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Abstract
Text-to-music (TTM) generation, which converts
textual descriptions into audio, opens up innova-
tive avenues for multimedia creation. Achiev-
ing high quality and diversity in this process de-
mands extensive, high-quality data, which are of-
ten scarce in available datasets. Most open-source
datasets frequently suffer from issues like low-
quality waveforms and low text-audio consistency,
hindering the advancement of music generation
models. To address these challenges, we propose
a novel quality-aware training paradigm for gen-
erating high-quality, high-musicality music from
large-scale, quality-imbalanced datasets. Addition-
ally, by leveraging unique properties in the la-
tent space of musical signals, we adapt and im-
plement a masked diffusion transformer (MDT)
model for the TTM task, showcasing its capacity
for quality control and enhanced musicality. Fur-
thermore, we introduce a three-stage caption re-
finement approach to address low-quality captions’
issue. Experiments show state-of-the-art (SOTA)
performance on benchmark datasets including Mu-
sicCaps and the Song-Describer Dataset with both
objective and subjective metrics. Demo audio sam-
ples are available at https://qa-mdt.github.io/, code
and pretrained checkpoints are open-sourced at
https://github.com/ivcylc/OpenMusic/.

1 Introduction
Text-to-music (TTM) generation aims to transform textual
descriptions of emotions, style, instruments, rhythm, and
other aspects into corresponding music segments, providing
new expressive forms and innovative tools for multimedia
creation. According to scaling law principles [Peebles and
Xie, 2023; Li et al., 2024a], effective generative models re-
quire a large volume of training data. However, unlike image
generation tasks [Chen et al., 2024a; Rombach et al., 2021],
acquiring high-quality music data often presents greater chal-
lenges, primarily due to copyright issues and the need for
professional hardware to capture high-quality music. These
factors make building a high-performance TTM model par-
ticularly difficult.

Figure 1: (a) The distribution curves of CLAP similarity and
pseudo-MOS for large-scale open-source music databases Au-
dioSet [Defferrard et al., 2016] and FMA [Defferrard et al., 2016],
where darker areas represent higher text-audio consistency or audio
quality. (b) Frechet Audio Distance (FAD) [Kilgour et al., 2018]
scores on the MusicCaps test set obtained from models trained for
50K steps on AudioSet and FMA, using filter ratios of 0%, 33%,
66%, and 100% of low-quality data. Here, low-quality data is de-
termined by a Pseudo-MOS score [Ragano et al., 2023] of less than
4.0. It can be inferred that performance consistently worsens with
larger filter ratios.

In the TTM field, high-quality music signals is scarce. This
prevalent issue of low-quality data, highlighted in Figure 1
(a), manifests in two primary challenges. Firstly, most avail-
able music signals often suffer from distortion due to noise,
low recording quality, or outdated recordings, resulting in
diminished generated quality, as measured by pseudo-MOS
scores from quality assessment models [Ragano et al., 2023].
Secondly, there is a weak correlation between music signals
and captions, characterized by missing, weak, or incorrect
captions, leading to low text-audio similarity, which can be
indicated by CLAP scores [Wu et al., 2023]. These chal-
lenges, especially the inherent quality in the music signal
itself, significantly hinder the training of high-performance
music generation models, resulting in poor rhythm, noise, and
inconsistencies with textual control conditions in the gener-
ated audio. Additionally, as shown in Figure 1 (b), directly fil-
tering low-quality music, which robustly reduces the dataset
size, leads to a consistent decline in model performance.
Therefore, finding an effective training strategy for large-
scale datasets with low-quality waveforms, mismatches, and
missing labels has become an urgent challenge.

In this paper, we introduce a novel quality-aware masked
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diffusion transformer (QA-MDT) to enhance music gener-
ation, aiming to tackle the aforementioned problems while
making further improvements through architectural studies.
We made efforts on effectively leveraging extensive open-
source music databases, which often contain data of varying
quality and style, to produce high-quality, diverse and high
text-audio consistency music. For music quality enhance-
ment, we innovatively inject music quality into the denois-
ing stage with multiple granularities to foster quality aware-
ness during training, while high-quality music can be ob-
tained by setting a quality threshold during inference. Re-
garding the modeling architecture, in preliminary experi-
ments, we found that the Diffusion Transformer (DiT) frame-
work, which has been successful in the image domain [Pee-
bles and Xie, 2023], is not directly effective for modeling mu-
sic spectrograms. However, injecting a masking strategy sig-
nificantly enhances the spatial correlation of the music spec-
trum and further accelerates convergence. Additionally, we
utilize large language models (LLMs) and the CLAP model
to synchronize music signals with captions, thereby enhanc-
ing text-audio correlation in extensive music datasets. Our
ablation studies on public datasets confirm the effectiveness
of our methodology, with the final model surpassing previous
works in both objective and subjective measures. In sum-
mary, we focus on developing better training strategies and
network architectures to enhance the quality and aesthetic of
music generation. At the same time, we address the long-
standing issue of text-audio consistency in the field of TTM,
which can be listed as:

• We propose a quality-aware training paradigm that en-
ables the model to perceive the quality of the dataset
during training, thereby achieving superior music gen-
eration in terms of both musicality and audio quality.

• We innovatively introduced the Masked Diffusion
Transformer to music signals, demonstrating its unique
efficacy in modeling music latent space and its capability
in perceiving quality control, thereby further improving
both the generated quality and musicality.

• We address the issue of low text-audio correlation in
large-scale music datasets for TTM, effectively improv-
ing text alignment and generative diversity.

2 Related Work
Text to music generation. Text-to-music generation aims
to create music clips that correspond to input descriptive or
summary text. Previous efforts have utilized either language
models (LMs) or diffusion models (DMs) to model quan-
tized waveform representations or spectral features. Models
like MusicLM [Agostinelli et al., 2023], MusicGen [Copet et
al., 2024], MeLoDy [Lam et al., 2024], and Jen-1 [Li et al.,
2024b] leverage LMs and DMs on residual codebooks ob-
tained via quantization-based codecs [Zeghidour et al., 2021;
Défossez et al., 2022]. Moûsai [Schneider et al., 2023],
Noise2Music [Huang et al., 2023a], Riffusion [Forsgren and
Martiros, 2022], AudioLDM 2 [Liu et al., 2023a], and Sta-
ble Audio [Evans et al., 2024a] use U-Net-related diffusion
to model mel-spectrograms or latent representations obtained

through compression networks. Although some approaches
attempt to guide the model towards generating high-quality
content by setting negative prompts like “low quality” [Liu
et al., 2023a; Chen et al., 2024b], few explicitly inject qual-
ity information during training. This results in the model’s
inability to effectively perceive and control content quality.

Transformer based diffusion models. Traditional diffu-
sion models typically use U-Net as the backbone, where
the inductive biases of CNNs do not effectively model the
spatial correlations of signals and are insensitive to scaling
laws [Li et al., 2024a]. However, transformer-based diffu-
sion models (DiT) [Peebles and Xie, 2023] have effectively
addressed these issues. This advantage is particularly evi-
dent in fields such as video generation [Brooks et al., ], im-
age generation [Peebles and Xie, 2023; Chen et al., 2024a;
Bao et al., 2022], and speech generation [Liu et al., 2023c].
To expedite training and foster inter-domain learning of cor-
relations, the masking strategy has proven effective, yielding
SOTA class-conditioned performances on ImageNet [Gao et
al., 2023]. Additionally, a simpler architecture [Zheng et al.,
2023] incorporating reconstruction losses and unmasked fine-
tuning further enhances model training speed. However, these
models have not yet been verified for text-controlled music
generation on large-scale music datasets, and their adaptabil-
ity with additional control information remains an open ques-
tion. Make-an-audio 2 [Huang et al., 2023b] and, more re-
cently, Stable Audio 2 [Evans et al., 2024b], have explored
the DiT architecture for audio and sound generation. How-
ever, their approach models latent tokens by segmenting only
along the time dimension to control and extend generation du-
ration. In contrast, our focus is on finer segmentation within
the latent space across both time and frequency, aiming for
more precise modeling of music signals.

Quality enhancement in audio domain. Previous research
has made efforts to improve the quality of generated audio,
particularly in two key areas: waveform fidelity and the con-
sistency between input text and generated content. Wave-
form quality can be compromised by issues like aliasing from
low sampling rates and limited expressiveness due to mono-
phonic representations, while models like MusicGen [Copet
et al., 2024] and Stable Audio [Evans et al., 2024a; Evans et
al., 2024b], which directly model 32k and 44.1k stereo au-
dio, have significantly enhanced perceptual quality. Despite
higher sampling rates and channels, the quality of audio in
training datasets remains inconsistent, often suffering from
noise, dullness, and a lack of rhythm or structure. These prob-
lems, often reflected by the Mean Opinion Score (MOS), are
rarely addressed. In terms of text-audio consistency, Make-
an-audio 2 [Huang et al., 2023b] and WavCaps [Mei et al.,
2024] have employed ChatGPT-assisted data augmentation to
improve temporal relationships and accuracy in audio effect
generation. Although studies like Music-llama [Liu et al.,
2024] and LP-musiccaps [Doh et al., 2023] have introduced
captioning approaches for music, few have explored the aug-
mentation and utilization of synthetic data in large-scale mu-
sic generation tasks.
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3 Preliminary
Latent diffusion model. Direct application of DMs
to cope with distributions of raw signals incurs sig-
nificant computational overhead [Ho et al., 2020;
Song et al., 2020]. Conversely, studies [Liu et al., 2023b;
Liu et al., 2023a] apply them in a latent space with
fewer dimensions. The latent representation z0 is the
ultimate prediction target for DMs, which involve two
key processes: diffusion and reverse processes. In the
diffusion process, Gaussian noise is incrementally added
to the original representation at each time step t, de-
scribed by zt+1 =

√
1− βtzt +

√
βtϵ, where ϵ is drawn

from a standard normal distribution N (0, I), and βt is
gradually adapted based on a preset schedule to pro-
gressively introduce noise into the state zt. The cost
function [Ho et al., 2020; Liu et al., 2023b] is formalized as
argminθ E(z0,y),ϵ

[∥∥ϵ−Dθ

(√
αtz0 +

√
1− αtϵ, t, y

)∥∥2].
where Dθ, the denoising model, strives to estimate the
Gaussian noise ϵ, conditioned on the latent state zt, the time
step t, the conditional embedding y, and where αt represents
a predefined monotonically increasing function. In the
reverse process, we obtain zt−1 via the recursive equation:

zt−1 = 1√
1−βt

(
zt − βt√

1−αt
ϵθ

)
+

√
1−αt−1

1−αt
βtϵ, where ϵθ

represents the estimated Gaussian noise.

Classifier-free guidance. Classifier-free guidance (CFG),
introduced by [Ho et al., 2020], increases the versatility and
flexible control ability of DMs by both considering con-
ditional and unconditional generation. Typically, a diffu-
sion model generates content based on specific control sig-
nals y within its denoising function Dθ(zt, t, y). CFG en-
hances this mechanism by incorporating an unconditional
mode Dθ(zt, t, ∅), where ∅ symbolizes the absence of spe-
cific control signals. The CFG-enhanced denoising func-
tion is then expressed as DCFG

θ (zt, t, y) = Dθ(zt, t, y) +
w(Dθ(zt, t, y)−Dθ(zt, t, ∅)), where w ≥ 1 denotes the guid-
ance scale. During training, the model substitutes y with ∅ at
a constant probability puncond. In inference, ∅ might be re-
placed by a negative prompt like “low quality” to prevent the
model from producing such attributes [Liu et al., 2023a].

4 Method
4.1 Quality Information Injection
At the heart of our work lies the implementation of a pseudo-
MOS scoring model [Ragano et al., 2023] to meticulously
assign music quality to quality prefixes and quality tokens.

We define our training set as Do = {(Mi, T
o
i ) | i =

1, 2, . . . , ND}, where each Mi represents a music signal and
T o
i is the corresponding original textual description. To opti-

mize model learning from datasets with diverse audio quality
and minimize the impact of low-quality audio, we initially
assign p-MOS scores to each music track using a model fine-
tuned with wav2vec 2.0 [Baevski et al., 2020] on a dataset
of vinyl recordings for audio quality assessment, and achieve
the corresponding p-MOS set S = {s1, s2, . . . , sND

}. These
scores facilitate dual-perspective quality control for enhanced
granularity and precision.

First, We analyze this p-MOS set S to identify a negative
skew normal distribution with mean µ and variance σ2. We
define text prefixes based on s as follows: prepend “low qual-
ity” if s < µ − 2σ, “medium quality” if µ − σ ≤ m ≤
µ + σ, and “high quality” if s > µ + 2σ. This informa-
tion is prepended before processing through the text encoder
with cross-attention, enabling the initial separation of quality-
related information.

To achieve a more precise awareness and control of wave-
form quality, we synergize the role of text control with qual-
ity embedding. We observed that the distribution of p-MOS
in the dataset is approximately normal, which can be shown
in Figure 1, allowing us to use the Empirical Rule to segment
the data accordingly. Specifically, we define the quantization
function Q : [0, 5] → {1, 2, 3, 4, 5} to map the p-MOS scores
to discrete levels based on the distance from the mean µ in
terms of standard deviation σ:

Q(s) =

⌊
s− (µ− 2σ)

σ

⌋
+ r (1)

where r = 2 for s > µ, otherwise, r = 1. Subsequently,
Q(s) is mapped to a d-dimensional quality vector embedding
using the embedding function E, such that

qvq(s) = E(Q(s)) ∈ Rd, (2)

This process provides finer granularity of control within the
following model and facilitates the ability of interpolative
quality control during inference, enabling precise adjust-
ments in Rd. In later stages, the quality embedding is treated
as a token on par with every latent audio patch, participating
in the attention computations to enable interaction.

4.2 Quality-aware Masked Diffusion Transformer
In a general patchify phase with patch size pf × pl and
overlap size of × ol, patchified token sequence X =
{x1, x2, . . . , xP } ⊂ Rpf×pl are obtained through spliting the
music latent space Mspec ∈ RF×L, as described in Section
5.2. The total number of patches P is given by:

P =

⌈
L− pl
pl − ol

+ 1

⌉
×
⌈
F − pf
pf − of

+ 1

⌉
(3)

A 2D-Rope position embedding [Su et al., 2024] is added
to each patch for better modeling of relative position relation-
ship while a binary mask m ∈ {0, 1}P is applied during the
training stage, with a variable mask ratio γ. This results in a
subset of ⌊γP ⌋ patches being masked that

∑PN

i=1 mi = ⌊γP ⌋,
leaving P − ⌊γP ⌋ patches unmasked. The subset of masked
tokens is invisible in the encoder stage and replaced with
trainable mask tokens in the decoder stage following the
same strategy utilized in AudioMAE [Huang et al., 2022] and
MDT [Gao et al., 2023].

The transformer we use consists of N encoder blocks,
M decoder blocks, and an intermediate layer to replace the
masked part with trainable parameters. We treat the em-
bedding of the quantized p-MOS score as a prefix token,
concatenated with each stage’s music tokens. Let Xk =
[xk

1 , x
k
2 , . . . , x

k
P ] ∈ RP×d represent the output of k-th en-

coder or decoder block, where the initial input of the encoder
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Figure 2: Pipeline of proposed quality-aware masked diffusion transformer for music generation.

X0 = zt = αtz0+
√
1− αtϵ, and the final decoder block es-

timate XN+M = z0 = [x1, x2, . . . , xP ]. For k < N , indicat-
ing the encoder blocks, the sequence transformation focuses
only on unmasked tokens:

[qk+1
vq ;Xk+1] = Encoderk

([
qvq;X

k ⊙ (1−m)
])

, (4)

where m ∈ {0, 1}P is the mask vector, with 1 indicating
masked positions and 0 for visible tokens.

For N < k < N +M , indicating the decoder blocks, the
full sequence including both unmasked tokens and learnable
masked tokens is considered:

[qk+1
vq ;Xk+1] = Decoderk

([
qvq;X

k
])

, (5)
where the previously masked tokens are now subject to pre-
diction and refinement. In the decoding phase, the portions
that were masked are gradually predicted, and throughout this
entire phase, the quality token qvq(s) is progressively infused
and optimized. Subsequently, the split patches are unpatchi-
fied while the overlapped area is averaged to reconstruct the
output noise and every token contributes to calculating the
final loss:

L(θ) = E(z0,qvq ,y),ϵ

[∥∥ϵ−Dθ

(√
αtz0 +

√
1− αtϵ, t, qvq, y

)∥∥2
]

(6)
In the inference stage, the model can be guided to generate
high-quality music through modified CFG:

DHigh
θ (zt, t, q

high
vq , y) = Dθ(zt, t, q

high
vq , y)+

w
(
Dθ(zt, t, q

high
vq , y)−Dθ(zt, t, q

low
vq , ∅)

)
(7)

Here qhigh
vq and qlow

vq indicate quantified p-MOS for guiding the
model in a balance between generation quality and diversity.
After obtaining the sampled latent ẑ0 with DDIM sampler, we
can finally generate the music using the VAE decoder.

4.3 Music Caption Refinement
We divided the caption refinement stage into three steps
including text information enriching with music caption
model Fcap, caption adjustment with CLAP cosine similarity
function S and caption diversity extension with LLMs which
we denoted as Fllm.

Initially, pretrained music caption model [Doh et al., 2023]
is employed to re-annotate each music signal Mi to T g

i ,
shown as Dg = {(Mi, T

g
i ) | T g

i = Fcap(Mi), i =
1, 2, . . . , N}. CLAP text-audio similarity is applied to filter
Dg with a threshold of ρ1, resulting in

Dfilter
g = {(Mi, T

g
i ) | S(T

g
i ,Mi) > ρ1} (8)

In this context, we meticulously filter out generated captions
that do not correspond with their respective audio files. This
misalignment may be attributed to inaccuracies within the
captioner’s insufficient training. For the filtered data pairs,
we opt to retain the use of the original captions.

To ensure that valuable information from the original cap-
tions is not overlooked when using only the generated cap-
tions, we adapt a fusing stage to combine the original caption
and generated pseudo prompt. Firstly, we need to filter out
original captions that is useless or inaccurate, formulated as:

Dfilter
o = {(Mi, T

o
i ) | S(T o

i ,Mi) > ρ2}. (9)

The issue can stem from the original data being improperly
labeled with terms such as ’speech, car’ from datasets like
AudioSet [Gemmeke et al., 2017] and also may be because
of desperately missing of the original labels.

Finally, only the original caption that suffers low CLAP
text similarity score should be merged with the generated
ones, for redundant, repetitive parts result in long and verbose
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final captions. Thus, we set the threshold to ρ3 and merge
them by LLMs to Tfusion = Fllm(T

o, T g):

Dmerge =
{
(Mi, Tfusion) | S(T o, T g) < ρ3,

(Mi, T
o) ∈ Dfilter

o , (Mi, T
g) ∈ Dfilter

g

}
.

(10)

5 Experimental Setup
5.1 Datasets
For training, we used the following databases for our train-
ing: AudioSet Music Subset (ASM) [Gemmeke et al., 2017],
MagnaTagTune (MTT) [Law et al., 2009], Million Song
Dataset (MSD) [Bertin-Mahieux et al., 2011], Free Music
Archive (FMA) [Defferrard et al., 2016], and an additional
dataset1. Each track in these databases was clipped to 10-
second segments and sampled at 16kHz to ensure unifor-
mity across the dataset. The final training set was devel-
oped through a process of caption refinement, as detailed in
Section 4.3. Finally, we got our training set totaling 12.5k
hours of diverse music data. The specific composition of
these datasets is further elaborated in the Appendix. For
evaluation, we test our model on the widely used MusicCaps
benchmark [Agostinelli et al., 2023] and the Song-Describer-
Dataset [Manco et al., 2023]. MusicCaps consists of 5.5K
10.24-second clips sourced from YouTube, each accompa-
nied by high-quality music descriptions provided by ten mu-
sicians. The Song-Describer Dataset is made up of 706 li-
censed high quality music recordings.

5.2 Models and Hyperparameters
Audio compression. Each 10.24-second audio clip, sam-
pled at 16 kHz, is initially transformed into a 64 × 1024
mel-spectrogram with mel-bins of 64, hop-length of 160 and
window length of 1024. Subsequently, this spectrogram is
compressed into a 16 × 128 latent representation Mspec us-
ing a Variational Autoencoder (VAE) pretrained with Audi-
oLDM 2 [Liu et al., 2023a] with series of quantization loss
and adversarial loss. We use pretrained Hifi-GAN [Kong et
al., 2020] vocoder to reconstruct the waveform from the gen-
erated mel-spectrogram.

Caption processing and conditioning. We utilize the LP-
MusicCaps [Doh et al., 2023] caption model for ASM, FMA,
and subsets of MTT and MSD that have weak or no captions.
We use the official checkpoint from LAION-CLAP [Wu et
al., 2023]2 for text-to-text and text-to-audio similarity cal-
culations. Based on small scale subjective experienment,
thresholds are set at ρ1 = ρ2 = 0.1 to ensure any gener-
ated text or original caption not aligned well with the corre-
sponding waveform is filtered out. Additionally, after filter-
ing, generated text that fall below a threshold of ρ3 = 0.25
are merged with original tags with the prompt: Merge this
music caption “generated caption” with the ground truth tags
“original tags”, and do not add any imaginary elements.. We
use FLAN-T5-large [Peebles and Xie, 2023] as text encoder
for all models.

1We use 55k music tracks from https://pixabay.com, which is a
large scale copyright free dataset.

2music speech audioset epoch 15 esc 89.98.pt

Diffusion backbone. We train our diffusion model with
three backbones for comparison: U-Net [Ronneberger et al.,
2015] based at 1.0B parameters; our proposed Quality-aware
Masked Diffusion Transformer (QA-MDT) with N = 20 en-
coder layers and M = 8 decoder layers at 675M. We study
the impact of the patch size and overlap size in the Appendix,
and apply a patch size of 1× 4 without overlap for the train-
ing of our final model. We train on 10.24-second audio crops
sampled at random from the full track, maintaining a total
batch size of 64, learning rate of 8e-5, and a condition drop
of 0.1 during training. The final model was trained for a total
of 38.5k steps. During inference, we use Denoising Diffusion
Implicit Models (DDIM) [Song et al., 2020] with 200 steps
and a guidance scale of 3.5, consistent with AudioLDM [Liu
et al., 2023b]. We begin by presenting our approach to re-
fining captioning, which includes the capability for quality
awareness, transitioning from text-level control to token-level
control. Finally, we compare proposed model with previous
works subjectively and objectively.

5.3 Evaluation Metrics
We evaluate the proposed method using objective metrics, in-
cluding the Fréchet Audio Distance (FAD) [Kilgour et al.,
2018], Kullback-Leibler Divergence (KL), Inception Score
(IS)3. We also utilize pseudo-MOS scoring model [Ragano et
al., 2023] to estimate generation quality, with more accurate
assessments derived from subjective metrics.

6 Results
6.1 Quality Awareness
This subsection explores the effects and interactions of model
control over quality tokens and quality text prefixes during
the training phase, as well as their comparative effects across
different models. In our previous MTT dataset of 1,000 test
pairs, we filtered out pairs labeled with low quality or qual-
ity is poor to avoid confusion when applying quality pre-
fixes, resulting in a new subset of 519 entries, which we re-
fer to as the MTT Filter Set (MTT-FS). Figure 4 illustrates
the impact of different quality prefixes during inference when
quality is used as a text prefix during training for U-Net and
MDT-based backbones. It was observed that U-Net, when
inferred with different quality prefixes, showed only minor
changes in p-MOS scores and did not adhere to the thresh-
old set during training. In contrast, MDT demonstrated bet-
ter learning of quality information from prefixes, achieving
p-MOS scores significantly higher than those of U-Net and
the test set. Additionally, by decoupling quality informa-
tion from the training set, we achieved better FAD (5.602 vs
5.757) and higher p-MOS (4.039 vs 3.796) compared to train-
ing and inference without quality text prefixes. Given that
quality tokens are specifically designed for the Transformer
architecture, Figure 3 (left) shows the controlled outcomes

3We strictly follow the comparison method and evalution code
in AudioLDM2 and ensure that the indicators in the paper follow
consistent sampling rates and durations for fair comparison.
All above metrics are computed using the audioldm eval li-
brary [Liu et al., 2023b], ensuring standardized evaluation.
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Figure 3: (Left) Five p-MOS distribution curves are obtained by concurrently using text quality prefixes and quality tokens as controls on
the MTT-FS, with quantized MOS levels ranging from 1 to 5 serving as control constraint inferences. The distribution of the training set is
normalized by each sample’s duration, colored lines represent thresholds of quantized p-MOS tokens during training. (Right) The effect of
using quality text prefixes during training is shown, showcasing testing results on FAD and p-MOS, while gray lines for quantized p-MOS
threshold.

Figure 4: Comparison of model performance under different qual-
ity prefixes on MTT-FS, while the blue dashed line represents the
threshold set during training to distinguish the three quality prefix
levels, and the red one represents the test set average p-MOS value.

when different quality tokens are used after integrating quan-
tified quality as a token during training. Remarkably, using
quality tokens alone provided more precise and accurate p-
MOS score control. In our ablation study, we compared the
effects of using only text prefixes against combining both ap-
proaches. As shown in Figure 3 (right), as the quantized con-
trol level gradually increased, the model steadily improved
in p-MOS scores, which represent the quality of generation.
Concurrently, FAD and KL also progressively optimized until
a turning point at level 4, where a higher average p-MOS was
achieved than when solely using prefixes. This turning point
may be due to the scarcity of examples with quality level 5 in
the dataset. Moreover, by combining two types of quality in-
formation injection, the refined decoupling and interaction al-
lowed the model to more accurately perceive audio data qual-
ity features during training, leading to significant reductions

in FAD and KL compared to using only one of them.
We also compare our approach with the traditional “nega-

tive prompt” strategy [Liu et al., 2023a] in Appendix, high-
lighting our approach’s significant improvement in quality
and reduction in FAD.

6.2 Impact of Music Caption Refinement

U-Net based MDT based

Caption FAD ↓ IS↑ CLAP ↑ FAD ↓ IS ↑ CLAP ↑
Do 7.23 1.74 0.199 7.07 2.12 0.291
Dg 5.94 2.28 0.278 5.76 2.51 0.342
Dmerge 5.87 2.29 0.284 5.64 2.63 0.350

Table 1: Comparison of model performance training on different
textual representations, evaluated by FAD, IS and CLAP score.

We conducted our ablation study on a subset of our train-
ing set, which includes ASM and FMA, totaling approxi-
mately 3,700 hours and 1.1 million clips. For evaluation, we
utilized an out-of-domain set with 1,000 samples randomly
selected from MTT [Law et al., 2009]. Table 2 compares
the model’s performance using different textual representa-
tions: sentences formed by merging original tags with com-
mas (Do), generated captions (Dg), and generated captions
refined through filtering and fusion (Dmerge). During the fil-
tering and fusion stage, 8.9% of the generated captions were
filtered out, and 15.1% were fused with original tags using
ChatGPT. Each model underwent training for 60,000 steps
with a batch size of 64.

From Table 2 we can also observe consistent trends: em-
ploying a captioner to transform audio annotations from
sparse words into detailed sentences significantly improved
the models’ generalization and diversity. This indicates that
detailed annotations are essential for learning the relationship
between the models and spectral features. Moreover, the fil-
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Details MusicCaps Song Describer Dataset

Model Params Hours FAD ↓ KL ↓ IS ↑ CLAP ↑ FAD ↓ KL ↓ IS ↑ CLAP ↑
MusicLM 1290M 280k 4.00 – – – – – – –
MusicGen† 1.5B 20k 3.80 1.22 – 0.31 5.38 1.01 1.92 0.18

Mousai 1042M 2.5k 7.50 1.59 – 0.23 – – – –
Jen-1 746M 5.0k 2.00 1.29 – 0.33 – – – –
AudioLDM 2 – Full 712M 17.9k 3.13 1.20 – – – – – –
AudioLDM 2 – Music† 712M 10.8k 4.04 1.46 2.67 0.34 2.77 0.84 1.91 0.28

Ours (U-Net) 1.0B 12.5k 2.03 1.51 2.41 0.33 1.01 0.83 1.92 0.30
Ours (QA-MDT) 675M 12.5k 1.65 1.31 2.80 0.35 1.04 0.83 1.94 0.32

Table 2: Objective evaluation results for music generation with diffusion-based and language-model-based approaches. Methods we re-
inferred are marked with †.

Po Pmp Ve Bg

Model Ovl Rel Ovl Rel Ovl Rel Ovl Rel

Ground Truth 4.00 4.00 4.47 3.60 4.10 3.80 3.87 3.87

AudioLDM 2 2.03 2.42 3.03 3.61 3.21 3.71 3.85 3.85
MusicGen 2.83 3.54 2.63 2.92 3.41 3.00 4.33 3.83
Ours(U-Net) 2.80 3.34 3.46 4.08 3.40 3.96 3.88 3.96
Ours(QA-MDT) 3.27 3.77 3.69 4.19 3.54 3.94 4.23 4.00

Table 3: Evaluation of model performances among different groups,
rated for text relevance (Rel) and overall quality (Ovl), with higher
scores indicating better performance. The groups included Produc-
tion Operators (Po), Professional Music Producers (Pmp), Video Ed-
itors (Ve) and Beginners(Bg)

ter and fusion stages led to enhancements across all metrics,
highlighting the significance of precise, comprehensive anno-
tations for generalization ability and control ability. We also
found that compared to U-Net, the MDT architecture shows
stable improvements in basic modeling metrics, making it a
better backbone for music spectral modeling.

6.3 Compared with Previous Methods
We compared our proposed method with the following rep-
resentative previous methods: AudioLDM 2 [Liu et al.,
2023a], Mousai [Schneider et al., 2023] and Jen-1 [Li et al.,
2023] which model music using spectral latent spaces, Musi-
cLM [Agostinelli et al., 2023], and MusicGen [Copet et al.,
2024], which focus on modeling discrete representations.

We re-inferred AudioLDM2-Music and MusicGen-1.5B
using their official checkpoints to compare additional met-
rics under the same environment. The results are presented in
Table 2. For Ours (U-Net), we inferred all text with the pre-
fix “high quality”, while for Ours (QA-MDT), we used the
same prefix along with a p-MOS quality token set to level 5.
When calculating the CLAP score, we evaluated the gener-
ated music with original prompt, which did not include any
quality prefix. The experimental results show significant ad-
vantages in both subjective and objective metrics for our mod-
els. Since KL divergence measures the distance between au-

dio samples, higher quality audio often results in deviations
from the original waveform of Musiccaps, which can lead to
lower performance. Although Ours (U-Net) showed a slight
FAD advantage on the Song-Describer-Dataset, this may be
due to instabilities arising from the small scale test dataset,
and we further demonstrated the superiority of QA-MDT in
subsequent subjective experiments. Additionally, since Mu-
sicGen was trained on non-vocal tracks, it may underperform
on captions that include vocals.

Based on subjective evaluation shown in Table 3, our pro-
posed method significantly improves overall audio quality
and text-audio consistency, thanks to the label optimization
for large music datasets and the quality-aware training strat-
egy. By analyzing the backgrounds of the evaluators and their
corresponding results, we can also see that for beginners, the
comparison between different systems is not sensitive, which
is related to their lack of music background experience and
knowledge. However, from the perspective of our method
in product operators, video editors, and audio producers, our
method offers considerable enhancements, underscoring its
potential value to audio industry professionals.

7 Conclusion and Discussion
In this study, we address the key challenges in the music gen-
eration domain, including model architecture design, large-
scale uneven audio quality, and unaligned textual annotations,
all of which impede the progress of TTM with quality, musi-
cality, and text alignment. In the future, we aim to further en-
hance and expand our model to achieve long-duration, high-
sampling-rate, controllable, and highly interactive music gen-
eration.
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