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Abstract
Conducting complex logical queries over knowl-
edge graphs remains a significant challenge. Re-
cent research has successfully leveraged Pre-
trained Language Models (PLMs) to tackle Knowl-
edge Graph Complex Query Answering (KGCQA)
tasks, which is attributed to PLMs’ ability to
comprehend logical semantics of queries through
context learning. However, existing PLM-based
KGCQA methods usually overlook the harm of dis-
ordered syntax or fragmented contexts within a se-
rialized query, posing the problem of “impossible
language” to limit PLMs in grasping the logical se-
mantics. To address this problem, we propose a
Progressive Prefix-Memory Tuning (PPMT) frame-
work for KGCQA tasks, which effectively recti-
fies erroneous segments in serialized queries to as-
sist PLMs in query answering. First, we propose
a prefix-memory rectification mechanism embed-
ded in a PLM module. This mechanism assigns
rectification parameters in memory stores to pol-
ish the language segments of entities, relations, and
queries through specific prefixes. To further capture
the logical semantics in queries, we design a pro-
gressive fine-tuning strategy, which optimizes our
model through a conditional gradient update pro-
cess guided by knowledge translation constraints.
Extensive experiments on widely used KGCQA
benchmarks demonstrate the significant superior-
ity of PPMT in terms of HR@3 and MRR. Our
codes are available at https://github.com/lazyloafer/
PPMT.

1 Introduction
Knowledge Graphs (KGs) [Bollacker et al., 2008; Carlson
et al., 2010; Dong et al., 2014], serving as tools to repre-
sent structural facts, offer interpretable information for var-
ious knowledge-dependent intelligent systems [Wang et al.,

∗Corresponding author

PSV

EPFO query: 
𝑉?. ∃𝑉?: Citizen(Brazil, 𝑉1) ∧ Winner(Ballon d'Or, 𝑉1) ∧ Team(𝑉1, 𝑉?)

Language Model

Query embedding

Ronaldo

Entity space
semantic match

(a)

(b)

Logical prompt tokens
[I]: intersection   [P]: projection   [A]: anchor entity   [R]: relation

Brazil

Ballon 
d'Or

Jovan Nikolic

Ronaldo

Tyson Chandler

Citizen

Winner
PSV

Team
𝑉1

𝑉?AC Milan

AC Milan

Question:  
Which teams have Brazilian football players who have won the Ballon d'Or?

Serialized query:
[I][P][A]Brazil [R]Citizen [P][R]Team [P][A]Ballon d'Or [R]Hire [P][R]Team

Figure 1: Mainstream KGCQA methods. (a) represents a typi-
cal KGE-based KGCQA methods that use geometric representation
[Ren et al., 2020] and (b) is a popular PLM-based KGCQA frame-
work [Wang et al., 2023b].

2024c; Wang et al., 2024a; Luo et al., 2024]. As a funda-
mental KG-based task, Knowledge Graph Complex Query
Answering (KGCQA) aims to utilize KGs to achieve explicit
logical reasoning for complex queries. Thus, KGCQA typi-
cally translates a query into an Existing Positive First Order
(EPFO) structure [Ren et al., 2020], i.e., a query composed
of existing qualification (∃), conjunction (∧), and disjunction
(∨), which intuitively expresses the reasoning logic on KGs.
An example of an EPFO query is provided in Figure 1(a).

Due to the continuous emergence of new knowledge, real-
world KGs remain far from complete, which limits the
ability to explicitly reason EPFO queries on a KG. Build-
ing on the proven success of Knowledge Graph Embed-
ding (KGE) in knowledge graph completion tasks [Ji et
al., 2022], researchers have proposed KGE-based KGCQA
methods [Hamilton et al., 2018; Ren et al., 2020; Ren and
Leskovec, 2020], which utilize knowledge representation to
reason EPFO queries on incomplete KGs. Nevertheless, ex-
isting KGE-based KGCQA methods rely on local KG struc-
tures of entities and relations, lacking a global perspective on
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9. 圣保罗（São Paulo）

卡卡 (Kaká)：1994–2003

里瓦尔多  (Rivaldo)：1992–1994

10. 帕尔梅拉斯（Palmeiras）

里瓦尔多  (Rivaldo)：1994–1996

11. 广岛三箭（Kashima Antlers）

里瓦尔多  (Rivaldo)：2007–2008

12. 奥兰多城（Orlando City SC）

卡卡 (Kaká)：2014–2017

这些是按球队分类的获得金球奖的巴西足球运动员以及他们曾效力过的主要俱乐部。

只要提供球队名称

以下是获得金球奖的巴西足球运动员曾效力过的球队名称：

1. 巴萨（Bar celona）

2. AC米兰（AC Milan）

3. 国际米兰（Int er Milan）

4. 皇家马德里（R eal Madr id）

5. 巴黎圣日耳曼（P aris Saint-Germain, PSG）

6. 奥林匹亚科斯（Olympiak os）

7. 弗卢米嫩塞（Fluminense）

8. 克鲁塞罗（Cr uzeiro）

9. 圣保罗（São P aulo）

10. 帕尔梅拉斯（P almeiras）

11. 广岛三箭（Kashima Antler s）

12. 奥兰多城（Orlando City SC）

List the teams where Brazilian footb all players who were

awarded a Ballon d’Or play ed.

Here is a list of teams where Brazilian footb all players who have won the Ballon d'Or play ed:

1. Barcelona

2. AC Milan

3. Inter Milan

4. Real Madrid

5. Paris Saint-Germain (PSG)

6. Olympiakos

7. Fluminense

8. Cruzeiro

9. São Paulo

10. Palmeiras

11. Kashima Antler s

12. Orlando City SC

给“ChatGPT ”发送消息

ChatGPT 也可能会犯错。请核查重要信息。
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Seaborn Plot Creation
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昨天

前 7 天

A serialized query can express the reasoning logic of a problem. 
We use [A] and [R] to mark words as anchor entities and relations, 
respectively. Please answer the following serialized query:  

[A] Brazil [R] Citizen [R] Team [A] Ballon d'Or [R] Hire [R] Team

Interpreted Query: 

Find the Ballon d'Or winners playing for the Brazil's national 
football:

• Ronaldo Nazário: Known as "Ronaldo," he secured the 
Ballon d'Or twice, first in 1997 and again in 2002. 

• Ronaldinho: Awarded the Ballon d'Or in 2005, Ronaldinho 
was celebrated for his exceptional skills and creativity on 
the field, which benefited both his club and the Brazilian 
national team. 

• Kaká: He received the Ballon d'Or in 2007, recognized for 
his outstanding performances with AC Milan and his 
contributions to Brazil's national squad. 

9. 圣保罗（São Paulo）

卡卡 (Kaká)：1994–2003

里瓦尔多  (Rivaldo)：1992–1994

10. 帕尔梅拉斯（Palmeiras）

里瓦尔多  (Rivaldo)：1994–1996

11. 广岛三箭（Kashima Antlers）
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12. 奥兰多城（Orlando City SC）
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List the teams where Brazilian footb all players who were

awarded a Ballon d’Or play ed.

Here is a list of teams where Brazilian footb all players who have won the Ballon d'Or play ed:

1. Barcelona
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Serialized query
Misunderstanding of ChatGPT

Figure 2: Case of ChatGPT misunderstanding the serialized query
in Figure 1(c).

the complex logical semantics in queries [Kotnis et al., 2021].
Consequently, recent studies harness Pre-trained Language
Models (PLMs) to compensate for this deficiency [Zhuo et
al., 2025; Kotnis et al., 2021; Wang et al., 2023b]. As il-
lustrated in Figure 1(b), unlike KGE-based methods, PLM-
based methods convert an EPFO query into a serialized text
and treat KGCQA as a textual semantic matching problem.
By leveraging the global context awareness of language mod-
els developed in the pre-training stage, these methods can
obtain complex entity-relation dependencies from serialized
queries, thereby capturing logical semantics effectively for
handling complex multi-hop queries.

Although PLM-based KGCQA methods excel at leverag-
ing pre-trained contextual understanding, they remain signif-
icant challenges when processing serialized queries. These
queries, composed of isolated entities and relations, often
give rise to the phenomenon of “impossible language”, which
hinders PLMs’ ability to comprehend them [Kallini et al.,
2024]. For instance, the serialized query in Figure 2 exem-
plifies an impossible language, laden with textual noise such
as disordered syntax and fragmented semantics caused by
concatenated entities and relations [Sharou et al., 2021], ulti-
mately disrupting the coherence required for effective reason-
ing. The misunderstanding of ChatGPT in Figure 2 confirms
this statement. Thus, existing research [Wang et al., 2023b]
attempts to add trainable logical prompt tokens (Figure 1(b))
to refine the coherence of serialized queries. However, the
scattered prompt tokens make the context in serialized queries
more fragmented, which increases the difficulty of PLMs in
understanding the query semantics and leads to serious bias
in the early stages of fine-tuning [Kumar et al., 2020].

To address the above issues, we propose a Progressive
Prefix-Memory Tuning (PPMT) method for KGCQA tasks.
First, to mitigate the interference of impossible languages on
fine-tuning our model, we propose a Prefix-Memory Rectifi-
cation (PMR) mechanism applied to the self-attention blocks
in PLMs. This mechanism polishes the logical contexts
within entities, relations, and queries by assigning specific
prefixes to search rectification parameters in memory stores.

To enable the model to further explore the logical semantics
of a query with the condition that the textual noise is fil-
tered out, we design a progressive fine-tuning strategy based
on knowledge translation constraints, which effectively fine-
tunes the PLM module through conditional gradient updat-
ing [Mokhtari et al., 2020]. Moreover, to ensure parameter-
efficient fine-tuning, we fix the pre-trained parameters of the
token embeddings and self-attention layers in our PLM mod-
ule.

Our main contributions are in three aspects:
• We propose a PMR mechanism for PLMs that are fine-

tuned on KGCQA tasks, which can effectively rectify
the impossible language problem in EPFO queries by
enhancing the encoding process of self-attention blocks.

• To further improve our model’s ability to capture the log-
ical semantics of queries, we design a progressive fine-
tuning strategy, which achieves conditional gradient up-
dating based on knowledge translation constraints.

• Extensive experiments on two widely used benchmarks
demonstrate that our method is significantly superior to
12 state-of-the-art KGCQA methods.

2 Preliminaries
In this section, we first introduce the definitions of EPFO
queries and the self-attention block in PLM frameworks.

2.1 EPFO logical queries
Let G = (E ,R) be a KG, where E and R are the set of en-
tity and relation, respectively. τr({ei}, {ej}) is an assert pro-
jection that defines r ∈ R to connect two specified entities
ei, ej ∈ E .

According to [Ren et al., 2020], a conjunctive EPFO query
is composed of a series of existential (∃) and conjunction (∧)
operations:

Q[V?] = V?.∃V1, ..., Vn : τr1 ∧ τr2 ∧ ...τrk ∧ ... ∧ τrK ,
where τrk = τrk ({ea}, V ), V ∈ {V?, V1, ..., Vn},
or τrk = τrk (V, V ∗), {V, V ∗} ∈ {V?, V1, ..., Vn}, V ∗ 6= V,

where ea ∈ E and rk ∈ R are an anchor entity and a rela-
tion, respectively. V1, ..., Vn ⊆ E are existentially quantified
bound variable entities, and V? ⊆ E are the target entities that
we want to return. Given a query Q, the goal is to search V?
to satisfy e ∈ V? iff Q[e] is true.

In addition, a disjunctive EPFO query can be regarded as a
union of multiple conjunctive queries through disjunctive (∨)
operations.

2.2 The Self-Attention Block in PLMs
The self-attention block is the core of PLMs. Let {xn}Nn=1
be an input token embedding sequence, without considering
position embeddings and the multi-head mechanism, the en-
coding process of xn by a self-attention block can be defined
as Eq. (1):

zn =

N∑
j=1

exp (DQ(xn) ◦ DK(xj))
√
F

N∑
z=1

exp (DQ(xn) ◦ DK(xz))

DV (xj), (1)
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Figure 3: Overall framework of PPMT. (a) Given an EPFO query, a PLM module with the PMR mechanism (PMR-PLM) first 1 convert
the text segments of anchor entities and relations in the query to the corresponding embeddings. Then, PMR-PLM is further explored to 2
obtain the graph embedding g of the query, which is utilized to predict the score of candidate target entities for the query. To optimize the
model, we first update the parameters from Θ to Θ∗ based on g. Afterwards, the updated PMR-PLM is used to 3 recalculate the embeddings
of anchor entities and relations, serving to obtain the knowledge translation embedding k and conduct conditional gradient updating. (b)
shows the structure of the PMR mechanism, which needs to select specific prefixes and mask matrices based on the inputs of PMR-PLM at
Stages 1 , 2 , and 3 for execution.

where xn ∈ RF is the n-th F dimensional token embedding
of the input sequence, D{Q,K,V }(·) : RF → RF are three
linear layers, and ◦ is an inner product operation.

The main purpose of a self-attention block is to encode xn
by weighted pooling the contextual information of xn. There-
fore, numerous studies [Song et al., 2023; Xue et al., 2022;
Zhuo et al., 2024a] have captured contextual information
beneficial to xn from {DV (xn)}Nn=1 by flexibly combining
DQ(xn) and {DK(xn)}Nn=1, which forms a theoretical foun-
dation of our study.

3 Methodology
In this section, we elaborate on the proposed PPMT frame-
work in detail, which consists of two main components (Fig-
ure 3): a PMR mechanism (Sections 3.1 and 3.2) and a
progressive fine-tuning strategy and a PMR mechanism
(Section 3.3).

3.1 The PMR Mechanism
As outlined in Section 2.2, the self-attention mechanism uti-
lizes serialized context to embed tokens, which requires the
input sequence to contain as coherent contexts as possible.
Based on this, we propose a PMR mechanism to polish the
language coherence of anchor entities, relations, and queries,
respectively. Taking an anchor entity as an example, we pro-
vide a detailed description for our PMR mechanism.

Let {e(n)a ∈ RF }Nn=1 represent the token embedding se-
quence of an anchor entity ea. When e

(n)
a is encoded by Eq.

(1), the textual noise of ea (i.e., the unreasonable tokens in

the sequence) is captured by e
(n)
a , which leads to an encod-

ing offset for e(n)a . To preserve the pre-trained contextual se-
mantic awareness of PLMs, we introduce trainable memory
vectors {ms ∈ RF }Ss=1 to store noise rectification parame-
ters while freezing the pre-trained linear layers D{Q,K,V }(·).
Therefore, Eq. (1) is improved to Eq. (2), which can rectify
the local noise (token-view noise) for e(n)a :

zn =

N∑
j=1

αnj√
Fµ
DV (e(j)

a ) +

S∑
s=1

βns√
Fµ
MV (ms)), (2)

where αnj = exp (DQ(e(n)a ) ◦ DK(e
(j)
a )), βns =

exp (DQ(e(n)a ) ◦MK(ms)), µ =
N∑
z=1

αnz +
S∑
l=1

βnl, and

M{K,V }(·) : RF → RF are two trainable linear layers. Eq.
(2) is interpreted as the scaling and translation of the encod-
ing result of Eq. (1) in an entity space, where αnj√

Fµ
is the

scaling factor and
S∑
s=1

βns√
Fµ
MV (ms) is the translation rate.

In general, after obtaining the encoded token embeddings
({zn}Nn=1) of ea according to Eq. (2), the embedding of ea

is calculated by ea = 1
N

N∑
n=1

zn. However, although Eq. (2)

can alleviate the interference of textual noise on each zn’s
encoding process, the existence of zn is still unreasonable for
ea if the corresponding e

(n)
a is a noise token. Therefore, ea

obtained solely by weighted averaging all zn may be offset
due to noise zn. To address this problem, we design a prefix
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factor ε to rectify global noise of ea:

ε =

N∑
j=1

γj√
Fφ
DV (e(j)

a ) +

S∑
s=1

σs√
Fφ
MV (ms)), (3)

where φ =
∑N
z=1 γz +

∑S
l=1 σl, γj = exp (pa ◦ DK(xj)),

and σs = exp (pa ◦MK(ms)). pa is a specific prefix em-
bedding shared by all anchor entities, which helps Eq. (3)
to obtain pre-trained semantics that are beneficial to ea and
the parameters for rectifing textual noise in ea. According to
the above design, the embedding of ea can be represented as

ea = PMR({e(n)a }
N

n=1,pa):

PMR({e(n)
a }

N

n=1,pa) =
1

N + 1
(ε +

N∑
n=1

zn), (4)

where zn and ε are obtained by Eqs. (2) and (3), respectively.
Similarly, we can obtain the embeddings of relations and

target entities based on Eqs. (5) and (6), respectively.

r = PMR({r(n)}
N

n=1,pr), (5)

et = PMR({e(n)
t }

N

n=1,pt), (6)

where {r(n) ∈ RF }Nn=1 and {e(n)t ∈ RF }
N

n=1 are the token
embedding sequences of a relation and a target entity, respec-
tively, and pr, pt ∈ RF are the specific prefix embeddings
shared by all relations and target entities, respectively.

Please note that for the convenience of describing the PMR
mechanism, we simplify PMR(·) in Eqs. (4)-(6). In actual de-
ployment, the PMR mechanism is deployed to the multi-head
attention block of each layer in our PLM module. In addition,
a trainable Feed Forward Network (FFN) with layer normal-
ization is used to aggregate multi-head attention information.

3.2 Embeddings of Query Graph and Knowledge
Translation

Given a query Q = (A,R∗,G∗), where A and R∗ are the
embedding sets of anchor entities and relations within Q, re-
spectively. As shown in Figure 3(a), G∗ is the query graph of
Q that considersA

⋃
R∗ as a node embedding set and masks

the target entity node using a specific prefix embedding pt
(refer to [target] in Figure 3). According to Section 3.1, the
embeddings of all anchor entities and relations in a query can
be obtained. Afterwards, we carry out corresponding query
graph embedding and knowledge translation embedding.

Query Graph Embedding. The purpose of query graph
embedding is to encode the logical context of a query in the
form of the logical structure. To ensure that the model can
further rectify the textual noise introduced by entities and re-
lations from the perspective of the query while obtaining the
logical context in the query graph, we share the model param-
eters mentioned in Section 3.1 for obtaining the query graph
embedding g:

g = PMR(A ∪R∗ ∪ {pt},pq), (7)

where pq ∈ RF is a specific prefix embedding shared by all
queries and g ∈ RF is the graph embedding of query Q.

In addition, we construct a mask matrix for the attention
weights in PMR(·) based on the structure of G∗. The specific
construction rules of the mask matrix are as follows:

Rule 1: A ∪R∗ ∪ {pt} are visible to themselves and one-
hop neighbors in G∗.

Rule 2: Memory vectors {ms ∈ RF }Ss=1 (first provided in
Eq. (2)) are visible to A ∪R∗ ∪ {pt}.

Rule 3: {ms ∈ RF }Ss=1 and A∪R∗ ∪ {pt} are visible to
the prefix pq .

Knowledge Translation Embedding. Unlike the complex
logical contexts within query graphs, the knowledge trans-
lation operation aims to provide a more intuitive mapping
between queries and target entities by elucidating the spa-
tial geometric dependencies between entities and relations,
which alleviates the interference of the inductive logical con-
text bias (possibly caused by textual noise in queries) on the
model [Zhuo et al., 2024b]. However, considering the limi-
tation of translation embedding in capturing complex logical
semantics in queries [Liu et al., 2022], the knowledge trans-
lation embedding of Q is used to assist in refining the opti-
mization result of Eq. (7) (see Section 3.3 for details). Specif-
ically, we use the GQE algorithm [Hamilton et al., 2018] to
implement knowledge translation embedding of Q:

k = GQE(A,R∗). (8)

When Q only contains the relation projection operation,
Eq. (8) is a standard GQE encoding process. When Q con-
tains the conjunction logic, Eq. (8) will average the GQE
results of all the longest sub-projection paths in Q to obtain
k ∈ RF .

3.3 Progressive Fine-tuning and Inference
Let Θl represent the model parameter in the l-th fine-tuning

step, e+t and {e−(i)t }
I

i=1 are the embeddings of sampled posi-
tive and negative target entities, respectively, obtained by Eq.
(6). The loss functions of Eqs. (7) and (8) are represented as
Eqs. (9) and (10), respectively:

Lg = − log (
exp (e+

t ◦ g)

exp (e+
t ◦ g) +

I∑
i=1

exp (e−
t ◦ g)

),
(9)

Lk = − log (
exp (e+

t ◦ k)

exp (e+
t ◦ k) +

I∑
i=1

exp (e−
t ◦ k)

).
(10)

In the progressive fine-tuning process, we take g, which
contains richer logical context, as the main objective of op-
timization. The geometric dependencies of entity-relation in
k is used as auxiliary constraints to assist the model in cor-
recting the inductive logical context bias that may exist in g.
Let Θl be the model parameter at the l-th fine-tuning step, the
specific updating process is as follows.

First, Θl is updated by Eq. (11):
Θ∗

l = Θl − η∇ΘlLg. (11)

Then, we use Eq. (12) to rectify the update biases that
may occur in Θ∗l due to the inductive logical context, i.e., the
conditional gradient updating:

Θl+1 = Θ∗
l − KL(P (g)||P (k))η∇Θ∗

l
Lk, (12)
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Dataset Entities Relations
Training
Queries

validating
Queries

Testing
Queries

FB15k-237 14,505 474 748,445 60,101 62,812

NELL-995 63,361 400 539,910 48,927 49,034

Table 1: Element statistics of the experimental datasets.

where η is the learning rate, KL(P (g)||P (k)) is a descent
direction [Mokhtari et al., 2020] calculated by the KL diver-
gence, and P (g) and P (k), calculated using g and k, respec-
tively, represent the distributions of predicted scores at the
l-th step for the same set of positive and negative samples.

It is important to note that after obtaining embeddings of
entities and relations and performing Eq. (11), we first clear
the gradients of the model. Subsequently, we obatin embed-
dings of entities and relations again and execute Eq. (12).
Therefore,∇Θ∗l

Lk does not propagate through Θ∗l to Θl, that
is, Eq. (12) only corrects the updated baises within Θ∗l .

When inferring candidate entities of a conjunctive query,
we utilize g to obtain the inner product scores of all entity
embeddings that are obtained by Eq. (6). For a disjunctive
query, we first obtain the scores for all entities against each
inextensible sub-conjunctive query, and use the fuzzy logic
theory [Chen et al., 2022] to aggregate these scores across
all sub-conjunctive queries as the final entity scores for the
disjunctive query.

4 Experiments
In this section, we mainly answer the following research
questions: RQ1. Does the PPMT method significantly
outperform the state-of-the-art baselines in KGCQA tasks?
RQ2. Does the PMR mechanism and progressive fine-tuning
approach enhance the effectiveness of our method? RQ3. Is
the fine-tuning strategy effective for the FFN module within
the PPMT framework? RQ4. Is the PPMT framework adapt-
able to various pre-trained language models?

4.1 Dataset Descriptions
As we focus on handling the impossible language problem in
serialized EPFO queries, we follow the previous work [Wang
et al., 2023b] to conduct experiments on the KGCQA bench-
marks pre-processed by [Ren et al., 2020]. Table 1 provides
the statistics of the experimental datasets.

According to the setup of previous studies [Ren et al.,
2020; Ren and Leskovec, 2020; Zhang et al., 2021], we train
PPMT using five fundamental query types (1p, 2p, 3p, 2i, and
3i). It is then evaluated across a broader range of nine query
types (1p, 2p, 3p, 2i, 3i, ip, pi, 2u, and up).

4.2 Baselines and Evaluation Metrics
We compare our method with 12 state-of-the-art baselines,
which can be split into three mainstream categories of
KGCQA methods, e.i., geometric-based KGE methods
(GQE [Hamilton et al., 2018], Q2B [Ren et al., 2020],
ConE [Zhang et al., 2021], and TEMP [Hu et al., 2022]),
logical-based KGE methods (BetaE [Ren and Leskovec,
2020], FuzzQE [Chen et al., 2022], CQD-Beam [Arakelyan
et al., 2021], LMPNN [Wang et al., 2023c], Var2Vec [Wang

et al., 2023a], and UltraQuery [Bai et al., 2024]), and PLM-
based KGCQA methods (BiQE [Kotnis et al., 2021] and
SILR [Wang et al., 2023b]).

To evaluate the performance of each model, we use two
standard metrics, Mean Reciprocal Rank (MRR) and top-3
Hit Rate (HR@3).

4.3 Implementation Settings
In our experiments, we first convert EPFO queries to query
graphs shown in Figure 3(a) that are suitable for the proposed
PPMT method. Then, we train our model within 30 epochs
on a NVIDIA A100 GPU with 95 GB memory. The batch
size for training queries and the number of sampled nega-
tive target entities for each training query are set to 128. We
use the Adam optimizer to update the model parameters and
set the learning rate to 1.5 × 10−4 with 10% linear warmup
steps. Furthermore, we evaluate the adaptability of our PPMT
framework using three BERT-like backbones [Devlin et al.,
2019] (BERT, Distil-BERT, and RoBERTa). The dimension
F in Section 3 is based on the embedding dimension of dif-
ferent PLMs. We explore the optimal value of the memory
matrix’s dimension S in the PMR mechanism from {1, 5, 10,
15, 20, 25, 30, 35, 40}.

4.4 Main Results (RQ1)
Table 2 provides the experimental results of each method on
two datasets. Our proposed PPMT outperforms other meth-
ods significantly in terms of average HR@3 and MRR, with
outstanding performance on the four fundamental multi-hop
query types (2p, 3p, 2i, and 3i). This success is attributed
to the proposed PMR mechanism and progressive fine-tuning
strategy, which effectively refine the context and learn suffi-
cient logical semantics of serialized queries.

Benefiting from the context acquisition capability of the
Transformer architecture and the pre-trained latent knowl-
edge representations, PLM-based baselines (BiQE and SILR)
demonstrate relatively strong performance. However, the
challenge for PLM-based approaches lies in managing tex-
tual noise. This difficulty often leads them to fit to noisy data
distributions, which hinders their understanding of logical se-
mantics and limits their performance on multi-hop complex
queries (e.g., 2p, 3p, 2i, and 3i).

Based on the conclusion of [Li and Liang, 2021], we con-
sider that the infix-prompt method used by SILR may prevent
prompt tokens from effectively rectifying textual noises in
query graphs. In contrast, PPMT’s distinct separation of en-
tity/relation and query encoding processes ensure that prompt
tokens always serve as prefixes, which facilitates more effec-
tive context adjustment of all pre-trained tokens within texts.

4.5 Ablation Studies (RQ2)
We conduct ablation experiments to further analyze the ef-
fectiveness of the PMR mechanism and the progressive fine-
tuning method of our PPMT framework. The related experi-
mental results is provided in Table 3.

Effectiveness of the PMR mechanism. We validate the ef-
fectiveness of the PMR mechanism from two aspects: prefix
tokens and memory matrices. As shown in Table 3, PPMT
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FB15k-237

Method
Avg. 1p 2p 3p 2i 3i ip pi 2u up

HR@3 MRR HR@3 MRR HR@3 MRR HR@3 MRR HR@3 MRR HR@3 MRR HR@3 MRR HR@3 MRR HR@3 MRR HR@3 MRR
GQE 0.221 0.203 0.404 0.346 0.214 0.193 0.147 0.145 0.262 0.250 0.390 0.355 0.087 0.086 0.162 0.156 0.164 0.145 0.155 0.151
Q2B 0.268 0.237 0.467 0.421 0.240 0.232 0.186 0.184 0.324 0.254 0.453 0.355 0.113 0.112 0.198 0.177 0.239 0.217 0.193 0.183
ConE 0.296 0.271 0.465 0.420 0.270 0.253 0.231 0.218 0.350 0.316 0.488 0.445 0.120 0.113 0.241 0.220 0.305 0.267 0.201 0.188
TEMP 0.294 0.263 0.457 0.420 0.278 0.271 0.234 0.231 0.369 0.300 0.496 0.397 0.117 0.126 0.229 0.193 0.276 0.255 0.189 0.178
BetaE 0.262 0.238 0.426 0.383 0.248 0.231 0.208 0.197 0.311 0.277 0.439 0.392 0.102 0.099 0.217 0.196 0.237 0.209 0.174 0.165

FuzzQE 0.269 0.247 0.462 0.418 0.273 0.255 0.233 0.218 0.294 0.264 0.404 0.363 0.125 0.122 0.200 0.185 0.237 0.215 0.198 0.186
CQD-Beam 0.290 0.266 0.512 0.467 0.288 0.274 0.221 0.211 0.352 0.316 0.457 0.417 0.129 0.112 0.249 0.216 0.284 0.256 0.121 0.133

LMPNN 0.312 0.284 0.524 0.459 0.291 0.289 0.237 0.235 0.348 0.303 0.460 0.426 0.189 0.168 0.252 0.221 0.289 0.264 0.218 0.196
Var2Vec 0.284 0.268 0.503 0.455 0.273 0.266 0.220 0.209 0.329 0.273 0.401 0.423 0.199 0.177 0.171 0.180 0.244 0.226 0.221 0.207

UltraQuery 0.292 0.269 0.445 0.406 0.265 0.252 0.216 0.205 0.354 0.318 0.481 0.436 0.172 0.169 0.263 0.233 0.240 0.221 0.193 0.185
BiQE† — — 0.439 0.401 0.281 0.222 0.239 0.108 0.333 0.288 0.474 0.360 0.110 0.112 0.177 0.143 — — — —
SILR 0.296 0.263 0.471 0.432 0.302 0.288 0.249 0.240 0.358 0.282 0.484 0.414 0.113 0.100 0.222 0.195 0.283 0.253 0.181 0.167
PPMT‡ 0.323 0.292 0.481 0.435 0.329 0.305 0.271 0.252 0.362 0.322 0.496 0.436 0.160 0.152 0.264 0.235 0.334 0.297 0.212 0.202

NELL-995

Method
Avg. 1p 2p 3p 2i 3i ip pi 2u up

HR@3 MRR HR@3 MRR HR@3 MRR HR@3 MRR HR@3 MRR HR@3 MRR HR@3 MRR HR@3 MRR HR@3 MRR HR@3 MRR
GQE 0.246 0.211 0.418 0.311 0.228 0.193 0.205 0.174 0.316 0.273 0.447 0.408 0.081 0.080 0.186 0.170 0.199 0.159 0.139 0.13
Q2B 0.305 0.254 0.555 0.413 0.266 0.227 0.233 0.208 0.343 0.288 0.480 0.414 0.132 0.125 0.212 0.193 0.369 0.266 0.163 0.155
ConE 0.334 0.304 0.575 0.520 0.268 0.249 0.283 0.268 0.380 0.335 0.531 0.484 0.121 0.112 0.217 0.203 0.419 0.369 0.214 0.195
TEMP 0.373 0.311 0.625 0.533 0.343 0.284 0.342 0.286 0.410 0.333 0.552 0.471 0.141 0.129 0.209 0.185 0.477 0.368 0.262 0.211
BetaE 0.322 0.279 0.565 0.515 0.269 0.251 0.283 0.259 0.352 0.210 0.491 0.442 0.109 0.102 0.223 0.205 0.394 0.354 0.209 0.180

FuzzQE 0.340 0.305 0.603 0.549 0.357 0.314 0.336 0.307 0.326 0.291 0.450 0.397 0.135 0.129 0.230 0.208 0.376 0.331 0.246 0.222
CQD-Beam 0.375 0.324 0.667 0.604 0.350 0.309 0.288 0.259 0.410 0.348 0.529 0.443 0.171 0.167 0.277 0.252 0.531 0.410 0.156 0.134

LMPNN 0.367 0.328 0.671 0.606 0.355 0.314 0.313 0.282 0.393 0.342 0.533 0.452 0.165 0.158 0.249 0.226 0.443 0.393 0.178 0.186
Var2Vec 0.319 0.297 0.681 0.607 0.269 0.241 0.225 0.216 0.338 0.310 0.488 0.482 0.166 0.154 0.230 0.221 0.224 0.204 0.251 0.239

UltraQuery 0.276 0.250 0.428 0.389 0.230 0.203 0.225 0.207 0.345 0.308 0.493 0.444 0.146 0.140 0.276 0.256 0.169 0.148 0.173 0.153
BiQE† — — 0.587 0.467 0.305 0.209 0.326 0.197 0.371 0.305 0.531 0.473 0.103 0.119 0.187 0.201 — — — —
SILR 0.346 0.302 0.641 0.521 0.317 0.289 0.348 0.312 0.374 0.330 0.552 0.478 0.088 0.080 0.181 0.191 0.433 0.338 0.182 0.187
PPMT‡ 0.387 0.342 0.640 0.562 0.363 0.322 0.362 0.323 0.412 0.350 0.569 0.496 0.169 0.167 0.254 0.240 0.482 0.403 0.241 0.219
† BiQE [Kotnis et al., 2021] does not provide a prediction method for disjunctive queries (2u and up).
‡ The results of PPMT are uniformly trained using BERT as the pre-trained model. The memory sizes used for different datasets are shown in Figure 5.

Table 2: Main Experimental results. Bold font and underline represent the best and second-best results, respectively.

Model
FB15k-237 NELL-995

Avg. HR@3 Avg. MRR Avg. HR@3 Avg. MRR
PPMT 0.323 0.292 0.387 0.342
-prefix 0.320 0.289 0.368 0.324
-mem 0.291 0.268 0.330 0.305
-pft 0.317 0.287 0.355 0.313

-pft-KL 0.300 0.271 0.346 0.311
-pft-Lk 0.295 0.270 0.349 0.307
-pft-Lg 0.272 0.250 0.329 0.286

Table 3: Results of ablation experiments. Bold font is the best
results. “-prefix”, “-mem”, and “-pft” indicate that PPMT does not
use the prefix tokens, memory matrices, and the progressive fine-
tuning strategy, respectively. KL, Lk, and Lg are defined in Eqs.
(12), (10), and (9), respectively.

is comprehensively superior to PPMT (-prefix) and PPMT (-
mem). In addition, we find that the memory matrices have
a greater improvement on the model compared to the prefix
vectors, because memory matrices can correct finer-grained
textual noise through spatial scaling and translating embed-
dings. In contrast, prefix vectors adjust the embeddings of
entities, relations, and queries from a broader perspective, po-
tentially overlooking some finer-grained noise.

Effectiveness of the progressive fine-tuning method. We
define four variants, Θl can be updated by Eqs. (11) and
(12) without the intermediate gradient clearing operation (-
pft), Θl can be updated by Eqs. (11) and (12) without KL
divergence weighting (-pft-KL), Θl is only updated by Eq.
(9) (-pft-Lk), and Θl is only updated by Eq. (10) (-pft-Lg), to
comprehensively evaluate the effectiveness of our progressive
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Figure 4: Results of fine-tuning different components.

fine-tuning method. Table 4 shows that the performance of
different variants has decreased to a certain extent compared
to PPMT, with PPMT (-pft-Lg) showing the most significant
decrease in effectiveness, as it is difficult to mine the com-
plex logical semantics in EPFO queries using only knowledge
transformation embeddings.

4.6 Further Analysis
In this section, we mainly analyze the details of the model, in-
cluding fine-tuning measures, model adaptability, and mem-
ory size selection.

Analysis of Fine-tuning FFN (RQ3). Let O represent the
linear layer in the SA block, and F1 and F2 denote the two lin-
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Basic Model
FB15k-237 NELL-995

Avg. HR@3 Avg. MRR Avg. HR@3 Avg. MRR
BERT 0.323 0.292 0.387 0.342

Distil-BERT 0.303 0.276 0.381 0.334
RoBERTa 0.318 0.281 0.385 0.340

Table 4: PPMT’s performance on different basic models.

ear layers in the FFN module, respectively. We fine tune the
different combinations of these components, and the results
are shown in Figure 4 (PPMT adopts an O + F1 + F2 fine-
tuning method). Our experimental results indicate that fine-
tuning the FFN module significantly enhances the model’s
performance because the FFN module integrates pre-trained
information with additional memory parameters, enabling the
model to comprehensively learn the representations of enti-
ties, relations, and queries.

Adaptability Analysis of PPMT (RQ4). As shown in Ta-
ble 4, we use BERT, Distil-BERT, and RoBERTa as the ba-
sic models for PPMT to verify its adaptability under unified
training parameters. We find that the PPMT framework can
achieve considerable results on several variants of BERT, and
the training parameter level is more advantageous than full
parameter fine-tuning.

Memory Size Selection. Figure 5 provides the experimen-
tal results of PPMT with different sizes of memory matri-
ces (i.e., S of the memory matrix M in Section 3.2). When
S ∈ [5, 15], the performance of the model significantly im-
proves, which results from the increased number of rectifica-
tion parameters in the memory matrices, allowing for a more
comprehensive fitting of the implicit rectification rules for en-
tities, relations, and queries. In addition, the memory size
varies across different datasets, influenced by the sizes of the
entities and relations involved. When S ∈ [15, 25], PPMT
performs the best on FB15k-237; because the number of en-
tities in NELL-995 is much greater than that in FB15k-237,
PPMT performs the best on NELL-995 when S ∈ [25, 35].
In our experiments, we set S to 20 and 30 for FB15k-237 and
NELL-995, respectively.

5 Related Work
The KGCQA task is an extension of knowledge graph link
prediction [Bordes et al., 2013; Sun et al., 2019; Trouillon et
al., 2016; Arakelyan et al., 2021; Zhu et al., 2022]. There-
fore, early KGCQA methods focus on using logical expres-
sions [Demeester et al., 2016; Rocktäschel et al., 2015] to
enhance understanding of knowledge graph relation paths.
However, the above methods based on logical paths may
exhibit exponential retrieval complexity when dealing with
multi-hop problems, and are not suitable for incomplete KGs.

To achieve knowledge retrieval with linear complexity
and enhance the model’s generalization, various KGE-based
KGCQA methods [Liu et al., 2022; Yang et al., 2022;
Choudhary et al., 2021; Huang et al., 2022; Bai et al., 2023;
Zhu et al., 2022; Ren et al., 2021; Luo et al., 2023] have been
proposed, which implement query level embeddings from dif-
ferent perspectives and can obtain answers through only one
round of traversal of candidate entities. GQE [Hamilton et
al., 2018] uses the KGE method to model the relation projec-
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Figure 5: Results of PPMT with different memory sizes.

tion of queries, achieving query embeddings that can be used
for retrieval. Q2B [Ren et al., 2020] utilizes box embedding
to achieve spatial geometry modeling for complex queries.
ConE [Zhang et al., 2021] extends the spatial representation
of complex queries using cone embedding. Methods such
as BetaE [Ren and Leskovec, 2020], FuzzQE [Chen et al.,
2022], and Var2Vec [Wang et al., 2023a] attempt to combine
probability logic with beta distribution, fuzzy logic, and trian-
gular norms to achieve semantic expansion of query embed-
dings. However, due to the sparsity of incomplete KGs, the
above methods may overlook the latent semantics of queries,
thereby limiting prediction quality.

PLMs achieve remarkable results in various NLP tasks be-
cause of their ability to flexibly obtain contextual informa-
tion of data through the Transformer framework [Wang et
al., 2024b; Jin et al., 2024]. With more research proving the
latent knowledge representation ability of PLMs, the PLM-
based KGCQA framework has become a new trend [Kotnis et
al., 2021; Wang et al., 2023b]. For instance, BiQE [Kotnis et
al., 2021] introduces a bidirectional Transformer framework
to capture fine-grained semantic representations in structural
queries. SILR [Wang et al., 2023b] achieves fine-tuning of
PLMs on EPFO queries through soft prompt learning [Liu et
al., 2021]. However, the textual noise in a query has caused
serious interference to PLMs in understanding the semantics
of the query, which is currently overlooked by PLM-based
methods and a focus of our study.

6 Conclusion

In this paper, we analyze the “impossible language” dilemma
faced by existing PLM-based KGCQA methods and propose
a novel PPMT framework to overcome this challenge. Specif-
ically, we propose a PMR mechanism that leverages specific
prefixes to extract rectification parameters from the memory
stores of each self-attention block in a PLM module. These
parameters can polish the erroneous segments in serialized
queries, thereby suppressing the interference of the impossi-
ble language problem on PLM’s understanding of query logi-
cal semantics. Then, a progressive fine-tuning strategy is pro-
posed to assist PLMs in understanding the logical semantics
of queries. The experimental results highlight the prediction
performance, effectiveness of components, fine-tuning strate-
gies, and PPMT’s adaptability, underscoring the effectiveness
of our proposed method.
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