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Abstract
Hypergraph contrastive learning enables effective
representation learning for hypergraphs without re-
quiring labels. However, existing methods typi-
cally rely on randomly deleting or replacing nodes
during hypergraph augmentation, which may lead
to the absence of critical nodes and further disrupt
the higher-order structural relationships within aug-
mented hypergraphs. To address this issue, we pro-
pose a Critical Node-aware hypergraph contrastive
learning method, which is the first attempt to lever-
age hyperedge prediction to retain critical nodes
and accordingly maintain the reliable higher-order
structural relationships within augmented hyper-
graphs. Specifically, we first employ contrastive
learning to align the augmented hypergraphs, and
then generate hyperedge embeddings to character-
ize node representations and their structural corre-
lations. During the hyperedge embedding encoding
process, we introduce a hyperedge prediction dis-
criminator to score these embeddings, which quan-
tifies the nodes’ contributions to identify the crit-
ical nodes and maintain the higher-order structural
relationships within augmented hypergraphs. Com-
pared with previous studies, our proposed method
can effectively alleviate the erroneous deletion or
replacement of critical nodes and steadily maintain
the inherent structural relationships between origi-
nal hypergraph and augmented hypergraphs, natu-
rally guiding better hypergraph representations for
downstream tasks. Extensive experiments on var-
ious tasks demonstrate that our method is signifi-
cantly superior to state-of-the-art methods.

1 Introduction
As an extension of the graph structure [Xu et al., 2023], hy-
pergraph has recently attracted increasing interest in various
real-world applications, including traffic flow prediction [Ren
et al., 2024], user identification [Han et al., 2024], and drug
interaction prediction [Saifuddin et al., 2023]. Hyperedge, as
the fundamental component of hypergraphs, associates mul-
tiple nodes to represent higher-order structural relationships,

enabling hypergraphs to capture richer information compared
with the traditional edges used in graphs. For example, in
the research of chemical molecules, hyperedges could cap-
ture interactions among multiple atoms, reflecting their com-
plex spatial structure relationships in a specific molecule.
These complex structures are generally difficult to represent
using traditional edges, but can be effectively characterized
through hyperedges. To capture complex structural informa-
tion within hypergraphs, hypergraph representation learning
has attracted significant attention in recent years. Among
these methods, hypergraph contrastive learning has emerged
as a particularly prominent approach.

Hypergraph contrastive learning enables effective repre-
sentation learning for hypergraphs without requiring labels,
which mainly consists of three key parts: hypergraph aug-
mentation, encoder network and contrastive loss. Recent
studies generally focus on improving the latter two parts
to obtain better representations. For example, [Zhu et al.,
2023] propose a cross-view contrastive mechanism in the en-
coder network, which separately captures higher-order and
pairwise relationships in different views. By aligning the
views through node-level contrast, it obtains more expressive
node representations. [Qian et al., 2024] enhance encoder
network with a dual-level hypergraph contrastive strategy,
which effectively captures local node behaviors and group-
wise interactions, further improving node classification per-
formance [Zhu et al., 2024; Wan et al., 2023]. In addition,
some studies focus on extending the contrastive loss to cap-
ture richer information inherent in the nodes and hyperedges.
For example, [Lee and Shin, 2023] propose a tri-directional
contrastive framework, which captures hypergraph structural
information through node-level, hyperedge-level and node-
hyperedge-level contrast, improving the quality of the learned
embeddings. Obviously, these methods have obtained rela-
tively expressive node or hyperedge representations by im-
proving the encoder networks and contrastive losses. How-
ever, during the hypergraph augmentation process, most of
above methods rely on randomly deleting or replacing nodes
to generate augmented hypergraphs, which may lead to the
absence of critical nodes and further disrupt higher-order
structural relationships within augmented hypergraphs, nat-
urally affecting the reliability of hypergraph representations.

To address the issue, in this paper, we propose a novel Crit-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

ical Node-aware Hypergraph Contrastive Learning method
named CNHCL, which is the first attempt to utilize hyperedge
prediction to identify and retain critical nodes in augmented
hypergraphs and then improve the hypergraph augmentation
process. Specifically, we first align the augmented hyper-
graphs through contrastive loss to generate the hyperedge em-
beddings, which capture the interactions among nodes within
each augmented hyperedge and characterize their contribu-
tions to hypergraph structural relationships. When encoding
the hyperedge embeddings, we introduce a hyperedge pre-
diction discriminator to score the hyperedge embeddings for
evaluating the preservation of the higher-order structural re-
lationships within the hyperedges, where high scores indi-
cate that the higher-order structure relationships are well pre-
served after the augmentation, and low scores indicate weak
preservation. After the augmentation process of each train-
ing epoch, for low-score hyperedges, we retain nodes within
augmented hyperedges, identifying those that could improve
the scores significantly as critical nodes. When the low-score
hyperedges turn into high-score hyperedges by freeing the re-
tained nodes from augmentations, we pick out a part of the
nodes from the retained nodes as critical nodes if they greatly
decrease the scores by allowing themselves to be randomly
deleted with hypergraph augmentations again. For other hy-
peredges, we do not seek the critical nodes within them un-
til they are evaluated as low-score hyperedges after the sub-
sequent augmentation process. The critical nodes are then
retained in the subsequent augmentation process to main-
tain the reliable higher-order structural relationships in aug-
mented hypergraphs. During the model training process, in
order to improve the reliability of the discriminator, we de-
sign a corresponding generator to produce fake hyperedges to
strengthen it, enabling it to learn richer hyperedge representa-
tions and further improve its evaluation ability. In summary,
Our main contributions lie in the following aspects:

• We propose a novel Critical Node-aware Hypergraph
Contrastive Learning method, which is the first attempt
to utilize hyperedge prediction to identify and retain crit-
ical nodes, maintaining reliable higher-order structural
relationships within augmented hypergraphs.

• We design a hyperedge prediction discriminator to score
hyperedge embeddings, quantifying nodes’ contribu-
tions to preserve the higher-order relationships in hyper-
edge embeddings, meanwhile with a generator produc-
ing fake hyperedges to improve its evaluation ability.

• Extensive experiments on various datasets validate that
our model guides better hypergraph representations for
downstream tasks and achieves significant superiority
against state-of-the-art methods.

2 Related Work
2.1 Hypergraph Neural Networks
Hypergraph neural networks have received increasing atten-
tion for modeling high-order relationships, with early works
focusing on extending the graph neural network to hyper-
graphs. [Feng et al., 2019] first generalize the convolution

operation to hypergraphs, enabling efficient learning of com-
plex hypergraph structures. [Yadati et al., 2019] approximate
each hyperedge of the hypergraph by a set of pairwise edges
and avoid explicit Laplacian construction. Building upon the
early efforts, [Bai et al., 2021] incorporate attention mecha-
nisms into the hypergraph convolution framework, dynami-
cally adjusting hyperedge weights to improve expressiveness
and reduce computational cost. Recent works have intro-
duced more general and unified frameworks for hypergraphs.
[Huang and Yang, 2021] propose a unified message-passing
mechanism that processes both graphs and hypergraphs in a
consistent way. [Chien et al., 2022] present a multiset func-
tion framework that combines Deep Sets and Set Transform-
ers to unify hypergraph neural networks.

2.2 Hypergraph Contrastive Learning
Hypergraph contrastive learning enables effective representa-
tion learning for hypergraphs without requiring labels [Lin et
al., 2021; Wei et al., 2022], which mainly consists of three
key parts: hypergraph augmentation, encoder network and
contrastive loss. Recent methods mainly focus on improving
the latter two parts to obtain more reliable learning results.
For example, [Wu et al., 2024] propose a collaborative con-
trastive method to enhance the encoder network, where the
node representations of graphs and hypergraphs are jointly
updated to complement each other. [Zhu et al., 2023] intro-
duce multi-view mechanism, enabling the encoder network to
capture information from graphs and hypergraphs. [Lee and
Chae, 2024] further incorporate an attention mechanism to
dynamically assign weights to different views, enabling adap-
tive integration of information. [Lee and Shin, 2023] pro-
pose a TriCL framework, which captures structural informa-
tion through node-level, hyperedge-level and node-hyperedge
contrast, improving the quality of embeddings. However,
during augmentation process, many existing methods rely on
randomly deleting or replacing nodes, which may lead to
the absence of critical nodes and further disrupt higher-order
structural relationships within augmented hypergraphs.

2.3 Hyperedge Prediction
Hyperedge prediction is a general task for identifying and val-
idating the existence of hyperedges within a hypergraph. [Ya-
dati et al., 2020] propose Neural Hyperlink Predictor (NHP),
which adapts GCNs for hyperedge prediction in hypergraphs.
[Zhang et al., 2020] introduce a self-attention based graph
neural network, capable of predicting variable-sized hetero-
geneous hyperedges. [Hwang et al., 2022] utilize an adver-
sarial generative network to overcome the limitations of tra-
ditional negative sampling methods. Recently, some studies
attempt to utilize hyperedge prediction to address more com-
plex tasks rather than validating the existence of hyperedges.
For example, [Wang et al., 2023] propose a novel embedding
model for knowledge hypergraph prediction by employing
3D convolutions to capture higher-order interactions. Consid-
ering the ability to identify higher-order relationships of the
hyperedge prediction, our model incorporates hyperedge pre-
diction into hypergraph contrastive learning, identifying and
retaining the critical nodes for maintaining reliable higher-
order relationships within the augmented hypergraphs.
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Figure 1: The overview of CNHCL. In i-th iteration, the hypergraph H(i) are augmented by retaining both candidate critical nodes M(i−1)

and identified critical nodes M(i−1)
key , obtaining two augmented hypergraphs H(i)

a (a = 1, 2), which are then encoded to generate node and
hyperedge embeddings Za

n
(i) and Za

e
(i). By aligning these embeddings, we update encoder through contrastive loss. Afterwards, the updated

encoder is utilized to train Discriminator and Generator, where the Discriminator scores the hyperedge embeddings Ze
(i) from H(i). Finally,

we sort these scores to update candidate critical nodes M(i) and identified critical nodes M(i)
key, and retaining them for next iteration.

3 The Proposed Method
3.1 Overview
In this paper, we propose a novel critical node-aware hyper-
graph contrastive learning method. Previous methods mainly
rely on randomly deleting or replacing nodes during hyper-
graph augmentation, which may lead to the absence of critical
nodes and disrupt higher-order structural relationships within
augmented hypergraphs. Our proposed method is the first at-
tempt to identify and retain critical nodes when augmenting a
hypergraph, and steadily maintain the inherent structural re-
lationships within augmented hypergraphs. Specifically, as
shown in Figure 1, CNHCL first utilizes the retained critical
nodes (candidate critical nodes M(i−1) and identified criti-
cal nodes M(i−1)

key ) from the last iteration to augment current
hypergraph as two augmented hypergraphs. Then, these aug-
mented hypergraphs are encoded to generate node and hyper-
edge embeddings Za

n
(i) and Za

e
(i), and further aligned by con-

trastive loss to update the encoder. Afterwards, we utilize the
updated encoder to train Hyperedge Prediction Discriminator
and Generator, where the Hyperedge Prediction Discrimina-
tor scores the hyperedge embeddings Ze

(i) from the original
hypergraph H(i). Finally, we sort these scores to update can-
didate critical nodes to be M(i) and identified critical nodes
to be M

(i)
key, and retaining them for next iteration. During the

iteration process, M(i) represents the nodes that come from
low-score hyperedges and are waiting for evaluating whether

they are truly critical nodes. M(i)
key represents the truly critical

nodes that preserve the higher-order structural relationships
in the augmented hyperedges. According to multiple itera-
tions, CNHCL gradually identifies the truly critical nodes for
hypergraph augmentation and steadily maintains the inherent
structural relationships between the original hypergraph and
augmented hypergraphs.

3.2 Hypergraph Contrastive Learning
Hypergraph. A general hypergraph can be presented as
H = (V,E,X), where V = {v1, v2, . . . , v|V |} is the set
of nodes, E = {e1, e2, . . . , e|E|} is the set of hyperedges,
X = {x1,x2, . . . ,x|V |}T is the node feature matrix and xj

denotes the features of node vj . To mathematically represent
the hypergraph structure, we introduce an incidence matrix
H ∈ {0, 1}|V |×|E|, where its element hjk = 1 indicates node
vj belongs to hyperedge ek, hjk = 0 otherwise. Accordingly,
the hypergraph can be represented as H = (H,X). Addi-
tionally, each hyperedge ek ∈ E is usually assigned with a
positive weight wk to represent its importance, and all the
weights formulate a diagonal matrix W ∈ R|E|×|E|. The
degree of nodes is often defined as a diagonal matrix DV ,
where its element satisfies dvj

=
∑

k wkhjk. Similarly, the
diagonal matrix DE represent the degree of hyperedges and
its element satisfies dek =

∑
j hjk.

Hypergraph Augmentation. In i-th iteration, for the given
hypergraph H(i) = (H(i),X(i)), it consists of an incidence
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matrix H(i) and a feature matrix X(i). We augment the two
parts separately and generate two augmented hypergraphs
H(i)

1 = (H
(i)
1 ,X

(i)
1 ) and H(i)

2 = (H
(i)
2 ,X

(i)
2 ). Before con-

ducting hypergraph augmentation, our model utilizes a hy-
peredge prediction discriminator (see in Section 3.3) to iden-
tify the low-score hyperedges and then select their nodes to
store in candidate critical nodes M(i−1). For high-score hy-
peredges, we picked out the critical nodes from M(i−1) and
store them in M

(i−1)
key . Both M(i−1) and M

(i−1)
key are imple-

mented as dictionaries that map hyperedges to their corre-
sponding critical nodes (see in Section 3.3).

Subsequently, we augment H(i) = (H(i),X(i)) in i-th iter-
ation by retaining the nodes in M(i−1) and M

(i−1)
key and ran-

domly delete from other nodes in H(i), adjusting the node
combinations within corresponding augmented hyperedges
for further identifying additional critical nodes. To achieve
this, we define nodes set S(i)(ek) of hyperedge ek ∈ E:

S(i)(ek) = {vj ∈ V | hjk = 1}. (1)

For each hyperedge ek ∈ E, we utilize k as its index to obtain
the subsets M

(i−1)
k and M

(i−1)
key:k from M(i−1) and M

(i−1)
key ,

defining the critical nodes set of hyperedge ek ∈ E as:

S
(i)
critical(ek) = S(i)(ek) ∩ (M

(i−1)
key:k ∪M

(i−1)
k ). (2)

Then, we augment the incidence matrix H(i) by retaining
the critical nodes S

(i)
critical(ek) in each hyperedge ek, while

randomly removing other nodes from S(i)(ek) \ S
(i)
critical(ek),

thereby generating the augmented H
(i)
1 and H

(i)
2 . For node

features X(i), we generate a random binary mask, where
each element is sampled from a Bernoulli distribution [You
et al., 2020], and applied to all node features to mask certain
feature dimensions, thereby generating the augmented X

(i)
1

and X
(i)
2 . Finally, we obtain the two augmented hypergraphs

H(i)
1 = (H

(i)
1 ,X

(i)
1 ) and H(i)

2 = (H
(i)
2 ,X

(i)
2 ).

Encoder and Projection Head. We utilize the encoder to
generate node representations Pa and hyperedge representa-
tions Qa, where a ∈ {1, 2} corresponds to different H(i)

a .
Following the two-stage neighbor aggregation strategy [Feng
et al., 2019; Chien et al., 2022; Lee and Shin, 2023], we up-
date Pa and Qa iteratively. Specifically, at the k-th layer of
the encoder, the representations are updated as:

Qk
a = σ

(
D−1

E H⊤Pk−1
a Φk

E

)
,

Pk
a = σ

(
D−1

V HWQk
aΦ

k
V

)
,

(3)

where P0
a = X

(i)
a , Φ is the trainable weight matrix, W is an

identity matrix, and σ(·) denotes an activation function.
[You et al., 2020] demonstrate that a projection head can

transform representations through non-linear mappings into a
space where contrastive loss is applied, thereby improving the
representation quality. Motivated by this, we introduce pro-
jection heads Ψn(·) and Ψe(·) to project node and hyperedge
representations, respectively. Each head consists of a two-
layer MLP, and maps Pa and Qa into Z

a(i)
n and Z

a(i)
e , which

are then used for contrastive learning, i.e., Za(i)
n = Ψn(Pa)

and Z
a(i)
e = Ψe(Qa).

Hypergraph Contrastive Loss. We adopt three-level con-
trastive loss to align augmented hypergraphs, which consists
of Node-level, Hyperedge-level, and Hyperedge-Node-level
contrastive losses [Lee and Shin, 2023].

[Node-level] For each node vj , we treat its embedding
z
1(i)
n,j from Z

1(i)
n and the embedding z

2(i)
n,j from Z

2(i)
n as a pos-

itive pair since they correspond to the same node in different
augmented hypergraphs. Meanwhile, we treat all other nodes
embeddings in Z

2(i)
n as negative pairs for z1(i)

n,j . Then, the loss
for each positive pair can be defined as:

l(z
1(i)
n,j , z

2(i)
n,j ) = − log

exp
(
s(z

1(i)
n,j , z

2(i)
n,j )/τ

)
∑

k ̸=j exp
(
s(z

1(i)
n,j , z

2(i)
n,k )/τ

) , (4)

where s(·) is the cosine similarity, τ is a temperature param-
eter. This loss encourages positive pairs to be similar while
pushing negatives apart. Accordingly, the Node-level con-
trastive loss can be presented as:

L(i)
n =

1

2|V |

|V |∑
j=1

[
l(z

1(i)
n,j , z

2(i)
n,j ) + l(z

2(i)
n,j , z

1(i)
n,j )

]
. (5)

[Hyperedge-level] For each hyperedge ek, its embeddings
z
1(i)
e,k in Z

1(i)
e and z

2(i)
e,k in Z

2(i)
e are treated as positive pairs.

The Hyperedge-level contrastive loss can be presented as:

L(i)
e =

1

2|E|

|E|∑
k=1

[
l(z

1(i)
e,k , z

2(i)
e,k ) + l(z

2(i)
e,k , z

1(i)
e,k )

]
. (6)

[Hyperedge-Node-level] For each node vj , its related hy-
peredge ek in the other augmented hypergraph are treated
as positive pairs, while the rest are negative pairs. The
Hyperedge-Node level contrastive loss can be presented as:

L(i)
m =

1

2|I|
∑

(j,k)∈I

[
l(z

1(i)
n,j , z

2(i)
e,k ) + l(z

2(i)
n,j , z

1(i)
e,k )

]
, (7)

where I = {(j, k) | hjk = 1} denotes the set of incident
node-hyperedge pairs from the incidence matrix H. Finally,
by combining Eq. (5-7), we obtain the overall hypergraph
contrastive loss as follows:

L(i) = L(i)
n + weL(i)

e + wmL(i)
m , (8)

where we and wm are the weights.
We utilize the constructed loss function L(i) to align the

two augmented hypergraphs H(i)
1 and H(i)

2 , updating the en-
coder for the subsequent Hyperedge Prediction (Section 3.3)
and Critical Nodes Selection (Section 3.4) process.

3.3 Hyperedge Prediction
In this section, we design a Hyperedge Prediction Discrimi-
nator and a Generator, which are utilized for scoring the hy-
peredge embeddings and selecting critical nodes in the Criti-
cal Node Selection stage (Section 3.4). Specifically, we first
input the hypergraph H(i) into the updated encoder to ob-
tain node embeddings Z

(i)
n and hyperedge embeddings Z

(i)
e .

Then, these embeddings are used to train the Hyperedge Pre-
diction Discriminator and Generator.
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Discriminator. Given the hyperedge embeddings Z(i)
e gen-

erated by the updated encoder, the Discriminator is designed
to assign scores that evaluate the preservation of higher-order
structural relationships within these embeddings and judge
whether their contained nodes are the critical nodes. To im-
prove the reliability of the Discriminator, we introduce the
fake hyperedges generated from Generator to strengthen the
Discriminator during the training process. Specifically, in our
model, Discriminator consists of an average pooling layer
and a multi-layer perceptron (MLP). The average pooling
layer aggregates the node embeddings corresponding to the
fake hyperedges to obtain their hyperedge embeddings Z(i)

neg ,
ensuring a consistent format with Z

(i)
e . Then, the MLP is uti-

lized to score the hyperedge embeddings z(i)
e,k in Z

(i)
e and the

z
(i)
neg,l in Z

(i)
neg . We define the scoring operation of Discrim-

inator as D(·) and apply the cross-entropy loss for training
Discriminator following:

L
(i)
D = − 1

m

m∑
k=1

logD(z
(i)
e,k)−

1

n

n∑
l=1

log
(
1−D(z

(i)
neg,l)

)
,

(9)
where m and n represents the number of hyperedge embed-
dings in Z

(i)
e and Z

(i)
neg respectively. The updated Hyper-

edge Prediction Discriminator will be used for the subse-
quent Critical Node Selection stage.

Generator. Generator plays a crucial role in improving the
performance of Discriminator by generating challenging fake
hyperedges during training, which enables Discriminator to
learn richer hyperedge representations and further improves
its evaluation capability. Specifically, in our model, Genera-
tor is an MLP that utilizes random noise to generate vectors
for selecting nodes to form fake hyperedges [Hwang et al.,
2022]. Discriminator first utilizes fake hyperedges to update
itself. Then, Generator generates new fake hyperedges and
feeds them into average pooling to obtain fake hyperedge em-
beddings Z′(i)

neg . Moreover, Z′(i)
neg are scored by the updated

Discriminator to update Generator, enabling it to produce
more challenging fake hyperedges in subsequent iterations.
The loss function of Generator is presented as:

L
(i)
G = − 1

n

n∑
l=1

logD′(z
′(i)
neg,l), (10)

where z
′(i)
neg,l ∈ Z′(i)

neg , n represents the number of embed-

dings in Z′(i)
neg , and D′(·) represents the scoring operation of

the updated Hyperedge Prediction Discriminator.

3.4 Critical Nodes Selection
In this section, we first utilize the updated Hyperedge Pre-
diction Discriminator to score embeddings z

(i)
e,k ∈ Z

(i)
e as

D′(z
(i)
e,k). Then, we introduce a threshold ε to identify the

low-score embeddings and store the corresponding hyper-
edges in a set U(i):

U(i) = {ek | D′(z
(i)
e,k) < ε}, (11)

Algorithm 1 The update process of M(i)
key

Input:
E: the set of hyperedges;
U(i),U(i+1): the set of low-score hyperedges;
M(i−1),M(i): candidate critical nodes;
M

(i)
key: identified critical nodes.

Output: M(i+1)
key

1: for ek ∈ E do
2: if ek ∈ U(i) and ek /∈ U(i+1) then
3: Update M

(i)
key:k by solving (12);

4: else if ek /∈ U(i+1) and M
(i−1)
k ̸= ∅ then

5: Update M
(i)
key:k by solving (13);

6: end if
7: end for
8: return M

(i+1)
key

where ek represents a low-score hyperedge, characterized by
its embedding z

(i)
e,k. Afterwards, we introduce the candidate

critical nodes M(i) and identified critical nodes M(i)
key, both of

which are implemented as dictionaries that map hyperedges
to their corresponding critical nodes. The nodes in M(i) and
M

(i)
key are retained in corresponding augmented hypergraphs

in next iteration. During the process of identifying critical
nodes, we consider that the low-score hyperedges are caused
by excessive absence of critical nodes in augmented hyper-
edges. When a hyperedge ek is identified as a low-score
hyperedge, we iteratively retain the nodes from ek into the
candidate critical nodes M

(i)
k ⊂ M(i) to improve the corre-

sponding score D′(z
(i)
e,k), further evaluating these nodes’ con-

tributions through the changed scores to select critical node
of ek, which leads D′(z

(i)
e,k) > ε, and store it in the identified

critical nodes M(i)
key:k, i.e.,

M
(i+1)
key:k = M

(i)
key:k ∪ (M

(i)
k \M(i−1)

k ). (12)

When ek is not a low-score hyperedge, it may contain multi-
ple candidate critical nodes while some of them may not be
truly critical nodes. To identify these potential truly critical
nodes, we progressively delete nodes from M

(i)
k , and eval-

uate these nodes’ contributions to select critical node of ek,
which leads D′(z

(i)
e,k) < ε, then store it in M

(i)
key:k, i.e.,

M
(i+1)
key:k = M

(i)
key:k ∪ (M

(i−1)
k \M(i)

k ). (13)

According to the above operations, we sequentially obtain the
identified critical nodes M(i+1)

key of all hyperedges {ek||E|
k=1},

which maintain the reliable higher-order structural relation-
ships in augmented hypergraphs, naturally guiding expressive
hypergraph representations. Algorithm 1 summarizes the up-
date process of M(i)

key.
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Dataset Cora-C Citeseer Cora-A Pubmed DBLP ModelNet40 A.R.

Node2Vec 70.99 ± 1.42 53.85 ± 1.93 58.50 ± 2.14 78.75 ± 0.94 72.09 ± 0.33 84.94 ± 0.40 12.0
GCN 77.11 ± 1.81 66.07 ± 2.45 73.66 ± 1.31 82.63 ± 0.62 87.58 ± 0.25 91.67 ± 0.22 8.6
DGI 75.89 ± 1.91 69.94 ± 1.14 79.88 ± 0.86 79.40 ± 0.63 88.00 ± 0.21 91.59 ± 0.21 7.6
HGNN 77.50 ± 1.83 66.16 ± 2.39 74.38 ± 1.22 83.42 ± 0.66 88.32 ± 0.39 92.23 ± 0.21 7.4
UniGCN 77.91 ± 1.97 66.40 ± 1.91 77.30 ± 1.46 84.08 ± 0.79 90.31 ± 0.29 94.62 ± 0.26 5.0
GRACE 78.08 ± 1.44 65.42 ± 1.31 74.11 ± 0.47 81.94 ± 0.43 89.03 ± 0.37 90.68 ± 0.34 7.6
HyperConv 75.38 ± 1.39 64.81 ± 2.34 74.86 ± 1.19 82.64 ± 0.56 87.39 ± 0.16 93.51 ± 0.12 8.0
AllSet 76.21 ± 1.77 67.83 ± 1.81 76.94 ± 1.30 82.85 ± 0.91 90.07 ± 0.30 96.85 ± 0.21 6.4
TriCL 81.57 ± 1.11 72.02 ± 1.22 82.15 ± 0.97 84.26 ± 0.68 91.12 ± 0.18 97.08 ± 0.11 3.0
VilLain 71.13 ± 1.81 65.53 ± 3.14 58.57 ± 1.34 79.87 ± 0.86 72.26 ± 0.35 86.08 ± 0.58 9.4

CNHCL-s 82.33 ± 1.26 72.31 ± 1.02 82.43 ± 0.92 84.44 ± 0.48 91.18 ± 0.08 97.18 ± 0.13 2.0
CNHCL 82.45 ± 1.15 72.45 ± 0.93 82.52 ± 1.12 84.53 ± 0.45 91.23 ± 0.14 97.21 ± 0.11 1.0

Table 1: Comparison results of node classification accuracy. For each dataset, the best and second-best performances are highlighted in bold
and underlined, respectively. The A.R. column ranks the methods based on their average performance across all six employed datasets.

Method C-C CS C-A PB DB MN

Node2vec 75.31 71.10 69.11 69.51 65.33 76.26
HyperConv 79.02 80.49 77.21 74.34 69.92 81.08
TriCL 79.43 78.33 77.49 74.41 76.16 76.39
VilLain 77.30 80.08 76.79 66.84 76.27 74.15
CNHCL-s 79.79 78.69 77.93 74.57 76.21 76.66
CNHCL 80.01 79.68 78.26 74.72 76.68 76.83

Table 2: Comparison results of hyperedge prediction accuracy.

4 Experiments
4.1 Experimental Setup
Datasets. We employ six popular datasets from three cate-
gories to evaluate the performance of our proposed CNHCL
method. These categories include: co-citation datasets Cora-
C (C-C), Citeseer (CS), and Pubmed (PB); co-authorship
datasets Cora-A (C-A) and DBLP (DB); computer vision
and graphics dataset ModelNet40 (MN).
Baselines. We evaluate our proposed CNHCL method on
three classical tasks (Node Classification, Hyperedge Pre-
diction and Clustering) against 10 representation learning
methods, including Node2vec [Grover and Leskovec, 2016],
GCN [Kipf and Welling, 2017], DGI [Veličković et al., 2019],
HGNN [Feng et al., 2019], GRACE [Zhu et al., 2020],
UniGCN [Huang and Yang, 2021], HyperConv [Bai et al.,
2021], AllSet [Chien et al., 2022], TriCL [Lee and Shin,
2023] and VilLain [Lee et al., 2024]. For the graph repre-
sentation learning methods, we convert hypergraph data into
graph structure using clique expansion and then apply these
methods for comparisons. All experiments are conducted on
2 NVIDIA GeForce RTX 3090 GPUs with 24GB of memory.

4.2 Node Classification
For the task of node classification, we first randomly split up
each data set into 10% for training, 10% for validation, and
80% for testing. Then, a simple linear classifier is trained and
tested for evaluating all comparing methods. Table 1 reports
the experimental results on six datasets, where each result is
the average of 10 independent experiments.

Method C-C CS C-A PB DB MN

Node2vec 39.93 25.62 17.18 24.13 32.79 90.16
HyperConv 38.98 34.64 35.08 22.28 56.45 90.45
TriCL 54.51 44.56 49.62 28.62 63.10 94.98
VilLain 40.87 21.23 13.56 31.85 36.23 74.74
CNHCL-s 56.26 44.63 50.04 29.20 59.58 94.79
CNHCL 56.72 44.71 50.52 29.54 62.30 95.13

Table 3: Comparison results of node embeddings clustering.

We observe that the methods such as CNHCL and TriCL,
which leverage contrastive learning on hypergraphs, consis-
tently outperform other baseline methods. This observation
suggests that the incorporation of higher-order structural re-
lationships within augmented hypergraphs significantly en-
hances the quality of hypergraph representation learning. To
further improve the hypergraph augmentation process, CN-
HCL introduces the Hyperedge Prediction Discriminator and
the Generator, which effectively identify and retain critical
nodes within the augmented hypergraphs. As a result, CN-
HCL achieves superior performance across all datasets, con-
sistently surpassing baseline methods. Additionally, we pro-
pose a model variant CNHCL-s which retains critical nodes
within a single augmented hypergraph and randomly removes
the nodes in the other augmented view as [Lee and Shin,
2023] to further assess the effectiveness of our approach. De-
spite this constraint, CNHCL-s still outperforms all baseline
methods, highlighting the importance of critical node reten-
tion in improving representation learning.

4.3 Hyperedge Prediction
For the task of hyperedge prediction, we first randomly split
up each data set into 80% for training, 10% for validation,
and 10% for testing. We formulate hyperedge prediction as a
binary classification problem [Lee et al., 2024], then, a sim-
ple linear classifier is trained and tested for evaluating recent
comparing methods. Table 2 reports the experimental results
on six datasets, where each result is the average of 10 inde-
pendent experiments.

This task obtains hyperedge embeddings for both real and
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D G Cora-C Citeseer Cora-A Pubmed DBLP ModelNet40

– – 81.57 ± 1.11 72.02 ± 1.22 82.15 ± 0.97 84.26 ± 0.68 91.12 ± 0.18 97.08 ± 0.11
✓ – 82.18 ± 1.11 72.19 ± 0.88 82.40 ± 0.64 84.35 ± 0.61 91.15 ± 0.09 97.17 ± 0.11
✓ ✓ 82.33 ± 1.26 72.31 ± 1.02 82.43 ± 0.92 84.44 ± 0.48 91.18 ± 0.08 97.18 ± 0.13
✓ – 82.13 ± 0.99 72.39 ± 1.25 82.36 ± 0.61 84.45 ± 0.64 91.18 ± 0.07 97.16 ± 0.11
✓ ✓ 82.45 ± 1.15 72.45 ± 0.93 82.52 ± 1.12 84.53 ± 0.45 91.23 ± 0.14 97.21 ± 0.11

Table 4: Ablation study on the task of node classification, including the comparison between CNHCL and its variant CNHCL-s, and the
comparisons whether they use Hyperedge Prediction Discriminator D and the Generator G.

fake hyperedges via average pooling over node embeddings,
which captures the higher-order structural relationships in-
herent in node embeddings. We observe that our proposed
model CNHCL outperforms other comparing methods, which
demonstrates that our model maintains the reliable higher-
order structural relationships within the augmented hyper-
graphs. Additionally, we also see that the variant is inferior
to CNHCL, the reason of which lies in that it only retains
the critical nodes within one augmented hypergraph while an-
other one is not retained. Such phenomenon further verifies
the significance of preserving critical nodes.

4.4 Clustering
For the task of clustering, we evaluate the node representa-
tions by k-means clustering, where the popular Normalized
Mutual Information (NMI) metric is employed for experi-
mental comparisons. Table 3 reports the comparable results
on six datasets, where each result is averaged through 10 in-
dependent experiments.

According to Table 3, we observe that CNHCL achieves
excellent clustering performance on most datasets. By iden-
tifying and retaining critical nodes, CNHCL effectively cap-
tures rich local information from node representations while
utilizing hyperedges to establish structural connections across
different nodes. Such property allows CNHCL to naturally
guide the inherent connections across different nodes and ac-
cordingly achieve more accurate node clustering results. In
addition, the variant CNHCL-s also expresses the ability to
capture the good local information from critical nodes, show-
ing competitive performance on several datasets. The results
validate the effectiveness of our model.

4.5 Ablation Study
We conduct an ablation study to systematically evaluate the
contribution of each component in CNHCL. Specifically, we
compare the model CNHCL with its variant CNHCL-s, which
retains critical nodes in only one augmented view. Addition-
ally, we remove the Hyperedge Prediction Discriminator (D)
and Generator (G) from CNHCL and CNHCL-s respectively
to analyze their individual effects.

Table 4 reports the comparable results on six datasets.
Experimental results show that the Discriminator results in
consistent and significant improvements in node classifica-
tion performance across two models on all datasets, demon-
strating its effectiveness in identifying and preserving criti-
cal nodes that contribute to more informative representations.
When the Generator is further preserved, the model perfor-

Figure 2: The impact of m on Node Classification Accuracy.

mance also improves, indicating its auxiliary role in strength-
ening the Discriminator by producing challenging fake sam-
ples that contribute to more effective training.

4.6 Parameter Analysis
We conduct a parameter analysis of our proposed CNHCL
with respect to its employed parameter m, which is defined
as the batch size of positive samples used to train the Discrim-
inator. Figure 2 shows the node classification performance of
CNHCL on the Cora-C and Citeseer datasets under different
values of m ∈ {23, 24, ..., 28}. We observe that m signifi-
cantly affects model performance: a small m results in insuf-
ficient training signals and slow convergence for the Discrim-
inator, while a large m makes it harder for the Discriminator
to effectively assess the quality of hyperedges. These results
suggest that a balanced choice of m is crucial for effective
interaction between the encoder and the Discriminator.

5 Conclusion
In this paper, we propose a Critical Node-aware hypergraph
contrastive learning method (CNHCL), which is the first at-
tempt to leverage hyperedge prediction to retain critical nodes
in augmented hypergraphs. CNHCL first employs contrastive
loss to update the encoder, further generating hyperedge em-
beddings to train the Generator and the Hyperedge Prediction
Discriminator. Then, CNHCL utilizes the Hyperedge Pre-
diction Discriminator to score all hyperedge embeddings, in
order to update the candidate critical nodes and identified crit-
ical nodes. Afterwards, these critical nodes are retained in the
augmented hypergraphs, naturally guiding better hypergraph
representations for downstream tasks. Extensive experiments
on various datasets validate that our model guides better hy-
pergraph representations for downstream tasks and achieves
significant superiority against state-of-the-art methods.
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