrowd
Input: Instance pool X .
Output: Target classifiers f (T ), and the workers’ transition
matrices {Ar}Rr=1

1: Initialize classifiers f (0), the workers’ transition matri-
ces {Ar}Ri=1 with identity weights.

2: for t = 1, ..., T do
3: for parallel worker r do
4: Inference all instances with the evidential model.
5: Compute the uncertainty by Eq. (14).
6: Compute the accumulated belief by Eq. (15).
7: Select instance by Eq. (16).
8: Obtain the annotation yri.
9: end for

10: for E epochs do
11: Update parameters of classifier and worker matrices

by Eq. (13).
12: end for
13: end for

1. By utilizing the implicit uncertainty in data between
multiple workers and instances, AdaCrowd circumvents
golden labels for explicitly testing workers, instead esti-
mating worker characteristics in the labeling process.

2. Compared with coreset mining, such as learning with re-
dundant and noisy data, AdaCrowd is deployed through-
out the whole crowdsourcing method rather than only on
clean data after label collection.

3. Compared with evidential deep learning, the goal of
AdaCrowd is to measure the information of annotation
instead of out-of-distribution detection.

4.5 Theoretical Analysis
The convergence analysis is provided here. The distance
between parameter f (t),A(t)

r in step t and truth f ♮,A♮
r is

bounded. In crowdsourcing learning, the empirical risk min-
imization (ERM) is directly about Arf , therefore the bound
ofE[∥f (t)A(t)

r −f ♮A♮
r∥] is trivial as common stochastic gra-

dient descent (SGD) convergence analysis. The key challenge
is analyzeE[∥f (t)−f ♮∥], E[∥A(t)

r −A♮
r∥]. Here we give the

convergence analysis ofE[∥A(t)
r −A♮

r∥]. The adaptive learn-
ing is assumed to select a representative subset, known as
the coreset of the whole dataset [Mirzasoleiman et al., 2020].
With this coreset assumption, the theorem is as follows.

Theorem 2 (Expected Estimation Error Bound). Assume that
the loss function L, i.e., cross-entropy in classification, is
µ−strongly convex, and D is the selected annotation subset
with size n that approximates the gradient of full annotations
by the error at most ϵ. Then with learning rate η, it holds:

E[∥A(t+1)
r −A♮

r∥2] ≤ (1− µη)t+1E[∥A(0)
r −A♮

r∥2] +
2ϵH

µ2
+
n2ηC2

µ
,

(17)
where C is an upper-bound on the norm of the gradient of the
loss function, H is a constant value determined by the initial
state, and d0 = E[∥A(0)

r −A♮
r∥2] is the initial distance to the
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Dataset LabelMe CIFAR-10H-Top100

# workers 59 100
# instances 1,000 8,621
# annotations 2,550 20,000
avg accuracy 69.20% 77.50%

Table 2: Statistics of the Datasets.

optimum A♮
r. Moreover, if learning rate is η = 1

µ , it gives:

E[∥A(t+1)
r −A♮

r∥2] ≤
2ϵH + n2C2

µ2
. (18)

The proof is given in the supplementary material.

5 Experiments
In this section, we conduct experiments to answer the follow-
ing research questions:

• RQ1: Can AdaCrowd perform better with existing
crowdsourcing models than random selection with fewer
annotations?

• RQ2: How does AdaCrowd perform in choosing impor-
tant data while keeping instance coverage compared to
baseline methods?

• RQ3: How does AdaCrowd improve accuracy in fixed
training steps, i.e., saving crowdsourcing cost, with the
adaptive instance selection reasonably?

5.1 Dataset Description and Analysis
The experiments are conducted on crowdsourcing datasets of
image classification: LabelMe and CIFAR-10H, which can
be found: LabelMe2, CIFAR-10H annotation3, image4.
LabelMe [Russell et al., 2008; Rodrigues and Pereira, 2018]
is an open-source dataset collected from Amazon Mechanical
Turk. There are 59 workers, 1,000 instances, and 8 classes:
highway, inside city, building, street, forest, coast, mountain,
and open country.
CIFAR-10H [Battleday et al., 2020] is an subset of well-
known CIFAR-10 dataset. There are 2,571 workers, 10,000
instances, and 10 different classes in the raw version of
CIFAR-10H: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck. Every worker has labeled 200 images.
To keep things practical, our experiments select the top 100
lowest-accuracy workers. After that, there are 100 workers
and 8,621 instances in the CIFAR-10H.

The statistics for the datasets are shown in Table 2. The
correct rate of workers is counted as shown in Figure 4. Ac-
cording to Table 2 and Figure 4, we find that the datasets have
the following properties:

• Accuracy: The average accuracy of workers in CIFAR-
10H 95% is much higher than LabelMe 69.20%. In
CIFAR-10H, only the top 100 workers with the lowest

2http://labelme.csail.mit.edu/
3https://github.com/jcpeterson/cifar-10h
4https://www.cs.toronto.edu/∼kriz/cifar.html
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Figure 4: Data analysis of Datasets CIFAR-10H and LabelMe. Top:
Correct Rate of Workers, Bottom: Annotate Time of Instances. The
red part is discarded, and the blue part is adopted.

accuracy are chosen in experiments. In Figure 4, the
top-100 workers are the blue part. After that, the aver-
age accuracy is 77.50%.

• Annotate Times: In LabelMe, all instances were anno-
tated no more than three times, while the times are in-
consistent. In CIFAR-10H, all instances were annotated
about 50 times. Therefore, in experiments, we set the
number of steps T in LabelMe varying and in CIFAR-
10H fixed across workers.

The above analysis shows that crowdsourcing usually as-
signs the same instance to multiple workers, and the workers
give correct annotations in most cases. As a result, our pro-
posed approach is suitable for the cost-saving effort in crowd-
sourcing.

5.2 Experimental Setup
Model Setting. Our models are implemented with the Py-
Torch library, and the codes are released on our repository5.
Following the previous work, the pre-trained VGG-16 net-
work is used as the backbone of the classifier for the LabelMe
and the CIFAR-10H dataset. Similarly, we follow the ar-
rangement in the previous work that splits and saves the train-
ing set, validation set, and test set. In the LabelMe dataset, the
augmented training set contains 10,000 images, the validation
set contains 500 images, and the testing set contains 1,188 im-
ages. In the CIFAR-10H dataset, the training and validation
sets contain 10,000 images from the original CIFAR-10H test
set, and 2,000 unseen images from the CIFAR-10 dataset are
sampled for evaluation.
Hyperparameter Setting. The trade-off parameter λ is in-
crease with training step: λ(t) = min(1, t/Tw). The learn-
ing rate λ is selected from [0.0005, 0.001, 0.005, 0.01]. The
weight decay is selected from [0, 0.003, 0.009, 0.01]. The

5https://github.com/MISE-MUST/AdaCrowd
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Method CrowdLayer TraceReg CoNAL GeoCrowdNet

Random 83.22 ± 0.20 85.34 ± 0.32 81.70 ± 0.31 83.23 ± 0.34
Softmax 73.45 ± 0.64 84.83 ± 0.25 77.54 ± 0.03 79.09 ± 5.71
MaxInf 72.63 ± 2.61 76.62 ± 0.54 78.61 ± 1.31 80.11 ± 0.21
MaxGrad 71.45 ± 0.63 76.07 ± 0.83 78.01 ± 0.30 79.81 ± 0.51

AdaCrowd 86.08 ± 0.16∗ 85.94 ± 0.17∗ 81.82 ± 1.80 83.84 ± 0.86
AdaCrowd w/o imp 83.92 ± 0.30 81.65 ± 0.21 79.96 ± 0.72 80.47 ± 1.35
AdaCrowd w/o cov 85.99 ± 0.48 81.26 ± 0.21 80.31 ± 0.25 84.32 ± 0.16
Full 86.51 ± 0.11 85.95 ± 0.26 82.22 ± 0.26 84.68 ± 0.30

Table 3: Performance of Accuracy on LabelMe dataset (*: p < 0.05)
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Figure 5: Performance of Accuracy and AUC on CIFAR-10H dataset.

annealing step Tw is selected from [5, 10, 15, 20]. The epoch
in each step E is selected from the range [1, 5]. According to
the validation set, λ is set to 0.001, the weight decay is set to
0, E is set to 2, and Tw is set to 5.

5.3 Performance Comparison (RQ1)
To evaluate the performance of the proposed AdaCrowd,
four well-known crowdsourcing approaches are chosen as
baselines: CrowdLayer [Rodrigues and Pereira, 2018], Trac-
eReg [Tanno et al., 2019], CoNAL [Chu et al., 2021], and
GeoCrowdNet [Ibrahim et al., 2023]. And the instance se-
lection methods Random, Softmax, MaxGrad, and MaxInf
are chosen for comparison. The softmax means selecting an
instance with the highest logits across classes but minimal
probability across instances. MaxGrad and MaxInf select in-
stances by the expected change of parameters, where Max-
Grad leverages the gradient, and MaxInf leverages the influ-
ence function. Meanwhile, we ablate the importance and cov-
erage modules to show their improvement. The test accuracy
and Area Under Curve (AUC) are used as metrics.

The results in LabelMe and CIFAR-10H datasets are
shown in Table 3 and Figure 5. Further, we observe that:

(1) The full-data training usually shows the highest perfor-
mance across all methods. The AdaCrowd method performs
better than other adaptive methods. The MaxGrad slightly
fails the MaxInf because the influence function performs bet-
ter in estimating the change of parameters.

(2) Softmax underperforms relative to AdaCrowd; the
lower performance could stem from overconfidence in out-

put probabilities, which can be misleading when dealing with
noisy crowdsourced labels.

(3) AdaCrowd outperforms AdaCrowd w/o imp and
AdaCrowd w/o cov in most cases, while it performs close to
the top for GeoCrowdNet, slightly surpassed by AdaCrowd
w/o cov, suggesting the improvements in importance and
coverage modules, while impact varies by crowdsourcing
method.

(4) The variability, indicated by the standard deviation, is
generally low, showing that these adaptive training strategies
are consistent across crowdsourcing methods.

5.4 Coverage in Instance Selection (RQ2)
To gain a better insight into instance selection, we take a close
look at the breadth of instances selected by the algorithm,
and the instance coverages of different compared methods are
measured. The intuition here is that under constant annota-
tions from constant steps, more instances from more classes
should be included for training models. In other words, if
many annotations about the same instance are collected, the
generalization of the model will degrade.

For each step, the number of instances of each class is first
recorded. Then, the statistical value of all classes about cov-
erage can be obtained. We focus on the mean value, the lower
quartile, and the upper quartile of the first 50 training steps,
which are shown as the curve and the shadow in Figure 6.

As portrayed in Figure 6, we can find that:
(1) The curve of the MaxGrad is usually below, which

shows that the MaxGrad method tends to select the replicated
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Figure 6: Instance Coverage Comparison on CIFAR-10H dataset.
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Figure 7: Case study of a worker in CIFAR-10H: selected instances, transition matrix, and training process.

instances compared with other methods.
(2) The shadow area of the Random is the smallest, which

shows that the distribution is very concentrated, and the Ran-
dom method uniformly samples instances from all classes.

(3) Compared with the above methods, the proposed
AdaCrowd can select different instances with different em-
phasis between classes when sampling, which guarantees the
diversity of chosen annotations and instances.

(4) The ablation method performs similarly to the original
method, but the mean value is slightly lower, which shows
that the coverage module can help to reduce replication.

5.5 Case Study (RQ3)
The No.74 worker in the CIFAR-10H is chosen as a case, and
the result is shown in Figure 7. After following the training
process, we have the following observations.

The left frame is the training steps from 50 to 56. We find
that these selected instances are difficult to label correctly.
Besides, the annotations are closely related to the confusion
matrix, as shown in the middle frame.

One of the main goals of AdaCrowd is to estimate the tran-
sition matrix of workers with fewer annotations. To mea-
sure the performance, the transition matrices are softmax-
normalized. For Ar, the softmax-normalized matrix is:
[Softmax(Ar)]ij =

exp[Ar]ij∑K
k=1 exp[Ar]ik

. Let us denote the

ground truth by A∗
r , and the normalized transition matrix

by Ar, and the error matrix by Er = Softmax(Ar) −

Softmax(A∗
r). Then, the Frobenius norm of the error ma-

trix is considered as the measurement. For thisK×K matrix
Er, the norm is ||Er||F =

√∑K
i=1

∑K
j=1[Er]2ij .

The reduction of the Frobenius norm starting from step 50
is recorded in training steps as shown in the right frame. Ac-
cording to the curves in the figure, we can find that the pro-
posed AdaCrowd performs better on this metric compared
with other methods, especially in the long-term training steps.
Although some compared methods, such as MaxGrad, are
better in the first few steps, the convergence value is far worse
than that of the proposed method.

6 Conclusion

In this research, we propose AdaCrowd, an adaptive learning
method to efficiently utilize crowdsourced datasets by lever-
aging worker characteristics early in the data collection pro-
cess. AdaCrowd optimizes the use of workers’ abilities by
dynamically assessing the informativeness of instances based
on prediction uncertainties. This method not only enhances
the quality of the training data but also reduces the number
of necessary annotations without compromising model per-
formance. Our experiments on datasets such as LabelMe and
CIFAR-10H validate the effectiveness of AdaCrowd, demon-
strating its potential as a cost-effective solution for training
models in the crowdsourcing approach.
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cember 2018.

[Tanno et al., 2019] Ryutaro Tanno, Ardavan Saeedi, Swami
Sankaranarayanan, Daniel C. Alexander, and Nathan Sil-
berman. Learning from noisy labels by regularized es-
timation of annotator confusion. In Proceedings of the
32nd IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 11236–11245, Long Beach, CA,
United States, June 2019.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, pages 6000–
6010, Long Beach, CA, United States, December 2017.

[Wang and Zhou, 2016] Lu Wang and Zhi-Hua Zhou. Cost-
saving effect of crowdsourcing learning. In Proceedings of
the 25th International Joint Conference on Artificial Intel-
ligence, pages 2111–2117, New York, NY, United States,
July 2016.

[Yan et al., 2011] Yan Yan, Glenn M Fung, Rómer Rosales,
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