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Abstract
Time series imputation is one of the most chal-
lenging problems and has broad applications in
various fields like health care and the Internet of
Things. Existing methods mainly aim to model
the temporally latent dependencies and the gener-
ation process from the observed time series data.
In real-world scenarios, different types of miss-
ing mechanisms, like MAR (Missing At Random)
and MNAR (Missing Not At Random), can oc-
cur in time series data. However, existing meth-
ods often overlook the difference among the afore-
mentioned missing mechanisms and use a single
model for time series imputation, which can eas-
ily lead to misleading results due to mechanism
mismatching. In this paper, we propose a frame-
work for the time series imputation problem by ex-
ploring Different Missing Mechanisms (DMM in
short) and tailoring solutions accordingly. Specifi-
cally, we first analyze the data generation processes
with temporal latent states and missing cause vari-
ables for different mechanisms. Sequentially, we
model these generation processes via variational in-
ference and estimate prior distributions of latent
variables via a normalizing flow-based neural ar-
chitecture. Furthermore, we establish identifiability
results under the nonlinear independent component
analysis framework to show that latent variables
are identifiable. Experimental results show that
our method surpasses existing time series imputa-
tion techniques across various datasets with differ-
ent missing mechanisms, demonstrating its effec-
tiveness in real-world applications.

1 Introduction
While data-driven deep models have achieved significant per-
formance on time series analysis1 [Tang and Matteson, 2021;

∗Corresponding author.
1The extended version: https://arxiv.org/abs/2505.07180.

Wu et al., 2022] and massive applications, like traffic [Jiang
et al., 2023; Cai et al., 2025a], weather [Wu et al., 2023],
and the Internet of Things [Cai et al., 2025b], their prosperity
usually requires complete data. However, the missing val-
ues of time series led by sensor failures hinder the deploy-
ment of existing algorithms to real-world scenarios. To ad-
dress this challenge, time series imputation [Nie et al., 2023;
Fang et al., 2023] is proposed. The primary goal of time se-
ries imputation is to leverage the observed data and the miss-
ing indicators to identify the distribution of time series data.

To identify the distribution from the time series data[Li et
al., 2025], different approaches have been proposed to iden-
tify the distribution from the time series data with missing
values[Li et al., 2024b]. Previously, researchers used sta-
tistical tools [Acuna and Rodriguez, 2004; Van Buuren and
Groothuis-Oudshoorn, 2011] to address the time series impu-
tation. Recent methods based on deep neural networks can
be categorized into predictive and generative methods. For
example, the predictive models harness different neural ar-
chitectures like recursive neural networks [Cao et al., 2018;
Che et al., 2018], convolution neural networks [Wu et al.,
2022], and Transformer [Nie et al., 2023; Liu et al., 2023]
to model the inherent dependencies of among variables. Ad-
ditionally, the generative methods use varied deep generative
models like variational autoencoders (VAE) [Choi and Lee,
2023; Fortuin et al., 2020; Cai et al., 2025c], generative ad-
versarial networks (GANs) [Luo et al., 2018; Zhang et al.,
2021], and diffusion models [Alcaraz and Strodthoff, 2022;
Tashiro et al., 2021; Chen et al., 2023] to model the distribu-
tion of complete time series data. In summary, these methods
model the temporal latent process and generation from latent
to observed variables for missing value imputation. Please re-
fer to Appendix A for related work on time series imputation
and identification of the temporal latent process.

In practical applications, time series data can be affected by
various types of missing data mechanisms, such as MCAR
(Missing Completely At Random), MAR (Missing At Ran-
dom), and MNAR (Missing Not At Random). While cur-
rent methods have achieved success in time series imputation,
they often employ a single model that does not account for the
differences between these mechanisms. Given an example in
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Figure 1: Data generation processes of time series data under different missing mechanisms. zt are temporal latent variables that describe
the temporal dependencies. xo

t are the observed variables, xm
t are the missing data and ct denotes the missing cause variables. (a) The data

generation process under the missing at random mechanism, where missingness is related to the observed data but not the unobserved data.
(b) The data generation process under the missing not at random mechanism, where the missingness is influenced by the observed data and
missing data in the previous time step. (c) The data generation process under the missing completely at random mechanism, where missing
data is led by random issues, and the latent missing variables can be considered as random noise.

healthcare that follows the MNAR mechanisms, patients who
experience worsening conditions may not return for sched-
uled follow-ups, resulting in missing data for the later stages
of the treatment. In this case, if a model uses a mismatched
missing mechanism like MCAR and ignores the dependency
between the missing format and the observed values, it is hard
for it to achieve an accurate imputation performance. There-
fore, it is essential for time series imputation to model the
time series data according to different missing mechanisms.

To better exploit the missing mechanisms, we explore
Different Missing Mechanisms and propose the correspond-
ing methods, forming a general framework named DMM.
We first analyze the data generation processes of time series
data under different missing mechanisms, including MAR,
MNAR, and MCAR. [Locatello et al., 2019] find that the
MCAR mechanism is not identifiable and is rare in real-world
scenarios. Based on the aforementioned data generation pro-
cesses, we employ variational inference to model how miss-
ing data are generated and the normalizing flow-based neural
architectures to enforce the identification of latent variables.
Moreover, we analyze the identification results for different
missing mechanisms, in which the temporal latent variables
and latent missing causes can be identified in the case of
MAR and MNAR. Our approach is validated through mas-
sive semisynthetic datasets on all the missing mechanisms,
the experimental results show that our DMM method outper-
forms the state-of-the-art baselines. Please refer to Appendix
D for more details on the missing mechanism.

2 Preliminaries
In this paper, we focus on the time series imputation problem
in the presence of various types of missing mechanisms. We
first formalize the generation process for the time series impu-
tation problem, and then introduce a graphical model (termed
imputation m-graphs) to represent it.

Data-generating process. We first let the time series data
X = {x1,x2, · · · ,xT },xt ∈ Rn be generated from latent

variables zt ∈ Z ⊆ Rn by an invertible and nonlinear mixing
function g as shown in Equation (1):

xt = g(zt) (1)

Moreover, the i-th dimension latent variable zt,i is time-
delayed and causally related to the historical latent variables
zt−τ with the time lag τ via a nonparametric function fi,
which is shown as in Equation (2).

zt,i = fi(zt−τ,k|zt−τ,k ∈ Pa(zt,i), ϵt,i) with ϵt,i ∼ pϵt,i ,
(2)

where Pa(zt,i) denotes the set of latent variables that directly
cause zt,i and ϵt,i denotes the temporally and spatially inde-
pendent noise extracted from a distribution Pϵt,i . Here, we
provide a medical example to explain this data generation
process. First, we let xt be the measurable index, like body
temperature or blood pressure. And then zt can be considered
as the virus concentration, which is hard to measure.
Graphical Notation. To describe the time series data with
missing values, given an entire time series data xt, we further
partition the time series data into the observed variables xot
and missing variables xmt , such that xt = xot ∪xmt . To model
the generation process xt, we use the missing graph with im-
putation problems (abbreviated as imputation m-graphs) such
that xt can be represented by a causal graph, where the gray
nodes represent observed variables, and the white nodes rep-
resent unobserved variables. Note that this graph differs from
the m-graph [Mohan et al., 2013], where, in the imputation
m-graph, the missing variable is determined by its cause vari-
ables. Since the direct causal relationships between observed
and missing variables are unknown (e.g., the edge between xot
and xmt exist or not), we use dashed lines to represent these
uncertain connections. Based on the imputation m-graph, one
can easily distinguish different missing mechanisms for the
imputation problem, leading to more general identifiability
results (See the identification results section).
Objectives. In the context of time series imputation, we as-
sume that the existence of a training set {Xo

i , X
m
i }Mi=1 with
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Figure 2: Illustration of the DMM framework. Xo are the observed variables, Xm are the missing data. The latent state variables z1:T
and the missing cause variables c1:T are extracted from the encoder. The latent state and missing cause prior networks for DMM-MAR and
DMM-MNAR are used to estimate the prior distributions.

the size of M . While in the I.I.D test set, we can only access
{Xo

i }Ti=1 with the size of T , our goal is to use the training
dataset to obtain a model, such that it can identify the distri-
bution P (Xo, Xm) of test data.

As mentioned above, existing methods may suffer from
mechanism mismatching problems since they usually use one
model to cover all the missing mechanisms, making it hard to
identify the distribution P (Xo, Xm). In general, all missing
data problems fall into one of the following mechanisms [Ru-
bin, 1976]: missing completely at random (MCAR), missing
at random (MAR), and missing not at random (MNAR). For-
tunately, with the imputation m-graph, these missing mecha-
nisms can be precisely categorized by incorporating the miss-
ing cause variables ct, which are introduced as follows.

2.1 Missing At Random
When data are Missing At Random (MAR), the missingness
is related to known variables but not to the values that are
missing. Specifically, the missing cause variables are influ-
enced by the observed variables, and they further lead to the
missingness. Suppose the time series data are generated by
the latent process shown in Eq. (1) and Eq. (2), the MAR
missingness can be further represented by Figure 1(a), where
the missing cause variables ct (ct → xmt ) are influenced by
the observed variable xot (i.e., xot → ct). The dashed edge
in Figure 1(a) between xmt and xot indicates that we allow a
direct causal relationship between them.

By combining the generating process and Figure 1 (a), the
joint distribution in MAR can be formalized as:

p(xo1:T ,x
m
1:T ) =

∫
c1:T

∫
z1:T

P (xm1:T |c1:T , z1:T ,xo1:T )

P (z1:T |xo1:T )P (c1:T |xo1:T )P (xo1:T )dc1:T
dz1:T

,
(3)

where z1:T := {z1, · · · , zT } and c1:T := {c1, · · · , cT }. In
this case, we can identify the joint distribution by modeling 1)
generative model P (xm1:T |c1:T , z1:T ,xo1:T ) of missing values;
2) the conditional distributions of missing cause and latent
variables, i.e., P (c1:T |xo1:T ) and P (z1:T |xo1:T ).

Establishing the joint distribution for MAR allows us to
perform accurate variational inference to recover the distri-
bution p(zt) and p(ct), and identify P (Xo, Xm) accordingly
(see implementation section).

2.2 Missing Not At Random
When data are Missing Not At Random (MNAR), the miss-
ingness depends on unobserved data. Specifically, the miss-
ing causes are influenced by the historical missing variables,
and they further lead to the current missingness. Suppose the
time series data are generated by the latent process shown
in Eq. (1) and Eq. (2), the MNAR missingness can be fur-
ther described by Figure 1(b), where the missing causes ct
(ct → xmt ) are influenced by historical missing variables
xot−1 and xmt−1, i.e., xot−1 → ct&xmt−1 → ct. The dashed
box in Figure 1(b) means that both xot−1 and xmt−1 are causes
of ct. Similarly, based on the corresponding imputation m-
graph, the joint distribution can be formalized as:

p(xo1:T ,x
m
1:T )

=

∫
c1:T

∫
z1:T

P (xo1:T ,x
m
1:T , c1:T , z1:T )dc1:T

dz1:T

=

∫
c1:T

∫
z1:T

P (xm1 |c1, z1,xo1)P (z1|xo1)P (c1)P (xo1)

T∏
t=2

P (xmt |ct, zt, xot )P (zt|xot )P (ct|xt−1)P (x
o
t )dc1:T

dz1:T

(4)

where z1:T := {z1, · · · , zT } and c1:T := {c1, · · · , cT }. In
this case, we can identify the joint distribution by modeling
1) generative model P (xmt |ct, zt,xot ) of missing values; 2)
the conditional distributions of missing cause and latent vari-
ables, i.e., P (ct|xt−1) and P (zt|xot ).

2.3 Missing Completely At Random
When data are Missing Completely At Random (MCAR),
however, it is impossible to reconstruct the latent process
and recover p(xo1:T ,x

m
1:T ), since the missingness is inde-

pendent of all other variables, as shown in Figure 1(c).
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Dataset Ratio DMM-MAR DMM-MNAR TimeCIB ImputeFormer TimesNet SAITS GPVAE CSDI BRITS SSGAN
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1
0.2 0.099 0.212 0.118 0.232 0.285 0.405 0.666 0.510 0.139 0.241 0.252 0.312 0.213 0.339 0.334 0.327 0.115 0.239 0.152 0.279
0.4 0.165 0.259 0.184 0.297 0.389 0.471 0.705 0.579 0.207 0.294 0.185 0.286 0.280 0.407 0.523 0.438 0.175 0.277 0.172 0.280
0.6 0.217 0.302 0.440 0.436 0.497 0.519 0.766 0.608 0.374 0.419 0.401 0.420 0.585 0.572 0.732 0.554 0.265 0.368 0.256 0.345

ETTh2
0.2 0.113 0.228 0.153 0.270 0.471 0.319 0.343 0.420 0.150 0.242 0.143 0.277 0.411 0.487 0.306 0.350 0.329 0.415 0.371 0.470
0.4 0.214 0.339 0.233 0.347 0.543 0.487 0.542 0.551 0.386 0.434 0.672 0.591 0.463 0.521 0.567 0.484 0.444 0.486 0.747 0.692
0.6 0.204 0.313 0.206 0.317 0.767 0.601 0.548 0.558 0.260 0.322 0.313 0.409 0.660 0.634 1.100 0.688 0.695 0.641 1.547 0.965

ETTm1
0.2 0.029 0.112 0.040 0.136 0.067 0.189 0.573 0.477 0.080 0.178 0.030 0.114 0.077 0.198 0.038 0.119 0.038 0.126 0.059 0.169
0.4 0.039 0.129 0.061 0.165 0.099 0.229 0.585 0.488 0.127 0.221 0.041 0.134 0.109 0.237 0.049 0.132 0.046 0.137 0.078 0.198
0.6 0.060 0.163 0.084 0.202 0.183 0.324 0.574 0.496 0.211 0.282 0.062 0.163 0.166 0.293 0.077 0.171 0.062 0.163 0.078 0.191

ETTm2
0.2 0.041 0.130 0.042 0.135 0.338 0.447 0.130 0.267 0.063 0.162 0.060 0.171 0.400 0.465 0.061 0.105 0.126 0.248 0.221 0.374
0.4 0.044 0.138 0.055 0.155 0.444 0.506 0.177 0.303 0.085 0.187 0.070 0.184 0.401 0.479 0.141 0.149 0.166 0.288 0.129 0.261
0.6 0.053 0.157 0.075 0.184 0.715 0.626 0.161 0.290 0.128 0.228 0.108 0.229 0.481 0.516 0.335 0.242 0.298 0.395 0.211 0.336

Exchange
0.2 0.003 0.038 0.009 0.051 0.314 0.281 0.178 0.283 0.013 0.063 0.085 0.231 0.711 0.712 0.017 0.076 0.319 0.493 0.666 0.711
0.4 0.007 0.049 0.023 0.106 0.388 0.326 0.158 0.273 0.017 0.081 0.193 0.350 0.783 0.751 0.018 0.078 0.431 0.580 0.820 0.773
0.6 0.008 0.058 0.030 0.121 0.445 0.372 0.201 0.296 0.024 0.101 0.224 0.382 0.834 0.771 0.055 0.143 0.669 0.707 1.235 0.961

Weather
0.2 0.029 0.050 0.049 0.084 0.049 0.113 0.099 0.153 0.038 0.077 0.040 0.078 0.055 0.128 0.069 0.057 0.034 0.059 0.035 0.077
0.4 0.035 0.059 0.061 0.104 0.062 0.128 0.110 0.165 0.050 0.103 0.047 0.085 0.073 0.141 0.075 0.061 0.047 0.069 0.042 0.089
0.6 0.040 0.070 0.080 0.132 0.082 0.152 0.110 0.167 0.061 0.119 0.058 0.090 0.082 0.160 0.074 0.053 0.072 0.058 0.053 0.111

Table 1: Experiment results in unsupervised scenarios for various datasets with different missing ratios under MAR conditions.

In this case, distribution p(xo1:T ,x
m
1:T ) =

∫
zo
1:T ,z

m
1:T ,c1:T

p(xo1:T |zo1:T )p(xm1:T |zm1:T , c1:T )p(zo1:T , zm1:T , c1:T )dzm
1:T
dzo

1:T

dc1:T
are not identifiable since it is hard to identify

p(zo1:T , z
m
1:T , c1:T ) without further auxiliary variables [Lo-

catello et al., 2019].
In real-world scenarios, this case is rare since complex re-

lationships exist among latent variables, making the observed
and missing variables are not independent. Since the MCAR
mechanism is rare in real-world scenarios, we mainly investi-
gate the time series imputation problem under the MAR and
MNAR scenarios.

3 Implementation of DMM Framework
Based on these data generation processes, we introduce the
DMM framework as shown in Figure 2, which models the
data generation process of MAR and MNAR mechanisms.
Specifically, the DMM framework contains two models,
which we name for MAR and MNAR mechanisms DMM-
MAR and DMM-MNAR, respectively. Please refer to Ap-
pendix F for implementation details.

3.1 DMM-MAR model
The DMM-MAR model is shown in Figure 2(a), which is
built on a variational inference neural architecture with prior
estimators for latent states and missing cause variables.
Sequential Variational Backbone architecture for DMM-
MAR. We effectively leverage the variational autoencoder
to model the time series data. Specifically, for the data gener-
ation process of MAR, we have the following approach:

ELBOA =Eq(z1:T ,c1:T |xo
1:T ) ln p(x

m
1:T |z1:T , c1:T )︸ ︷︷ ︸

LR

−DKL(q(z1:T |xo1:T )||p(z1:T ))︸ ︷︷ ︸
Lz

K

−DKL(q(c1:T |xo1:T )||p(c1:T ))︸ ︷︷ ︸
Lc

K

,

(5)

where DKL denotes the KL divergence. Specifically,
q(z1:T |xo1:T ) and q(c1:T |xo1:T ) denote the encoders for the la-
tent states zt and missing cause variables ct, which are used

to approximate the prior distribution. Technologically, these
encoders can be formalized as follows:

ẑ1:T = ϕAz (x
o
1:T ), ĉ1:T = ϕAc (x

o
1:T ), (6)

where ϕAz and ϕAc
2 denote the latent states encoder

and the missing cause encoder, respectively. Moreover,
p(xm1:T |z1:T , c1:T ) denote the decoder for missing value pre-
diction, which is formalized as follows:

x̂m1:T = FA(ẑ1:T , ĉ1:T ), (7)
where FA denotes the predictor and it is implemented by
Multi-layer Perceptron networks (MLPs).

3.2 Prior Estimator for Temporal Latent States
and Missing Cause Variables

To model the prior distributions of temporal latent states and
missing cause variables, we propose the latent state prior es-
timator and the missing cause prior estimator, respectively.

As for the latent state prior estimator, we first let {rAi } be
a set of learned inverse transition functions that take the esti-
mated latent variables and output the noise term, i.e., ϵ̂zt,i =
rAi (ẑt,i, ẑt−1) and each rAi is modeled with MLPs. Then we
devise a transformation ψAz := {ẑt−1, ẑt} → {ẑt−1, ϵ̂

z
t },

and its Jacobian is JψA
z
=

(
I 0

∗ diag
(

∂rAi
∂ẑt−1,i

)), where ∗

denotes a matrix. By applying the change of variables for-
mula, we have the following equation:

ln p(ẑt−1, ẑt) = ln p(ẑt−1, ϵ̂
z
t ) + ln |det(JψA

z
)|. (8)

Since we explicitly assume that the noise term in Equation
(2) is entirely independent with zt−1, we enforce the inde-
pendence of the estimated noise ϵ̂zt and we have:

ln p(ẑt|ẑt−1) = ln p(ϵ̂zt ) +
n∑
i=1

ln | ∂rAi
∂ẑt−1,i

|. (9)

Therefore, the latent state prior can be estimated as follows:
ln p(ẑ1:t) = ln p(ẑ1)

+
t∑

τ=2

(
n∑
i=1

ln p(ϵ̂zτ,i) +
n∑
i=1

ln | ∂rAi
∂ẑτ−1,i

|

)
,

(10)
2We use the superscript symbol to denote estimated variables
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Dataset Ratio DMM-MAR DMM-MNAR TimeCIB ImputeFormer TimesNet SAITS GPVAE CSDI BRITS SSGAN
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1
0.2 0.138 0.240 0.108 0.230 0.327 0.475 0.651 0.503 0.149 0.248 0.165 0.271 0.256 0.375 0.326 0.324 0.125 0.248 0.149 0.281
0.4 0.238 0.329 0.171 0.280 0.392 0.492 0.691 0.530 0.220 0.306 0.265 0.330 0.362 0.442 0.497 0.424 0.177 0.294 0.172 0.301
0.6 0.323 0.384 0.262 0.358 0.484 0.517 0.689 0.538 0.309 0.373 0.308 0.363 0.405 0.467 0.659 0.521 0.297 0.388 0.271 0.377

ETTh2
0.2 0.088 0.197 0.078 0.187 0.501 0.416 0.172 0.348 0.127 0.230 0.143 0.273 0.389 0.486 0.229 0.309 0.211 0.334 0.306 0.421
0.4 0.099 0.216 0.089 0.200 0.563 0.482 0.299 0.387 0.187 0.273 0.218 0.340 0.572 0.573 0.516 0.472 0.293 0.402 0.653 0.644
0.6 0.178 0.268 0.133 0.255 0.647 0.569 0.450 0.471 0.325 0.353 0.293 0.396 0.831 0.704 0.946 0.646 0.547 0.580 0.334 0.423

ETTm1
0.2 0.038 0.131 0.025 0.104 0.079 0.206 0.608 0.481 0.082 0.179 0.028 0.110 0.080 0.204 0.032 0.110 0.031 0.113 0.059 0.166
0.4 0.053 0.157 0.039 0.133 0.104 0.242 0.576 0.480 0.128 0.222 0.042 0.133 0.104 0.230 0.049 0.134 0.041 0.139 0.074 0.192
0.6 0.075 0.192 0.061 0.168 0.146 0.289 0.591 0.501 0.208 0.281 0.066 0.171 0.156 0.287 0.088 0.179 0.073 0.179 0.070 0.182

ETTm2
0.2 0.047 0.135 0.045 0.134 0.439 0.497 0.124 0.251 0.059 0.157 0.046 0.143 0.226 0.351 0.059 0.189 0.127 0.254 0.164 0.310
0.4 0.052 0.148 0.049 0.146 0.569 0.579 0.151 0.274 0.115 0.213 0.076 0.194 0.413 0.489 0.061 0.194 0.159 0.277 0.085 0.193
0.6 0.072 0.174 0.066 0.174 0.647 0.782 0.142 0.271 0.158 0.243 0.090 0.206 0.500 0.523 0.096 0.254 0.221 0.324 0.159 0.280

Exchange
0.2 0.007 0.052 0.004 0.044 0.526 0.471 0.150 0.262 0.014 0.070 0.117 0.274 0.749 0.741 0.016 0.076 0.461 0.574 0.586 0.651
0.4 0.007 0.060 0.006 0.053 0.552 0.479 0.201 0.298 0.016 0.079 0.191 0.342 0.790 0.760 0.015 0.077 0.565 0.637 0.756 0.729
0.6 0.009 0.063 0.008 0.061 0.574 0.487 0.488 0.578 0.024 0.099 0.212 0.370 0.808 0.765 0.041 0.135 0.747 0.750 0.811 0.765

Weather
0.2 0.054 0.087 0.032 0.052 0.045 0.094 0.105 0.148 0.041 0.077 0.041 0.071 0.055 0.116 0.059 0.065 0.037 0.056 0.035 0.073
0.4 0.041 0.069 0.038 0.062 0.061 0.126 0.104 0.157 0.054 0.093 0.050 0.076 0.075 0.147 0.073 0.080 0.057 0.067 0.042 0.090
0.6 0.071 0.119 0.043 0.075 0.074 0.139 0.113 0.160 0.066 0.117 0.057 0.093 0.091 0.166 0.082 0.093 0.070 0.079 0.048 0.093

Table 2: Experiment results in unsupervised scenarios for various datasets with different missing ratios under MNAR conditions.

where p(ϵ̂zi ) follow Gaussian distributions. And another prior
p(ẑt+1:T |ẑ1:t) follows a similar derivation.

As for the missing cause prior estimator, we methodically
employ a similar derivation. Then, we specifically designate
{sAi } as a set of learned inverse transition functions, which
take the observed variables xot and the missing cause ĉt as
input, and output the noise term, i.e. ϵ̂ct = sAi (x

o
t , ĉt,i).

Leaving sAi be an MLP, we further devise another trans-
formation ψAc := {xot , ĉt} → {xot , ϵ̂ct} with its Jacobian is

JψA
c
=

(
I 0

∗ diag
(
∂sAi
∂ĉt,i

)), where ∗ denotes a matrix. Sim-

ilar to the derivation of latent state prior, we have:

ln p(ĉt|xot ) = ln p(ϵ̂ct) +

nc∑
i=1

ln | ∂s
A
i

∂ĉt,i
|. (11)

Therefore, the missing cause prior can be estimated by
maximizing the following equation, obtained by summing
Equation (11) across time steps from 1 to t.

ln p(ĉ1:t|xo1:t) =
t∑

τ=1

(
nc∑
i=1

ln p(ϵ̂cτ,i) +

nc∑
i=1

ln | ∂s
A
i

∂ĉτ,i
|

)
.

(12)

3.3 DMM-MNAR model
To effectively address the time series imputation model under
the MNAR mechanism, we devise the DMM-MNAR model,
which is clearly shown in Figure 2(b).

Sequential Variational Backbone architecture for DMM-
MNAR Similar to the DMM-MAR model, we employ vari-
ational inference to model the data generation process of the
MNAR mechanism, and the ELBO is

ELBOB =Eq(z1:T ,c1:T |x1:T ) ln p(x
m
1:T |z1:T , c1:T )︸ ︷︷ ︸

LR

−DKL(q(z1:T |xo1:T )||p(z1:T ))︸ ︷︷ ︸
Lz

K

−DKL(q(c1:T |x1:T−1)||p(c1:T ))︸ ︷︷ ︸
Lc

K

,

(13)

where DKL denotes the KL divergence. Similar to DMM-
MNAR, we let q(z1:T |xo1:T ) and q(c1:T |x1:T−1) denote the
encoders for the latent states zt and missing cause variables
ct. They are formalized as follows:

ẑ1:T = ϕBz (x
o
1:T ), ĉ1:T = ϕBc (x1:T−1), (14)

Moreover, p(x1:T |z1:T , c1:T ) denote the decoder for miss-
ing value prediction, which is formalized as follows:

x̂m1:T = FB(ẑ1:T , ĉ1:T ), (15)

where FB denotes the predictor and it is implemented by
Multi-layer Perceptron networks (MLPs).

3.4 Prior Estimator for Temporal Latent States
and Missing Cause Variables

Similarly, we also propose the latent state prior estimator and
the missing cause prior estimator to model the prior distribu-
tions of temporal latent states and missing cause variables.

As for the latent state prior estimator, we first let {rBi } be
a set of learned inverse transition functions that take the esti-
mated latent variables and output the noise term, i.e., ε̂zt,i =
rBi (ẑt,i, ẑt−1) and each rBi is modeled with MLPs. Then we
devise a transformation ψBz := {ẑt−1, ẑt} → {ẑt−1, ε̂

z
t },

and its Jacobian is JψB
z
=

(
I 0

∗ diag
(

∂rBi
∂ẑt−1,i

)), where ∗

denotes a matrix. By applying the change of variables for-
mula, we have the following equation:

ln p(ẑt−1, ẑt) = ln p(ẑt−1, ε̂
z
t ) + ln |det(JψB

z
)|. (16)

Since we explicitly assume that the noise term in Equation
(2) is entirely independent with zt−1, we enforce the inde-
pendence of the estimated noise ε̂zt and we have:

ln p(ẑt|zt−1) = ln p(ε̂zt ) +
n∑
i=1

ln | ∂rBi
∂ẑt−1,i

|. (17)

Therefore, the latent state prior can be estimated as follows:

ln p(ẑ1:t) = ln p(ẑ1)

+
t∑

τ=2

(
n∑
i=1

ln p(ε̂zτ,i) +
n∑
i=1

ln | ∂rBi
∂ẑτ−1,i

|

)
,

(18)
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where p(ε̂zi ) follow Gaussian distributions. And another prior
p(ẑt+1:T |ẑ1:t) follows a similar derivation.

As for the missing cause prior estimator, we employ a sim-
ilar derivation and let {sBi } be a set of learned inverse tran-
sition functions, which take the time series data xt−1 and
missing cause ĉt as input and output the noise term, i.e.
ε̂ct = sBi (x

o
t−1, x̂

m
t−1, ĉt,i).

Leaving sBi be an MLP, we further devise another trans-
formation ψBc := {xot−1, x̂

m
t−1, ĉt} → {xot−1, x̂

m
t−1, ε̂

c
t} with

its Jacobian is JψB
c
=

(
I 0

∗ diag
(
∂sBi
∂ĉt,i

)), where ∗ denotes

a matrix. Similar to latent state prior derivation, we have:

ln p(ĉt|xot−1, x̂
m
t−1) = ln p(ε̂ct) +

nc∑
i=1

ln | ∂s
B
i

∂ĉt,i
|. (19)

Therefore, the missing cause prior can be estimated by
maximizing the following equation:

ln p(ĉ1:t|xo1:t−1, x̂
m
1:t−1) = ln p(ĉ1)

+
t∑

τ=2

(
nc∑
i=1

ln p(ε̂cτ,i) +

nc∑
i=1

ln | ∂s
B
i

∂ĉτ,i
|

)
.

(20)

3.5 Model Summary
The difference between the DMM-MAR and DMM-MNAR
is the prior estimator. For DMM-MAR, we use the xot to
estimate the prior distribution of ct. For DMM-MNAR, we
use the xot−1 and xmt−1 to estimate the prior distribution of ct.

By estimating the prior distribution of latent states and
missing causes, we can calculate the KL divergence in Equa-
tions (5) and (13). So we can optimize the ELBO to model
the data generation processes. The total loss of the proposed
two models can be formalized as follows:

Ltotal = LR + βLzK + γLcK , (21)

where β and γ are hyperparameters.
In real-world scenarios full of complexity, we do not know

which type of missing data mechanism applies. However, we
can use model selection methods by running two models on
the same data and choosing the one that yields better results.
We will verify this in the experimental section.

4 Identification Results
In this section, we aim to show that the identifiability for
latent state zt and missing causes ct under the MAR and
MNAR missing mechanisms, providing a theoretical guaran-
tee for the DMM framework. Specifically, we say zt is ‘iden-
tifiable’ if, for each ground-truth changing latent variables zt,
there exists a corresponding estimated component ẑt and an
invertible function hz : Rn → Rn, such that zt = hz(ẑt).
The same applies to ct. Next, we first show how the zt and
ct are identifiable under MAR.
Theorem 1. (Identification of Latent States and Missing
Causes under MAR.) Suppose that the observed data from
missing time series data is generated following the data gen-
eration process, and we make the following assumptions:

• A1 (Smooth, Positive and Conditional independent Den-
sity:) [Yao et al., 2022; Yao et al., 2021] The proba-
bility density function of latent variables is smooth and
positive, i.e., p(zt|zt−1) > 0, p(ct|xot ) > 0. Con-
ditioned on zt−1 each zt,i is independent of any other
zt,j for i, j ∈ 1, · · · , n, i ̸= j, i.e, log p(zt|zt−1) =∑ns

k=1 log p(zt,k|zt−1). Conditioned on xo each ct,i is in-
dependent of any other ct,j for i, j ∈ 1, · · · , n, i ̸= j, i.e,
log p(ct|xot ) =

∑ns

k=1 log p(ct,k|xot ).

• A2 (Linear Independent of MAR:)[Yao et al., 2022] For
any zt, there exist 2n + 1 values of zt−1,l, l = 1, · · · , n,
such that these 2n vectors vAt,k,l − vAt,k,n are linearly inde-
pendent, where vAt,k,l is defined as follows:

vAt,k,l =(
∂2 log p(zt,k|zt−1)

∂zt,k∂zt−1,1
, · · · , ∂

2 log p(zt,k|zt−1)

∂zt,k∂zt−1,n
,

∂3 log p(zt,k|zt−1)

∂2zt,k∂zt−1,1
, · · · , ∂

3 log p(zt,k|zt−1)

∂2zt,k∂zt−1,n
)T

Similarly, for each value of ct, there exist 2n + 1 values
of xot , i.e., xot,j with j = 0, 2, ..2n, such that these 2n vec-
tors wA(ct,x

o
t,j)−wA(ct,x

o
t,0) are linearly independent,

where the vector wA(ct,x
o
t,j) is defined as follows:

wA(ct,x
o
t,j) = (

∂2 log p(ct,k|xot )
∂2ct,k

, · · · , ∂
2 log p(ct,k|xot )

∂2ct,k
,

∂ log p(ct,k|xot )
∂ct,k

, · · · , ∂ log p(ct,k|x
o
t )

∂ct,k
)T

Then, by learning the data generation process, zt and ct are
component-wise identifiable.

Generally speaking, the linear independent condition is
quite common in [Kong et al., 2022; Li et al., 2024a;
Yao et al., 2022], implying that the sufficient changes are
mainly led by the auxiliary variables such as the historical
information zt−1 and the observed variables xot .

Theorem 2. (Identification of Latent States and Missing
Causes under MNAR.) We follow the A1 in Theorem 1 and
suppose that the observed data from the missing time series
data is generated following the data generation process, and
we further make the following assumptions:

• A3 (Linear Independence of MNAR:)[Yao et al., 2022]
For any zt, there exist 2n+1 values of zt−1,l, l = 1, · · · , n,
such that these 2n vectors vBt,k,l − vBt,k,n are linearly inde-
pendent, where vBt,k,l is defined as follows:

vBt,k,l =(
∂2 log p(zt,k|zt−1)

∂zt,k∂zt−1,1
, · · · , ∂

2 log p(zt,k|zt−1)

∂zt,k∂zt−1,n
,

∂3 log p(zt,k|zt−1)

∂2zt,k∂zt−1,1
, · · · , ∂

3 log p(zt,k|zt−1)

∂2zt,k∂zt−1,n
)T

Similarly, for each value of ct, there exist 2n + 1 values
of xt−1, i.e., xt−1,j with j = 0, 2, ..2n, such that these
2n vectors wB(ct,xt−1,j) − wB(ct,xt−1,0) are linearly
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independent, where wB(ct,xt−1,j) is defined as follows:

wB(ct,xt−1,j) (22)

= (
∂2 log p(ct,k|xt−1)

∂2ct,k
, · · · , ∂

2 log p(ct,k|xt−1)

∂2ct,k
,

∂ log p(ct,k|xt−1)

∂ct,k
, · · · , ∂ log p(ct,k|xt−1)

∂ct,k
)T

Then, by learning the data generation process, zt and ct are
component-wise identifiable.

Similar to Theorem 1, the linear independence assump-
tions are also standard in existing works of identification. The
proof can be found in Appendix C. Please refer to Appendix
E, G for an explanation of these assumptions of our theoreti-
cal results, limitations, as well as the potential solution.

5 Experiments
5.1 Experiments on Simulation Data
Dataset. We generated simulated time series data A using
Equations (1)-(2) and the fixed latent causal processes given
in Figure 1 (b)(c), which have three latent variables. We gen-
erated corresponding mask matrices based on two different
missing mechanisms, MAR and MNAR, to simulate missing
values. In addition, to investigate the impact of missing ra-
tios on the results, we specifically set three different missing
ratios of 0.2, 0.4, and 0.6. Please refer to Appendix B for the
details of data generation and evaluation metrics.
Experiment Results. Please refer to Appendix B for ex-
perimental results of simulation data and sensitivity analysis.
With the experimental results, we can draw the following con-
clusions: 1) We observe that our model has high estimation
accuracy in both datasets with different missing mechanisms.
2) As the missing rate increases, the MCC score will also de-
crease. The lack of data has a significant impact on the identi-
fiability performance of the model. 3) We also find that mod-
els considering the corresponding missing mechanism have
higher MCC scores on the dataset under this missing mech-
anism. Under the MAR missing mechanism, the MCC score
of the DMM-MAR model is higher than that of the DMM-
MNAR model. This indicates that when the missing data
mechanism is unknown, the corresponding model can effec-
tively improve performance.

5.2 Experiments on Real-World Data
Dataset. To evaluate the performance of the proposed
method, we consider the following datasets: 1) ETT[Zhou
et al., 2021]: {ETTh1, ETTh2, ETTm1, ETTm2}; 2) Ex-
change[Lai et al., 2018]; 3) Weather3: For each dataset, we
systematically generate mask matrices to accurately simulate
missing values based on the missing mechanisms of MAR
and MNAR. Meanwhile, we use three different mask ratios,
such as 0.2, 0.4, and 0.6. In addition, we use both super-
vised learning and unsupervised learning methods4 for train-
ing. Please refer to Appendix B for data preprocessing.

3https://www.bgc-jena.mpg.de/wetter/
4Code: https://github.com/DMIRLAB-Group/DMM

Baselines. To evaluate the efficacy of our proposed model
(DMM), we compared it against state-of-the-art deep learning
models for time series imputation. Our comparative analysis
examined multiple state-of-the-art approaches across differ-
ent architectures: attention-based models (SAITS [Du et al.,
2023], ImputeFormer [Nie et al., 2023]), diffusion models
(CSDI [Tashiro et al., 2021]), CNN-based methods (Times-
Net [Wu et al., 2022]), RNN-based approaches (BRITS [Cao
et al., 2018]), GAN-based models (SSGAN [Miao et al.,
2021]), and VAE-structured frameworks (TimeCIB [Choi and
Lee, 2023], GPVAE [Fortuin et al., 2020]). To demonstrate
the importance of accounting for data loss mechanisms, we
evaluated our model variants on two datasets with different
missing data treatments, comparing their performance under
identical parameters. For robustness, each experiment was
repeated three times with random seeds, with results reported
as mean and standard deviation.
Experiment Results. The results of our unsupervised
learning experiments are tabulated in Tables 1 and 2. Please
refer to Appendix B for the results of supervised learn-
ing experiments and the standard deviation of experimen-
tal results. We can draw the following conclusions: 1) Our
model exhibits a superior performance ranging from 0.5%
to 52% compared to the most competitive baseline, while
also considerably diminishing the imputation error in the Ex-
change dataset. 2) Compared to existing methods that do
not consider different missing mechanisms, our DMM model
demonstrates significantly better performance when a correct
missing mechanism is used. 3) Since some comparison meth-
ods like TimeCIB and ImputeFormer only consider a single
missing mechanism, they tend to suffer from mismatched
mechanisms and result in degenerated performance. Mean-
while, our DMM model outshines all other baselines across
the majority of imputation tasks when the missing mechanism
is used correctly. 4) Moreover, when our method is applied
to a mismatched missing data mechanism, for instance, using
DMM-MAR on MNAR datasets, the performance is inferior
to that of the correctly matched model. This demonstrates
that model selection can be effectively used when the miss-
ing data mechanism is unknown. Please refer to Appendix
B for experimental results on the MIMIC healthcare dataset,
future time-step influence, mixed missing mechanisms, abla-
tion studies, and computational efficiency analysis.

6 Conclusion
We introduce a causal perspective on the time series imputa-
tion problem, formalizing different mechanisms of data miss-
ingness within an imputation m-graph. Based on this, we
propose a novel framework called Different Missing Mech-
anisms (DMM), which effectively addresses the mechanism
mismatching problem inherent in existing methods. The
DMM framework adeptly handles both MAR and MNAR
missing mechanisms by incorporating the relevant data gener-
ation processes, while also ensuring identifiability. Extensive
experiments on several benchmark datasets demonstrate the
effectiveness of our approach. Our theoretical results and the
proposed framework represent a significant advancement in
time series imputation and causal representation learning.
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