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Abstract
Inertial navigation enables self-contained localiza-
tion using only Inertial Measurement Units (IMUs),
making it widely applicable in various domains
such as navigation, augmented reality, and robotics.
However, existing methods suffer from drift accu-
mulation due to the sensor noise and difficulty cap-
turing long-range temporal dependencies, limiting
their robustness and accuracy. To address these
challenges, we propose DiffusionIMU, a novel
diffusion-based framework for inertial navigation.
DiffusionIMU enhances direct velocity regression
from IMU data through an iterative generative de-
noising process, progressively refining motion state
estimation. It integrates the noise-adaptive feature
modulation for sensor variability handling, the fea-
ture alignment mechanism for representation con-
sistency, and the diffusion-based temporal model-
ing to decrease accumulated drift. Experiments
show that DiffusionIMU consistently outperforms
existing methods, demonstrating superior general-
ization to unseen users while alleviating the impact
of the sensor noise.

1 Introduction
Over the last decade, inertial navigation has emerged as a
promising approach for achieving ubiquitous localization us-
ing only Inertial Measurement Units (IMUs). This technol-
ogy has enabled diverse applications, including indoor po-
sitioning [Teng et al., 2019], augmented reality [Hu et al.,
2023], and robotics [Campos et al., 2021]. By integrating
data from accelerometers and gyroscopes, inertial navigation
offers a cost-effective, energy-efficient, and universally ac-
cessible solution easily embedded in modern mobile devices.
Gyroscopes capture rotational motion, while accelerometers

∗Corresponding author.

Figure 1: Main approaches in inertial navigation: (a) SINS; (b)
PDR; (c) data-driven approaches; (d) proposed DiffusionIMU.

measure linear acceleration after compensating for gravita-
tional effects. These measurements are sequentially pro-
cessed to estimate velocities, which are subsequently inte-
grated to determine positions.

Currently, inertial navigation approaches can be generally
classified into three categories as depicted in Figure 1: (a) the
Strapdown Inertial Navigation System (SINS), (b) the Pedes-
trian Dead Reckoning (PDR), and (c) the data-driven iner-
tial navigation. SINS computes velocity and position through
direct integration of IMU data [Chang et al., 2016]. Al-
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though computationally straightforward, this method suffers
from exponential drift caused by error propagation through
the double integration process. Such drift makes the SINS im-
practical for prolonged navigation tasks, as slight sensor noise
leads to significant positional inaccuracies over time [Teng et
al., 2020]. PDR leverages domain-specific knowledge of hu-
man walking dynamics [Wang et al., 2012; Teng et al., 2017;
Wang et al., 2024]. By integrating features like step counts,
stride lengths, and heading direction, the PDR significantly
mitigates integration errors compared to the SINS. How-
ever, it is still vulnerable to stride length and heading esti-
mation inaccuracies, especially under irregular motion pat-
terns or diverse walking environments [Teng et al., 2020;
Yan et al., 2018]. These limitations restrict the applicabil-
ity of the PDR in complex scenarios [Chen et al., 2018;
Rao et al., 2022].

The data-driven approaches leverage deep learning to de-
rive accurate motion estimates directly from raw IMU data
[Herath et al., 2020]. Models such as IONet [Chen et al.,
2018], RIDI [Yan et al., 2018], RoNIN [Herath et al., 2020],
and CTIN [Rao et al., 2022] have showcased their capac-
ity to predict velocities and localize trajectories effectively
by learning motion dynamics from extensive datasets. These
approaches are less reliant on manual feature extraction and
can adapt to diverse patterns of motion [Herath et al., 2020;
Teng et al., 2020]. Most of these models are built upon archi-
tectures such as ResNet, LSTM [Herath et al., 2020], and
Transformer [Rao et al., 2022], which provide robust fea-
ture extraction and temporal modeling capabilities. How-
ever, these architectures face notable limitations. ResNet-
based models struggle to capture long-range temporal depen-
dencies, which are crucial for inertial navigation [Rao et al.,
2022]. LSTM-based models, while practical for sequential
data, suffer from vanishing gradients and may fail to main-
tain long-term dependencies in extended sequences [Rao et
al., 2022]. Transformer-based methods, though powerful, can
be sensitive to noisy IMU signals due to their global attention
mechanisms [Rao et al., 2022]. Additionally, existing models
fail to exploit the spatial-temporal correlations in IMU data
fully.

In response to the above observations and concerns, we
propose DiffusionIMU, a novel diffusion-based framework
for inertial navigation with iterative motion refinement. Dif-
fusionIMU leverages a generative diffusion process to iter-
atively refine motion state estimation, addressing key chal-
lenges such as sensor noise, drift accumulation, and tem-
poral dependency modeling. As shown in Figure 1(d),
progressively refines motion representations over multiple
steps, effectively correcting accumulated errors and model-
ing long-range temporal dependencies. To improve robust-
ness and generalization, our design incorporates mechanisms
that adaptively modulate feature representations and align se-
mantic structures throughout the refinement process.

Experiments demonstrate that our DiffusionIMU outper-
forms the state-of-the-art models. In summary, our main con-
tributions are as follows:

• We introduce DiffusionIMU, a novel diffusion-based
framework for inertial navigation that refines motion
state estimation through an iterative generative process,

improving robustness against the sensor noise and drifts.
To the best of our knowledge, DiffusionIMU is the first
diffusion-based model for inertial navigation.

• A noise-adaptive feature modulation and a feature align-
ment mechanism are proposed to adjust feature repre-
sentations dynamically, enhancing the model’s ability to
handle diverse sensor characteristics and environmental
variations.

• A diffusion-based temporal modeling module is pre-
sented, which enables effective sequential refinement
of velocity predictions, leading to significant improve-
ments in trajectory accuracy. A multi-task loss is pro-
posed to improve stability and uncertainty estimation.

• Comprehensive qualitative and quantitative comparisons
with the existing baselines indicate that DiffusionIMU
outperforms the state-of-the-art models.

2 Related Work
This section provides an overview of the key approaches in
inertial navigation.

2.1 Strapdown Inertial Navigation System (SINS)
The SINS estimates position and orientation by integrating
acceleration and angular velocity measurements. While high-
precision IMUs minimize integration errors, consumer-grade
IMUs suffer from significant drift due to noise and accumu-
lation errors [Geiger et al., 2012]. SINS has been combined
with visual-inertial odometry to mitigate drift, leveraging vi-
sual data for correction [Campos et al., 2021]. Zero-velocity
updates further reduce errors by detecting stationary states
and applying periodic corrections [Skog et al., 2010]. How-
ever, low-cost IMUs remain prone to noise and environmen-
tal disturbances, posing challenges for accurate localization
[Chen et al., 2018].

2.2 Pedestrian Dead Reckoning (PDR)
The PDR estimates positions through step detection, stride
length estimation, and orientation tracking [Wang et al.,
2012; Teng et al., 2017; Laidig and Seel, 2023]. Step events
are identified via accelerometer or gyroscope data using the
peak or zero-crossing detection [Brajdic and Harle, 2013;
de Silva et al., 2018]. Distance is computed by multiply-
ing step count by stride length, which is often modeled us-
ing walking frequency and acceleration variance [Weinberg,
2002]. Orientation estimation relies on gyroscope data to
track directional changes [Madgwick et al., 2011; Laidig and
Seel, 2023]. PDR faces challenges such as cumulative errors,
especially in orientation estimation, leading to drift and re-
duced accuracy [Chen et al., 2021]. ZUPTs help mitigate drift
by applying stationary state constraints [Skog et al., 2010;
Laidig and Seel, 2023]. Multi-modal sensor fusion further
enhances PDR; for example, Walkie-Markie uses Wi-Fi sig-
nals for recalibration [Shen et al., 2013], while Sextant in-
tegrates visual references for localization [Gao et al., 2014].
However, reliance on heuristic models and sensitivity to cu-
mulative errors remain limitations for real-world deployment.
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2.3 Data-driven Inertial Navigation
Recent deep learning advancements enable motion estima-
tion directly from raw IMU data [Yan et al., 2018; Chen et
al., 2018; Rao et al., 2022]. Neural networks capture tem-
poral dependencies for improved adaptability. RIDI [Yan et
al., 2018] predicts trajectories via velocity regression, while
IONet [Chen et al., 2018] uses RNNs for inertial odometry.
RoNIN [Herath et al., 2020] enhances heading and position
estimation with convolutional and recurrent layers, and CTIN
[Rao et al., 2022] employs Transformers for velocity regres-
sion. Hybrid models like TLIO [Liu et al., 2020] and IDOL
[Sun et al., 2021] integrate EKFs for state estimation. How-
ever, these methods face some challenges. Velocity integra-
tion errors cause drift [Rao et al., 2022], model robustness
is sensitive to sensor variations, and many frameworks under-
utilize IMU’s spatial-temporal correlations. These limitations
drive research toward architectures addressing drift, sensor
variability, and feature learning.

In this paper, we introduce DiffusionIMU, which lever-
ages diffusion models [Yang et al., 2024] to enhance IMU-
based localization. By integrating diffusion-based probabilis-
tic modeling, DiffusionIMU improves robustness against sen-
sor noise, mitigates trajectory drift, and better captures com-
plex motion dynamics.

3 Preliminaries
IMU Modeling. Inertial navigation systems rely on New-
tonian mechanics to determine an object’s position and ori-
entation using initial pose information and IMU data [Chen
et al., 2018]. An IMU consists of a three-axis accelerometer
and a three-axis gyroscope, which respectively measure ac-
celeration (α̂) and angular velocity (ω̂). However, these mea-
surements are affected by sensor biases and noise, leading to
inaccuracies. Mathematically, the outputs of the accelerome-
ter and gyroscope can be expressed as follows.

α̂t = αt + bαt + nα
t , (1)

ω̂t = ωt + bωt + nω
t , (2)

where αt and ωt represent the true acceleration and angular
velocity at timestamp t, as measured by the accelerometer
and gyroscope, respectively. The terms bαt and bωt denote the
inherent biases in the accelerometer and gyroscope readings
at timestamp t. Additionally, nα

t and nω
t correspond to mea-

surement noise, which typically follows a zero-mean Gaus-
sian distribution [Yan et al., 2018].

Inertial Navigation. In inertial navigation, the input con-
sists of IMU readings, while the output includes position (P ),
velocity (V ), and orientation (represented by the rotation ma-
trix R) within a reference frame (n), as defined below [Rao et
al., 2022].

Rn
b (t) = Rn

b (t− 1) · exp(dt
2
ω̂(t− 1)), (3)

V n(t) = V n(t− 1) + (Rn
b (t− 1)⊙ α̂(t− 1)− gn)dt, (4)

Pn(t) = Pn(t− 1) + V n(t− 1)dt, (5)

where, Rn
b (t) denotes the rotation matrix transforming coor-

dinates from the body (b) frame to the navigation (n) frame
at timestamp t. It is updated using the angular velocity
ω̂(t − 1) in the body frame, along with the previous rota-
tion matrix Rn

b (t − 1). The navigation frame is typically de-
fined such that its Z-axis aligns with Earth’s gravity, while
the other two axes correspond to the initial orientation of the
body frame. Velocity V n(t) is updated based on its temporal
change ∆(t), which is computed by rotating the acceleration
reading α̂(t − 1) into the navigation frame using Rn

b (t − 1)
and subtracting the gravitational force gn. Finally, position
Pn(t) is obtained by integrating velocity V n(t).

Diffusion Model. Diffusion models are generative models
that learn data distributions by gradually perturbing and de-
noising samples [Yang et al., 2024]. They operate through a
forward process, which adds noise to the data, and a reverse
process, which learns to reconstruct the original distribution
[Ho et al., 2020]. Given a data sample x0 ∼ q(x), the forward
process is defined as a Markovian sequence:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (6)

where βt is a predefined noise schedule. The noised sample
at step t can be directly obtained as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (7)

where ᾱt =
∏t

s=1(1 − βs) and ϵ ∼ N (0, I). The reverse
process seeks to approximate the true denoising distribution
q(xt−1|xt) by learning a parameterized model pθ(xt−1|xt):

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (8)

To train the model, a noise prediction network estimates ϵ
in a variational framework, minimizing the objective [Yang et
al., 2024]:

L = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥2

]
. (9)

4 Methodology
4.1 Problem Definition
The insights of data-driven inertial navigation provide a
paradigm shift from purely integrative methods to model-
ing inertial navigation as a sequence-to-sequence prediction
problem as follows [Rao et al., 2022].

V n
t = f([Rn

b , α̂, ω̂]
t−m:t), (10)

where f(·) denotes a latent neural function that maps a se-
quence of inertial measurements to velocities in the naviga-
tion frame. The input consists of a sliding window of rotation
matrices Rn

b , accelerometer readings α̂, and gyroscope read-
ings ω̂ from time t − m to t. The position trajectory is then
obtained by numerically integrating the predicted velocities
over time, as defined in Eq. (5).
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Figure 2: Main architecture of DiffusionIMU framework. The system consists of five key components: (1) Encoder, which utilizes a
ResNet-18 backbone to extract spatial features from IMU sequences; (2) Noise-Adaptive Feature Modulation, where a learnable noise kernel
adjusts the contribution of injected noise z through a weighting mechanism α; (3) Feature Alignment Mechanism, ensuring consistency
between encoder outputs and the diffusion pipeline; (4) Diffusion-Based Temporal Modeling, where a diffusion encoder applies temporal
embeddings followed by a diffusion decoder that iteratively refines motion representations; and (5) Multi-Task Loss, which predicts velocity
and uncertainty through MLP layers and a Softplus activation function.

4.2 Overview
The primary challenge in inertial navigation lies in mitigating
the sensor noise and effectively modeling temporal dependen-
cies. Existing methods primarily rely on ResNet [Herath et
al., 2020], LSTM [Herath et al., 2020], or Transformer archi-
tectures [Rao et al., 2022] in isolation, limiting their ability
to address these challenges comprehensively. To address this,
we propose DiffusionIMU, a novel diffusion-based frame-
work designed for robust inertial navigation, as illustrated
in Figure 2. It consists of five interconnected modules: (1)
Encoder: a ResNet-based feature extractor to capture spatial
representations from IMU signals [He et al., 2015], (2) Noise-
Adaptive Feature Modulation: a learnable Noise Kernel to
adaptively model sensor noise variations, (3) Feature Align-
ment Mechanism: a lightweight feature alignment mecha-
nism that ensures consistency between the encoder and the
diffusion pipeline, (4) Diffusion-Based Temporal Model-
ing: a diffusion-based encoder-decoder to refine motion state
estimation through iterative denoising, and (5) Multi-Task
Loss: a multi-task output module for simultaneous velocity
prediction and uncertainty estimation.

The overall process is formulated as follows:
y,u, Lalign = DiffDe(DiffEn(NK(En(x), z), t)), (11)

where x is the input IMU data, z represents injected noise,
and t denotes temporal embeddings, which encode timestep
information to guide the diffusion process across different de-
noising steps. y and u are velocity and uncertainty predic-
tions, and Lalign is the alignment loss. DiffDe and DiffEn are
the diffusion-based decoder and encoder, respectively. NK is
the Noise Kernel, and EN is the Encoder.

4.3 Encoder
The encoder module extracts spatial features from IMU data
while preserving motion dependencies. It processes an input
sequence x1:m into latent representations h = (h1, . . . , hm).
The modified ResNet-18 bottleneck block [He et al., 2015]
is used by replacing spatial convolutions with local self-
attention and adding a global self-attention module before the
final 1 × 1 downsampling convolution. The modified bot-
tleneck layer is repeated multiple times to form the encoder,
with the output of one block being the input of the next.

4.4 Noise-Adaptive Feature Modulation
IMU data is inherently noisy due to environmental distur-
bances, sensor drift, and device variations. To address this,
we introduce a learnable noise kernel that dynamically ad-
justs the contribution of injected noise in feature processing.
The noise integration is defined as:

fNK = αh+ (1− α)z, (12)
where h and fNK are the extracted and noise-modulated fea-
tures, respectively. α is a learnable parameter initialized. The
injected noise z follows a Gaussian distribution to introduce
controlled randomness, improving model robustness against
sensor variability, i.e., z ∼ N (0, 1).

4.5 Feature Alignment Mechanism
Introducing noise in the diffusion process can distort the spa-
tial representations extracted by the encoder, as the added
noise perturbs feature distributions, altering the learned mo-
tion dynamics and degrading the quality of velocity estima-
tion. This perturbation can lead to inconsistencies between
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the encoded feature space and the denoising steps, making it
difficult for the diffusion model to reconstruct accurate mo-
tion trajectories. To mitigate this issue and preserve spatial
information extracted by the modified ResNet-18, we employ
a lightweight feature alignment mechanism that ensures con-
sistency between the encoder and the diffusion pipeline. This
alignment is enforced via an ℓ2 loss:

Lalign = ∥Wh− fNK∥22, (13)

where W is a learnable transformation matrix. This con-
straint ensures that the diffusion module operates on a well-
aligned latent space, improving reconstruction and velocity
estimation accuracy.

4.6 Diffusion-Based Temporal Modeling
Diffusion Encoder. Our model employs a diffusion process
to refine motion representations through an iterative motion
refinement. Given an initial feature representation fNK , the
diffusion encoder applies temporal embeddings and a trans-
formation function ϕ:

flatent = ϕ(WefNK + t), (14)

where We is a trainable encoding matrix, t represents learned
temporal embeddings, and ϕ is a non-linear activation func-
tion. To generate the temporal embedding t, we first sample
a discrete timestep t from a uniform distribution:

t ∼ Uniform(0, T − 1), (15)

where T = 100 represents the total number of discrete diffu-
sion steps. The embedding t is then obtained via a trainable
embedding layer:

t = E(t), (16)
where E ∈ RT×D is the trainable temporal embedding ma-
trix, and D is the hidden dimension. This embedding mech-
anism allows the model to condition its predictions on differ-
ent noise levels, enabling more effective motion refinement.
For example, when t = 40, the model uses the 40-th row
of E, i.e., E[40], as the temporal context vector. This vector
encodes the current denoising stage and modulates the trans-
formation accordingly.
Diffusion Decoder. The diffusion decoder iteratively re-
fines the latent feature representation flatent to improve veloc-
ity estimation and mitigate drift accumulation. Instead of a
single-step transformation, it applies a multi-step refinement
process, where each step progressively updates the feature
representation.

At each step i, the decoder applies a linear transformation
followed by a non-linear activation function:

f
(i)
decoded = ϕ(Wd,if

(i−1)
decoded + bi), (17)

where Wd,i is the transformation weight matrix, bi is the
bias term, and ϕ(·) is the activation function (e.g., ReLU).
The initial representation is set as follows:

f
(0)
decoded = flatent. (18)

After K steps, the final refined feature representation is
obtained as:

fdecoded = f
(K)
decoded. (19)

This module ensures that the motion representation is iter-
atively refined before being passed to the final velocity esti-
mation module, improving the stability and accuracy of the
predictions.

4.7 Multi-Task Loss
The final output module predicts velocity and uncertainty, im-
proving robustness in real-world deployments. The predic-
tions are formulated as follows:

y = Wyfdecoded, u = Softplus(Wufdecoded), (20)

where y is the predicted velocity, u is the estimated uncer-
tainty, and Wy and Wu are trainable weight matrices.

The velocity loss is formulated as a Mean Squared Error
(MSE) between the predicted velocity ŷ and the ground-truth
velocity y:

Lvelocity =
1

N

N∑
i=1

|ŷi − yi|2. (21)

The overall loss is defined as:

Ltotal = Lvelocity + Luncertainty + Lalign, (22)

where Luncertainty = 1
N

∑N
i=1

1
2 ||ui||2, and Lalign enforces fea-

ture consistency, as defined in Eq. (13).

5 Experimental Evaluation
In this section, we conducted evaluations for DiffusionIMU
both qualitatively and quantitatively.

5.1 Experimental Setting
Dataset. The proposed DiffusionIMU was evaluated on the
RoNIN dataset [Herath et al., 2020]. This dataset contains
IMU readings collected from 100 users performing natural
motion, including walking and running. The IMU data was
recorded at 200Hz using three smartphone models: Asus Zen-
fone AR, Samsung Galaxy S9, and Google Pixel 2 XL. The
dataset includes 276 sequences, with ground-truth trajectories
obtained from a 3D tracking system. It is one of the largest
datasets for deep inertial navigation and is divided into seen
and unseen test sets based on user presence in training1.
Metrics. Two commonly used metrics were adopted: the
Absolute Trajectory Error (ATE) and the Relative Trajectory
Error (RTE) [Herath et al., 2020]:

• The ATE quantifies the overall discrepancy between the
estimated and ground-truth trajectories. It is calculated
as the Root Mean Squared Error (RMSE) over the entire
trajectory.

• The RTE measures the RMSE within a fixed time inter-
val, set to 1 minute in this paper. For sequences shorter
than 1 minute, the positional error at the final frame is
computed and scaled proportionally.

1https://ronin.cs.sfu.ca/README.txt
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Test
Subject Metric PDR RIDI RoNIN-

LSTM
RoNIN-

TCN
RoNIN-
ResNet CTIN* DiffusionIMU

(ours)
Perf. Improvement

over CTIN

Seen ATE 28.10 16.90 4.83 5.78 3.86 4.62 3.64 21.21%
RTE 20.60 17.80 2.81 3.68 2.75 2.81 2.72 3.20%

Unseen ATE 26.17 15.88 7.46 6.73 5.76 5.61 5.27 6.06%
RTE 20.70 18.13 4.46 4.33 4.45 4.48 4.31 3.79%

* CTIN results are cited from [Rao et al., 2022] for fair comparison.

Table 1: Performance comparison across different methods on the RoNIN dataset. The best results in each row are bolded.

Baselines. We compared our method with four baselines:

• PDR: The approach serves as a classical baseline in in-
ertial navigation. It comprises three primary compo-
nents: step counting [Teng et al., 2020], stride estima-
tion [Weinberg, 2002], and orientation tracking [Madg-
wick et al., 2011].

• RIDI: The approach uses a data-driven approach to es-
timate velocity vectors from linear accelerations and an-
gular velocities [Yan et al., 2018]. The model applies a
correction for low-frequency biases in acceleration sig-
nals before performing double integration to compute
positions [Yan et al., 2018].

• RoNIN: RoNIN employs a neural network-based ap-
proach to enhance position and heading estimation
[Herath et al., 2020]. Three variants of RoNIN
were considered: RoNIN-LSTM, RoNIN-ResNet, and
RoNIN-TCN, each leveraging distinct neural architec-
tures to capture temporal and spatial features from IMU
data.

• CTIN: CTIN introduces a Transformer-based architec-
ture for velocity prediction, leveraging its ability to cap-
ture long-range dependencies within sequential IMU
data [Rao et al., 2022]. This method demonstrates the
potential of attention mechanisms to enhance motion es-
timation accuracy.

The proposed DiffusionIMU model was implemented in
PyTorch 1.7.1 [Paszke et al., 2019] and optimized using the
Adam optimizer [Kingma and Ba, 2015]. The training pro-
cess employed a batch size of 128 and an initial learning
rate of 0.0003. A dropout rate of 0.2 was applied to miti-
gate overfitting. The maximum diffusion steps were set to 3,
and the hidden dimensionality of the model was configured to
128. The model was trained on a single NVIDIA A100 GPU,
leveraging its high computational efficiency for forward and
backward passes. The total training time for the model was
approximately 10 hours, with convergence typically achieved
within this duration.

5.2 Overall Performance
It can be seen from Table 1 that DiffusionIMU consistently
outperforms existing state-of-the-art models across all eval-
uated scenarios on the RoNIN dataset. Specifically, Diffu-
sionIMU achieves the lowest ATE and RTE in both seen and
unseen test sets. Compared to the baseline CTIN, Diffusion-
IMU demonstrates an overall performance improvement of

(a): Seen Test Set (b): Unseen Test Set

Figure 3: The impact of diffusion denoising steps on inertial naviga-
tion accuracy in the RoNIN dataset. (a) Results on the seen test set.
(b) Results on the unseen test set.

21.21% in the seen test set and 6.06% in the unseen test set for
ATE, indicating its superior generalization capability. These
results validate the effectiveness of the proposed diffusion-
based iterative motion refinement framework. The iterative
denoising process progressively corrects accumulated errors
and significantly reduces trajectory drift, especially in chal-
lenging unseen test sets. Furthermore, the introduced noise-
adaptive feature modulation and feature alignment mecha-
nism enhance the robustness and adaptability of the model
under varying sensor noise and motion patterns. This leads to
more reliable motion estimation than previous models, which
often suffer from degraded performance in unseen conditions
due to limited generalization ability.
Step Number Selection in the Diffusion Decoder. Figure
3 presents the impact of diffusion denoising steps on iner-
tial navigation accuracy using the RoNIN dataset, considering
both seen and unseen test sets. The x-axis represents the num-
ber of diffusion steps (K), while the y-axis denotes the ATE
and RTE metrics. The results indicate that a 3-step denoising
process (K = 3) in the diffusion decoder achieves the lowest
ATE and RTE values across both test conditions. Using fewer
than 3 steps results in inadequate noise suppression, whereas
increasing the step beyond this threshold leads to numerical
artifacts and over-smoothing, diminishing the model’s ability
to retain fine-grained motion details. This consistency across
seen and unseen sets demonstrates the model’s ability to gen-
eralize denoising behavior to novel motion patterns.
Hidden Dimension Selection. Figure 4 presents the impact
of the hidden dimension D on inertial navigation accuracy
using the RoNIN dataset, considering both seen and unseen
test sets. The x-axis represents the hidden dimension values
(D = 32, 64, 128, 256), while the y-axis denotes the ATE

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Noise-Adaptive
Feature Modulation

Feature Alignment
Mechanism

Diffusion-Based
Temporal Modeling

Multi-Task
Loss

Seen Unseen

ATE RTE ATE RTE
✗ ✗ ✗ ✗ 3.86 2.75 5.76 4.45
✗ ✓ ✓ ✓ 3.90 2.75 5.29 4.40
✓ ✗ ✓ ✓ 4.75 2.93 5.94 4.54
✓ ✓ ✓ ✗ 3.75 2.75 5.55 4.50
✓ ✓ ✓ ✓ 3.64 2.72 5.27 4.31

Table 2: Ablation on each component in the DiffusionIMU. The evaluation is on the RoNIN dataset.

(a): Seen Test Set (b): Unseen Test Set

Figure 4: The impact of hidden dimension on inertial navigation
accuracy in the RoNIN dataset. (a) Results on the seen test set. (b)
Results on the unseen test set.

and RTE metrics. The results indicate that D = 128 achieves
the lowest ATE and RTE values across both test conditions.
Smaller hidden dimensions limit the model’s capacity to cap-
ture complex motion dynamics, resulting in suboptimal per-
formance. Conversely, increasing D beyond 128 provides no
further gains while increasing computational overhead. This
suggests that D = 128 offers the best trade-off between fea-
ture expressiveness for inertial navigation.

5.3 Ablation Study
Table 2 presents the results of an ablation study on the RoNIN
dataset, which is the largest and most diverse dataset used in
our experiments. The baseline model corresponds to RoNIN-
ResNet, which is the case where all four modules are dis-
abled. The complete DiffusionIMU model, which integrates
all four components, achieves the lowest ATE and RTE across
all settings, demonstrating the complementary benefits of
each module. Among the individual components, the noise-
adaptive feature modulation and the diffusion-based temporal
modeling have the most substantial impact on ATE. In con-
trast, the feature alignment mechanism and the multi-task loss
contribute to reducing trajectory drift. The most significant
performance gains are observed in unseen cases, highlighting
the role of these modules in improving generalization.

Noise-Adaptive Feature Modulation. As shown in Table
2, the results indicate that enabling this module increases the
ATE from 3.86 to 3.90 in the seen test cases and from 5.27
to 5.29 in the unseen cases. The RTE also shows a minor
increase. These results indicate that noise-adaptive feature
modulation is crucial in refining motion representations by
dynamically adjusting feature embeddings to account for sen-
sor noise.

Feature Alignment Mechanism. As observed in Table 2,
disabling this module increases ATE from 3.64 to 4.75 in
seen cases and from 5.27 to 5.94 in unseen cases, with a
slight increase in RTE from 2.72 to 2.93 (seen) and from 4.31
to 4.54 (unseen). The results demonstrate that the feature
alignment mechanism helps maintain consistency between
extracted features and the diffusion pipeline. It aligns the
high-level representations with the expected noise-aware la-
tent space, ensuring that the denoising steps remain semanti-
cally meaningful across stages. This consistency proves es-
pecially important when generalizing to motion patterns not
seen during training.

Diffusion-Based Temporal Modeling. As shown in Table
2, removing this component leads to an increase in ATE from
3.64 to 3.86 in seen cases and from 5.27 to 5.76 in unseen
cases. RTE also increases from 2.72 to 2.75 (seen) and from
4.31 to 4.45 (unseen). These findings highlight the signifi-
cance of diffusion-based temporal modeling in reducing tra-
jectory drift and improving temporal consistency. The multi-
step structure helps preserve local motion smoothness while
maintaining long-term accuracy.

Multi-Task Loss. As reported in Table 2, removing this
module increases ATE from 3.64 to 3.75 in seen cases and
from 5.27 to 5.55 in unseen cases. RTE also rises from 2.72
to 2.75 (seen) and from 4.31 to 4.50 (unseen). The results
indicate that the multi-task loss helps stabilize trajectory esti-
mation by jointly optimizing velocity and uncertainty.

6 Conclusion
In this paper, we propose DiffusionIMU, a novel diffusion-
based framework for inertial navigation that iteratively refines
motion state estimation through a generative denoising pro-
cess. To achieve this, the noise-adaptive feature modulation
dynamically adjusts feature representations to handle sensor
variability, the feature alignment mechanism ensures consis-
tency between learned representations and the diffusion pro-
cess, and the diffusion-based temporal modeling refines ve-
locity predictions over multiple iterations to improve long-
term accuracy. Additionally, the multi-task loss optimizes
trajectory estimation and uncertainty quantification, enhanc-
ing overall robustness. Extensive experiments demonstrate
that DiffusionIMU significantly outperforms state-of-the-art
models. Our results highlight the effectiveness of diffusion-
based modeling for inertial navigation, and we hope that this
work will inspire future research in inertial navigation.
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