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Abstract
The rise of HDR-WCG display devices has high-
lighted the need to convert SDRTV to HDRTV,
as most video sources are still in SDR. Existing
methods primarily focus on designing neural net-
works to learn a single-style mapping from SDRTV
to HDRTV. However, the limited information in
SDRTV and the diversity of styles in real-world
conversions render this process an ill-posed prob-
lem, thereby constraining the performance and gen-
eralization of these methods. Inspired by gen-
erative approaches, we propose a novel method
for SDRTV to HDRTV conversion guided by real
HDRTV priors. Despite the limited information
in SDRTV, introducing real HDRTV as reference
priors significantly constrains the solution space of
the originally high-dimensional ill-posed problem.
This shift transforms the task from solving an un-
referenced prediction problem to making a refer-
enced selection, thereby markedly enhancing the
accuracy and reliability of the conversion process.
Specifically, our approach comprises two stages:
the first stage employs a Vector Quantized Genera-
tive Adversarial Network to capture HDRTV pri-
ors, while the second stage matches these priors
to the input SDRTV content to recover realistic
HDRTV outputs. We evaluate our method on pub-
lic datasets, demonstrating its effectiveness with
significant improvements in both objective and sub-
jective metrics across real and synthetic datasets.

1 Introduction
The dynamic range of a video, defined by the difference be-
tween its maximum and minimum luminance, enables High
Dynamic Range (HDRTV) to deliver superior visuals. Ad-
vances in Electro-Optical Transfer Functions (EOTF), such
as PQ/HLG, and Wide Color Gamut (WCG) RGB primaries
(as per BT.2020), enhance HDR technology’s potential.

Despite the rise of WCG-HDR displays, the production
complexities result in limited WCG-HDR content. Con-
sequently, many films remain in Standard Dynamic Range

∗Corresponding author

(SDRTV), driving the demand for SDRTV-to-HDRTV con-
versions. HDRTV offers a wider color gamut (Rec. 2020 vs
Rec. 709), higher brightness range (0.01-1000 nits vs 0.1-
100 nits), advanced EOTF curves (PQ/HLG vs Gamma), and
greater color depth (10-bit vs 8-bit). However, the scarcity
of HDRTV content compared to SDRTV makes SDRTV-to-
HDRTV conversion essential, despite the inherent challenges
due to the limitations of existing imaging systems and trans-
mission protocols.

Traditional methods [Huo et al., 2013; Kovaleski and de
Oliveira Neto, 2014; Ma et al., 2023] suffer from color in-
accuracies and abnormal brightness restoration due to limita-
tions in estimating curve parameters for SDRTV to HDRTV
conversion. Meanwhile, recent neural network-based ap-
proaches [Kim et al., 2019; Kim et al., 2020; Chen et al.,
2021b; Cao et al., 2022; Xu et al., 2022; Shao et al., 2022]
employ the strategy of encoding SDRTV content into a latent
space and subsequently reconstructing it as HDRTV content.
Models designed by these previous methods are trained and
tested on a single data set, as shown in Figure 1 (a). How-
ever, SDRTV to HDRTV conversion models trained on a sin-
gle dataset are difficult to adapt to the content diversity of the
real world. This challenge arises because these models learn
a fixed mapping that is inherently tied to the specific charac-
teristics of the dataset on which they are trained. Actually,
these characteristics can include, but are not limited to, light-
ing conditions, types of scenes, and tone mapping schemes.

Insights. In the process of video production, a single
HDRTV content might correlate with various SDRTV-style
versions. This scenario underscores the complexity faced
when training neural networks to understand not just a single
linear relationship. Due to the ill-posed of multiple mapping
relationships and the lack of deterministic mapping rules, it
is difficult for neural networks to learn such chaotic mapping
functions. This complexity highlights the substantial chal-
lenge in developing neural networks that can directly learn
the diverse SDRTV-to-HDRTV conversions reflective of real-
world scenarios. Therefore, it is very difficult to build a neu-
ral network to directly learn real-world SDRTV-to-HDRTV
conversion.

Previous Solution. HDRTVDM[2023] emphasizes the im-
portance of dataset diversity for training neural networks that
more closely match real-world content. Although the com-
plexity of these datasets is close to actual conditions, exist-
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Prior

Matching

Real HDRTV 

Prior 𝑝𝑟ℎ

SDRTV Latent 𝑧𝑠
SDRTV 𝑥𝑠

Our Result

(a) Previous methods 

Previous Result

Matched Real HDRTV 

Prior 𝑝𝑚ℎ

Predicted HDRTV Latent Ƹ𝑧ℎ

(b) Our method

D

E D

Real HDRTV 

Dataset

E

(c) Distribution Comparison

Figure 1: (a) Previous methods learn single-style SDRTV-to-HDRTV conversion on a single dataset. However, the SDRTV-to-HDRTV
conversion distribution in real-world scenarios is complex and diverse, which makes it difficult for previous methods to effectively convert
SDRTV-to-HDRTV conversion in the real-world. (b) Our method embeds rich and realistic HDRTV into the converted neural network,
thereby greatly improving the conversion performance in real scenes. (c) The latent variable distribution of our method is closer to GT due to
the incorporation of real HDRTV prior guidance.

ing neural networks face difficulties in fully capturing and
learning the diverse mapping relationships present within the
dataset. This situation calls for improvements in neural net-
work architectures to better process and understand the rich,
complex data reflective of real-world scenarios.

Our Solution. In contrast, our proposed RealHDRTVNet
framework enhances the quality of SDRTV to HDRTV con-
version by directly embedding HDRTV priors into the trans-
formation process, as illustrated in Fig.1 (b). This approach
effectively transforms the ill-posed restoration problem into
a prior selection problem, significantly reducing the solution
space size. By leveraging rich and diverse HDRTV priors,
our method overcomes previous limitations, achieving more
accurate, generalized, and reliable SDRTV to HDRTV map-
ping.

Moreover, a significant challenge in SDRTV-to-HDRTV
conversion is the assessment of the perceptual quality of neu-
ral network-generated HDRTV content. Common metrics
like LPIPS [2018], NIQE [2012], and FID [2017], which are
typically used for SDRTV quality evaluation, struggle to cap-
ture HDRTV’s unique features within the PQ EOTF curve and
Rec.2020 color gamut.

Inspired by this, our work extend tailored metrics for pre-
cise HDRTV quality assessment, including Learned Percep-
tual HDRTV Patch Similarity (LPHPS), Natural HDRTV
Quality Evaluator (NHQE), and Fréchet Initial Distance
(FHAD). These metrics are specifically designed to evalu-
ate the subjective quality of HDRTV content directly. With
these innovative metrics, both researchers and practitioners
have the tools to conduct reliable subjective quality evalua-
tions of HDRTV content.

This paper’s contributions are in follow:

• We propose an a priori selected SDRTV to HDRTV con-
version method, which significantly limits the solution
space of the original high-dimensional ill-posed prob-

lem, thereby enabling efficient learning of real-world
SDRTV to HDRTV conversion and improving the qual-
ity of the converted HDRTV.

• We quantitatively and qualitatively demonstrate that our
proposed method outperforms previous methods.

2 Related Work
2.1 SDRTV-to-HDRTV Methods
Our Research Scope
Recent advancements in HDR imaging have seen the advent
of various learning-based methods, as noted by Wang and
Yoon [2022]. These methods have found different applica-
tions in the real world. HDR enhancement primarily involves
the use of neural networks to convert SDR images to HDR
[2014]. On the other hand, Multi-Exposure HDR Imaging
employs exposure bracketing to create HDR images from a
sequence of SDR images taken at different exposure levels
[Chaudhari et al., 2019; Le et al., 2022; Xu et al., 2021;
Chen et al., 2021a]. This paper concentrates on the transfor-
mation of SDRTV to HDRTV, aiming to achieve an enhanced
dynamic range and wide color gamut in videos.

DNN-based SDRTV-to-HDRTV Methods
Recent studies primarily focus on devising feature modu-
lation strategies for robust SDRTV-to-HDRTV conversion
[Kim et al., 2019; Kim et al., 2020; Zeng et al., 2020;
Chen et al., 2021b; Cao et al., 2022; Xu et al., 2022; Shao
et al., 2022]. These strategies entail the utilization of diverse
color-prior techniques to facilitate effective feature modula-
tion. The HDRTVDM approach [2023] notably enhances
HDRTV conversion quality by refining the dataset. In terms
of integrated frameworks, SR-ITM [2019] presents a network
design that concurrently addresses SDRTV-to-HDRTV trans-
formation and super-resolution. Similarly, DIDnet [2023] in-
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(a)

UpdateForward

HDRTV-VQGAN
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𝑃𝑟𝑖𝑜𝑟
𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔

(b)

RealHDRTVNet

HDRTV 𝑥,
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Codebook C
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𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠
𝑃𝑟𝑖𝑜𝑟

𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛
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𝑇𝑒𝑥𝑡𝑢𝑟𝑒
𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡

𝑃𝑟𝑖𝑜𝑟
𝐴𝑑𝑎𝐼𝑁

𝑧̂,.:
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𝐷!

𝑧̂;:

𝑧̂;

HDR Color	Alignment	(HCA)

……

SDR Texture	Alignment	(STA)

Figure 2: RealHDRTVNet framework. (a) HDRTV-VQGAN. We first pre-train an HDRTV-VQGAN to learn to store HDRTV priors through
self-reconstruction. (b)RealHDRTVNet. The learning modulation encoder Esfm obtains “nearly high-quality HDRTV features”. Next,
the HDR Color Alignment HCA module aligns the input features with HDRTV in the color dynamic range dimension. In addition, the
SDR Texture Alignment STA module is used to align the texture with the input SDRTV. This makes the dynamic range information of the
conversion result consistent with HDRTV, and the texture details consistent with SDRTV.

troduces a network model that combines SDRTV-to-HDRTV
conversion with the restoration of coding artifacts.

SDRTV-to-HDRTV Datasets
Within the current research landscape, a mere quartet of open-
source HDRTV datasets[2019; 2021b; 2023] exists. Each
dataset adheres to the BT.2020 RGB color gamut. Further,
they conform to the PQ EOTF specifications with a luminance
zenith of 1000 nits.

2.2 Generative Adversarial Network
The introduction of Generative Adversarial Networks
(GANs), as demonstrated in Goodfellow et al.’s 2014
work [2014], has revolutionized tasks like image restoration
[2021]. GAN priors, known for capturing complex image dis-
tributions, contrast traditional methods by integrating natural
image characteristics into degraded visuals through adversar-
ial training. This approach has advanced subfields like de-
noising, inpainting, super-resolution [2018], and artifact re-
duction [2020]. The strength of GAN priors lies in their
restoration ability and in producing outputs closely aligned
with original images. Additionally, models like VQGAN
have been extensively applied in areas like multi-modal con-
version [2021].

3 Methodology
3.1 Preliminary
The conversion from SDRTV to HDRTV can be mathemati-
cally represented by the Maximum A Posteriori (MAP) esti-
mate p(h | s), which relies on the distribution of the SDRTV
input p(s). Traditional methods typically utilize inverse tone

mapping functions to achieve this conversion. This process is
formally defined in Equation 1:

ĥ = f(s; θc) + ϵ, (1)

where ĥ represents the reconstructed HDRTV, θc denotes
the estimated curve parameters, and ϵ accounts for the error
due to parameter estimation inaccuracies. This method often
leads to color distortions and anomalies in brightness restora-
tion in the converted HDRTV content.

Modern neural network-based methods [2019; 2020; 2020;
2021b; 2022; 2022; 2022] utilize a three-stage process to
complete SDRTV-to-HDRTV conversion. Initially, an en-
coder module is employed to map the SDRTV content into
a latent representation. Subsequently, the SDRTV latent fea-
tures are input to the feature transformation module to ob-
tain HDRTV latent features. The final stage involves a de-
coder module, which reconstructs the latent representation
back into HDRTV. By minimizing the difference with real
samples, the distribution of reconstructed HDRTV is close to
the distribution of real data. This dependency can be modeled
as a conditional probability distribution P (h|s), which is only
influenced by the distribution of the input SDRTV P (s):

pθ(h|s) =
∫

pθd
(h|ẑh)pθτ (ẑh|zs)pθe(zs|s)ds (2)

where:
• θe, θτ , and θd represent the parameters of the learned

encoder module, feature transformation module, and de-
coder module of the neural network.

• zs is the initial latent representation into which the
SDRTV image s is encoded.
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• ẑh is the intermediate latent representation obtained af-
ter encoding and feature transformation of the SDRTV
image s.

These methods aim to learn a straightforward and static
mapping relationship from SDRTV to HDRTV, inadequately
capturing the intricate and multifaceted conversion process
between SDRTV and HDRTV. HDRTVDM[2023] believes
that increasing the complexity of the dataset can force the
neural network to learn an SDRTV-to-HDRTV mapping func-
tion that is more in line with the real world. Although increas-
ing the dataset is closer to the real world at the sample level,
it is difficult for the neural network to directly learn such a
complex mapping process.

Transitioning from SDRTV to HDRTV inherently involves
conditional probability transition. On a singular dataset, these
conditional transitions adhere to a stationary distribution,
making it feasible for neural networks to learn such proba-
bilistic mappings with relative ease. However, in the real-
world scenario, the SDRTV-to-HDRTV conditional probabil-
ity transitions do not conform to a single, fixed distribution,
posing a challenge for neural architectures to learn this intri-
cate probability transition.

To address this challenge, we propose a framework that
can directly harness the prior knowledge encapsulated within
HDRTV data to facilitate a superior-quality transformation
from SDRTV to HDRTV. The conversion can be described
by the following equation.

pθ(h|s, π) =
∫

pθd
(h|zm)pθm

(zm|ẑh, π)

pθτ
(ẑh|zs)pθe

(zs|s) ds

(3)

where:
• θ is the set of network parameters.
• zm is the best matching HDRTV prior representation se-

lected from the HDRTV prior distribution π.
• ẑh is the intermediate latent representation obtained after

encoding and mapping the SDRTV image s.
• π is the HDRTV prior set .
• zs is the initial latent representation into which the

SDRTV image s is encoded.
To circumvent the traditional reliance solely on SDRTV in-

puts, our approach ingeniously integrates HDRTV priors into
the conversion workflow, thereby facilitating efficient and
complex HDRTV reconstruction. Our method enables adap-
tive conditional probability transitions based on the embed-
ded HDRTV priors, moving beyond fixed-type conditional
transitions to achieve high-quality conversion from SDRTV
inputs.

3.2 Overall Framework
Following the instantiation of our motivation, we propose Re-
alHDRTVNet, a novel architecture designed to learn the com-
plex and variable transformations from SDRTV to HDRTV,
demonstrating superior generalization capabilities in authen-
tic scenarios. Our methodology unfolds in three phases: ini-
tially, HDRTV-VQGAN is trained to embed real HDRTV

priors. The subsequent two phase focuses on the SDRTV-
to-HDRTV transformation, leveraging the pre-embedded
HDRTV priors to augment the quality of HDRTV. The em-
bedded HDRTV prior can serve as a powerful guide to en-
sure high-quality HDRTV restoration. The proposed method
no longer learns a simple function mapping that only relies
on SDRTV, but learns a transformation process guided by a
real HDRTV prior. Guided by real HDRTV, our method can
learn complex and diverse SDRTV-to-HDRTV conversion re-
lationships. Based on this, our method adopts a three-phase
strategy:

• Phase I: We train a VQGAN model on HDRTV domain,
embedding real HDRTV priors.

• Phase II: We craft a preliminary modulation encoder for
SDRTV to HDRTV transformation. Through feature
modulation techniques, this model refines the SDRTV
latent distribution towards the anticipated HDRTV latent
space, ensuring that the next stage can more accurately
match the HDRTV prior.

• Stage III: We propose the HDR Color Alignment mod-
ule HCA and the SDR Texture Alignment module
STA. HCA identifies the best HDRTV prior from the
pre-trained VQGAN codebook and uses the identified
HDRTV to assist the conversion process. The SDR Tex-
ture Alignment module STA aligns the transformed fea-
tures with SDRTV in texture to ensure texture fidelity.

With this three-stage approach, we provide a novel solution
for high-quality SDRTV-to-HDRTV conversion.

3.3 Phase I: HDRTV Vector Quantized
AutoEncoder - HDR Prior Representation
Learning

To reduce the uncertainty of SDRTV-to-HDRTV mapping
and complement high-quality HDRTV color information, we
first train a vector quantized autoencoder to learn a context-
rich codebook that improves the quality of the converted
HDRTV.

The specific structure is shown in Fig. 2 (a). First, the
HDRTV SDRTV xh ∈ RH×W ×3 is input into the encoder Eh

to get the latent feature zh ∈ Rh×w×c. Next, find the closest
codebook feature ẑh to zh in codebook C ∈ Rn×k (n is the
number of vectors in the codebook) and the corresponding
codebook index S. Then ẑh is fed into the decoder Dh to
obtain the reconstructed HDRTV y′

h.
We describe the details of HDRTV-VQGAN. First use the

encoder Eh to encode the input HDRTV xh into a latent rep-
resentation zh.

zh = Eh(xh), (4)

where xh ∈ RH×W ×3 represents the input HDRTV, and zh ∈
Rh×w×c denotes the latent feature obtained from the encoder
Eh.

Next, the replaced features ẑh and corresponding index sh

are obtained from the codebook C through nearest neighbor
matching;

ẑh, sh = argmin
ci∈C

∥zh − ci∥, (5)
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where C ∈ Rn×d is the codebook containing n vectors,
each of dimension d, and ẑh is the codebook feature clos-
est to zh. The corresponding codebook index is obtained as
S = index of ẑh.

Then,ẑh is processed via the decoder Dh get converted
HDRTV:

y′
h = Dh(ẑh), (6)

3.4 Phase II: SDRTV Modulation Encoder -
Preliminary HDR Mapping

Given the substantial differences in dynamic range and color
space between SDRTV and HDRTV, direct alignment of
SDRTV features to HDRTV priors in latent space is inher-
ently challenging. To mitigate this, we decompose the prior
matching problem into a two-stage process.

First, we propose the SDR Feature Modulation Encoder
(Esfm) to transform SDRTV latent features into a space that
is more congruent with HDRTV priors. The encoder Esfm

is composed of four sequential SDRTV Feature Modulation
(SFM) blocks, which iteratively refine the latent representa-
tion zsfm to approximate the HDRTV distribution.

Formally, the input SDRTV frame xs (referred to as x0
here) is processed as follows:

xi = Down(SFM(ResBlockc(xi−1))), (7)
where i ∈ {1, 2, 3, 4}, and c ∈ {64, 128, 256, 512}, repre-
senting the number of channels at each respective stage. In
detail, the SFM is implemented by:

x̂i = αi ⊙ xi + βi; αi, βi = Convθ(xi), (8)

where ⊙ denotes element-wise multiplication, αi and βi de-
note the modulation parameters derived via convolutional
layers Convθ.

Subsequently, a Transformer module aggregates the mod-
ulated features into a compact latent representation:

zsfm = ResBlockc512(Transformer(xm4)). (9)
This process effectively aligns the SDRTV latent space

with that of HDRTV, thereby facilitating optimal prior match-
ing in subsequent processing stages.

3.5 Phase III: RealHDRTVNet - High-Quality
Conversions with Pretrain HDR Prior

In phase I and II, Esfm, the codebook C, and Dh are pre-
trained and then frozen in the subsequent phase. In phase
III, to achieve efficient and nuanced HDRTV reconstruction,
we propose RealHDRTVNet, which consists of two key com-
ponents: HDR Color Alignment Module(HCA) and SDR
Texture Alignment(STA). These components ensure that the
converted HDRTV retains the texture structure of the input
SDRTV while aligning with the dynamic range and color of
real HDRTV.

HDR Color Alignment Module(HCA)
To achieve accurate color alignment with real HDRTV pri-
ors, we introduce the HDR Color Alignment module(HCA),
which integrates the functionalities of brightness prior extrac-
tion, prior matching, and prior adaptive instance normaliza-
tion.

Given an SDRTV input xs, the encoder Esfm first extracts
the multi-scale feature zmsf and the “basic” HDRTV feature
zsfm. Recognizing the necessity for adaptive processing in
highlight regions, we employ a brightness prior extraction
module to generate a luminance-aware position coding zc us-
ing Xs and its highlight mask. This feature zc is then fed into
the Prior Matching (PM) module, where it is aligned with the
optimal HDRTV prior ĥhm from the codebook C, resulting
in the matched feature ẑhm.

After obtaining ẑhm, Prior Adaptive Instance Normaliza-
tion (AdaIN) adjusts the latent features of zsfm and ẑhm, gen-
erating ẑhma. The feature ẑhma is then fed into the pretrained
Dh to produce the HDRTV result. This process ensures that
the color and dynamic range of the generated HDRTV align
with real HDRTV priors.

SDR Texture Alignment Module(STA)
. To maintain the texture structure of the input SDRTV in the
converted HDRTV, we introduce the SDR Texture Alignment
module. This module uses multi-scale features zmsf from the
encoder Esfm during the decoding process to align textures.

First, the multi-scale features zmsf from the encoder are
concatenated with the decoder features ẑd and fed into a
deformable convolution to achieve alignment, resulting in
aligned features ẑn. These aligned features are then used to
modulate the decoder features ẑd, resulting in the aligned de-
coder feature ẑda, which is fed into decoder Dh for HDRTV
reconstruction.

By performing SDR Texture Alignment on the decoder at
four different resolutions, the decoder Dh is capable of re-
covering HDRTV with a realistic dynamic range while pre-
serving high-quality texture details from the SDRTV.

Overall Pipeline
The complete RealHDRTVNet pipeline is described as fol-
lows:

zsfm, zmsf = Esfm(xs), (10)
ẑhma = HCA(zsfm, xs, C), (11)

ŷh = Dh(ẑhma, STA(zmsf , ẑd)). (12)

4 Experiment
4.1 Evaluation Metrics
We use objective metrics, subjective metrics and user study to
evaluate different methods. Objective metrics include PSNR,
SSIM and HDRVDP3, which respectively evaluate the fi-
delity, structural similarity, color fidelity, and visual simi-
larity of the converted HDRTV. Subjective metrics include
LPHPS(Extended from LPIPS), FHAD(Extended from FID),
and NHQE(Extended from NIQE), which can evaluate the
perceptual similarity and distribution consistency of the con-
verted HDRTV and the real HDRTV. These three subjective
metrics are obtained by expanding the previous subjective
quality assessment methods in this paper.

4.2 Implementation Details
We validate our method’s efficacy by training and testing
on various datasets detailed in Section 2.1, and additionally
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Figure 3: Qualitative results on synthetic datasets. Our RealHDRTVNet can recover realistic HDRTV color information through embedded
real-world HDRTV priors. (Zoom in for details)

Methods Test on HDRTV1K Dataset Test on HDRTV4K Dataset Test on SRITM Dataset
PSNR SSIM LPHPS NHQE FHAD PSNR SSIM LPHPS NHQE FHAD PSNR SSIM LPHPS NHQE FHAD

IRSDE 22.64 0.8683 0.3189 4.35 121.41 16.71 0.7663 0.3321 4.45 119.10 22.07 0.8721 0.2789 4.53 113.31
DeepSRITM 29.79 0.8945 0.3260 4.09 131.56 23.61 0.6925 0.4373 4.42 143.58 27.8 0.8767 0.3423 4.28 129.34

FMNet 34.18 0.9527 0.1812 3.94 103.78 27.43 0.8414 0.3077 5.95 124.06 29.26 0.9042 0.221 3.99 96.27
HDCFM 32.42 0.9414 0.1714 3.92 104.82 25.41 0.8404 0.2541 4.49 112.20 28.44 0.871 0.2157 3.83 96.22

HDRTVDM 34.09 0.9268 0.2189 4.22 95.73 27.47 0.8792 0.2286 5.38 102.27 31.07 0.9138 0.2102 4.14 85.73
HDRTVNet 36.01 0.9559 0.1593 3.98 100.42 28.06 0.8368 0.2836 5.64 121.20 29.47 0.8747 0.2327 3.94 92.84
HyConDITM35.61 0.9566 0.1288 3.91 95.33 29.31 0.8702 0.2064 5.57 102.61 31.16 0.9176 0.1555 3.96 84.24

Ours 35.06 0.9609 0.1166 3.88 91.03 30.31 0.8912 0.1804 4.03 96.15 29.65 0.9308 0.1392 3.94 81.56

Table 1: Quantitative results on synthetic three SDRTV-to-HDRTV datasets.

evaluating real SDRTV datasets. Our approach employs the
Adam optimizer with an initial learning rate of 2 × 10−5,
utilizing a cosine annealing schedule for learning rate decay.
Training is divided into three phases, which means HDRTV-
VQGAN, Esfm, and RealHDRTVNet are trained respec-
tively.

4.3 Comparisons with State-of-the-Art Methods
We compared our proposed RealHDRTVNet with
state-of-the-art methods, including HDRTVNet[2021b],
HyCondITM[2022], HDCFM[2022], HDRTVDM[2023],
FMNet[2022], and DEEPSRITM[2019]. Extensive exper-
iments were conducted on both synthetic and real-world
datasets.

Experimental Results on Synthetic Datasets
We first show quantitative results on three synthetic datasets
in Table 1. On quality metrics PSNR, SSIM, LPHPS, FHAD,
and NHQE, our RealHDRTVNet achieves the best scores
than existing methods. This means that our method achieves
the best performance and produces HDRTV results of higher
subjective quality.

Our method achieves a lower value on the LPHPS met-
ric, indicating that the perceptual difference between the pro-
posed method and the real HDRTV is smaller, making it

closer to the actual HDRTV. Additionally, the reduced FHAD
and NHQE metrics suggest that the HDRTV produced by our
method better matches the distribution of HDRTV captured
from real-world scenes.

Furthermore, we performed a qualitative comparison in
Fig.3. Previous methods failed to produce satisfactory con-
version results, such as HDRTVDM and FMNet. Our method
can convert HDRTV with more realistic and natural high-
lights and is particularly effective in reinstating natural and
continuous color gradients in areas experiencing color transi-
tions. This capability ensures that the images not only exhibit
greater visual fidelity but also reflect a smoother and more
authentic representation of real-world colors and shading, en-
hancing the overall viewing experience.

Visual Perceptual Quality Assessment via HDRVDP3
metrics

Table 3 presents a comparative performance analysis of var-
ious methods on the HDRTV1K, HDRTV4K, and SRITM
datasets using the HDRVDP3 metric.

Our method achieves the highest HDRVDP3 scores on
the HDRTV1K (8.28), HDRTV4K (7.91) and SRITM(7.8)
datasets, indicating superior perceived quality of the HDRTV
content.
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Datasets BSD100 CBSD68-Noisy CBSD68-Original Set14 Set5

Metrics NHQE ↓ FHAD ↓ NHQE ↓ FHAD ↓ NHQE ↓ FHAD ↓ NHQE ↓ FHAD ↓ NHQE ↓ FHAD ↓
DEEPSRITM 3.73 147.06 3.72 144.58 3.67 148.92 3.68 176.66 3.80 193.45

FMNET 3.94 147.33 4.53 148.84 3.95 149.39 4.11 181.84 3.76 203.90
HDCFM 3.81 145.67 3.73 147.43 3.80 146.81 3.70 175.99 3.79 198.89

HDRTVDM 3.76 144.27 3.75 144.89 3.78 145.50 3.67 178.58 3.75 198.48
HDRTVNET 3.84 150.68 3.82 146.08 3.82 151.66 3.72 177.90 3.82 199.08
HyCondITM 3.74 141.63 3.68 142.72 3.73 144.49 3.66 174.74 3.85 198.41

Ours 3.61 141.43 3.61 142.40 3.60 144.08 3.57 174.41 3.71 192.61

Table 2: Quantitative results of Non-Reference metrics (FHAD and NHQE) on five real-world SDR datasets: BSD100, CBSD68-Noisy,
CBSD68-Original, Set14, and Set5.

HDRTV1K HDRTV4K SRITM

IRSDE 6.45 5.60 6.58
HDCFM 7.01 6.64 6.43

HDRTVDM 7.77 6.68 7.53
HDRTVNet 7.64 6.27 6.60

HyConDITM 8.22 7.58 7.71
Ours 8.28 7.91 7.80

Table 3: Results on HDRVDP3 metric(HDR Perceptual Quality).

Experimental Results on Real Datasets
To verify the generalization of our method in the real world,
we evaluate it on multiple real-world datasets, including
BSD100 [2001], CBSD68-Noisy [2001], CBSD68-Original
[2001], Set5 [2012], and Set14 [2012]. As shown in Table 2,
our RealHDRTVNet achieves the best FHAD score as well as
NHQE perceptual quality on real-world SDR datasets.

Esfm HCA STA PSNR↑ LPHPS ↓ FHAD ↓
✓ 34.92 0.1186 91.62
✓ ✓ 34.95 0.1183 91.58

✓ ✓ 35.01 0.1173 91.53
✓ ✓ ✓ 35.06 0.1166 91.03

Table 4: Ablation study results for feature modulation encoder
Esfm, HDR Color Alignment module HCA and the SDR Texture
Alignment module ST A.

4.4 Ablation Study
To assess the impact of the proposed components, we start
with a baseline and systematically integrate each component
one by one. In Table 4, we can observe that each compo-
nent has brought improvement, and the improvement in the
PSNR metric reached 0.14. Meanwhile, our visual ablation
results, presented in Fig. 4, demonstrate that the modules we
designed significantly enhance visual quality.

Importance of SDRTV Feature Modulation Encoder
Esfm

We first study the effectiveness of feature modulation en-
coders. As shown in the third line of Table 4, deleting the
modulation module in the encoder will cause the LPIPS and
PSNR metric to deteriorate.

Figure 4: Visual ablation. The HDR Color Alignment HCA module
and the SDR Texture Alignment ST A module are added.

Effectiveness of HDR Color Alignment HCA and SDR
Texture Alignment STA

We ablate the brightness prior extraction module HCA and
the SDR Texture Alignment module STA. As can be shown
in Table 4, after adding HCA and module STA in sequence,
the performance of our model improved.

5 Conclusion
In this work, we introduce a novel paradigm for SDRTV-
to-HDRTV conversion: HDRTV prior-guided high-quality
SDRTV-to-HDRTV transformation. In contrast to traditional
approaches that solely rely on SDRTV, our method achieves a
more realistic and superior quality in HDRTV reconstruction.
Additionally, we extend commonly used subjective quality
evaluation metrics in SDRTV, such as FHAD, NHQE, and
LPHPS, to assess the quality of HDRTV. Our proposed tech-
nique exhibits significant improvements in visual quality.
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