
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

An Efficient Core-Guided Solver for Weighted Partial MaxSAT

Shiwei Pan1,3 , Yiyuan Wang1,3∗ , Shaowei Cai2,4
1School of Computer Science and Information Technology, Northeast Normal University, China

2Key Laboratory of System Software, Institute of Software, Chinese Academy of Sciences
3Key Laboratory of Applied Statistics of MOE, Northeast Normal University, China

4School of Computer Science and Technology, University of Chinese Academy of Sciences, China
{pansw779, wangyy912}@nenu.edu.cn, caisw@ios.ac.cn

Abstract

The maximum satisfiability problem (MaxSAT) is
a crucial combinatorial optimization problem with
widespread applications across various critical do-
mains. This paper presents CASHWMaxSAT, an
efficient core-guided MaxSAT solver based on two
novel ideas. The first and most important idea is the
introduction of an extended stratification technique
that progressively focuses on solving high-weight
soft clauses. Second, we integrate disjoint unsat-
isfiable cores with the goal of minimizing the un-
satisfiable core, allowing the solver to learn multi-
ple high-quality clauses in a single conflict analysis
step. These innovations enable our MaxSAT solver
to efficiently identify key constraints and reduce
redundant reasoning, significantly enhancing solv-
ing efficiency. Experimental results on benchmarks
from the complete weighted track of the MaxSAT
Evaluations 2022-2024 demonstrate that the pro-
posed methods lead to substantial improvements,
with CASHWMaxSAT outperforming state-of-the-
art MaxSAT solvers across all benchmarks. Addi-
tionally, it enabled us to achieve the top two posi-
tions in the exact weighted category of the MaxSAT
Evaluation 2024.

1 Introduction
The maximum satisfiability problem (MaxSAT) is a gener-
alization of the well-known and NP-complete Boolean sat-
isfiability problem (SAT) [Cook, 1971]. While both SAT
and MaxSAT are fundamentally similar, the optimization as-
pect of MaxSAT makes it significantly more challenging to
solve in practice. Unlike SAT, where the goal is to deter-
mine if there exists a satisfied assignment, MaxSAT requires
finding an assignment that satisfies the maximum number
of clauses, with some clauses necessarily falsified. Many
real-world problems can be naturally encoded as MaxSAT
problems, such as hardware verification [Biere et al., 2009],
model-based diagnosis [Marques-Silva et al., 2015], planning
[Kautz et al., 1992], and data analysis [Berg et al., 2019].

∗corresponding author

Research on MaxSAT algorithms can be categorized into
two primary groups: exact algorithms, which guarantee op-
timal solutions, and heuristic algorithms, which provide so-
lutions of good quality within a reasonable amount of time,
though without guarantees of optimality. This paper focuses
on exact algorithms for weighted partial MaxSAT, which seek
to maximizes the total weight of satisfied clauses.

Recently, exact MaxSAT solvers can be broadly classified
into two categories: solvers based on SAT solvers and solvers
that employ branch-and-bound strategies. Early branch-and-
bound MaxSAT solvers, such as MaxSatz [Li et al., 2007],
MiniMaxSat [Heras et al., 2008], Ahmaxsat [Abramé and
Habet, 2014], and Akmaxsat [Kügel, 2010], achieved signif-
icant improvements by effectively leveraging MaxSAT res-
olution rules for local propagation [Li et al., 2007; Heras
and Larrosa, 2006; Li et al., 2009] and incorporating lower-
bound estimation techniques. Specifically, these solvers uti-
lized unit-clause propagation to identify disjoint inconsistent
subsets, which were then used for lower-bound estimation [Li
et al., 2005; Li et al., 2006]. However, following Fu and
Malik’s groundbreaking introduction of SAT-based MaxSAT
solvers in 2006 [Fu and Malik, 2006], the performance of
branch-and-bound solvers on real-world instances has gradu-
ally been surpassed by SAT-based methods. In recent years,
a promising direction has emerged with the development of
MaxCDCL [Li et al., 2021b; Li et al., 2021a], a branch-and-
bound MaxSAT solver that integrates conflict-driven clause
learning (CDCL). Subsequently, Li et al. [2025] further en-
hanced this framework by introducing an unlocking mecha-
nism that reuses relaxation variables to extract more disjoint
cores, thereby strengthening the lower bound. MaxCDCL has
demonstrated outstanding performance, particularly on un-
weighted MaxSAT problems. Its weighted version has also
shown competitive results compared to SAT-based MaxSAT
solvers, marking a significant advancement in the field of
branch-and-bound MaxSAT solvers.

The first SAT-based MaxSAT solver was introduced by
Fu et al. [2006]. Later, Ansótegui et al. [2009; 2010;
2017] improved the SAT-based solvers for weighted par-
tial MaxSAT. MaxSAT solvers based on SAT solvers can
generally be divided into three categories: model-guided,
core-guided, and minimum hitting set (MHS)-guided solvers.
Model-guided solvers set a cost value k and transform the
MaxSAT problem into a SAT problem by checking whether

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

a solution with a cost less than or equal to k exists. The
value of k is then gradually reduced until the transformed
SAT instance becomes unsatisfiable. Representative solvers
of this approach include SAT4J-MaxSAT [Le Berre and Par-
rain, 2010], QMaxSat [Koshimura et al., 2012], Open-WBO
[Martins et al., 2014], and Pacose [Paxian and Becker, 2024].
In contrast, core-guided and MHS-guided solvers treat the
MaxSAT problem as the SAT instance and use a CDCL SAT
solver to identify unsatisfiable cores. Core-guided solvers, af-
ter identifying an unsatisfiable core, learn new clauses from
the core and add them to the original instance, thereby in-
creasing the lower bound. SAT solving is then applied to the
updated instance, and this process is repeated until a satis-
fiable solution is found. Representative core-guided solvers
include UWrMaxSAT [Piotrów, 2020], CGSS2 [Ihalainen et
al., 2024], and EvalMaxSAT [Berg et al., 2024]. For MHS-
guided solvers, each time an unsatisfiable core is identified,
the set of clauses to be passed to the SAT solver in the next
round is updated. The goal of this update is to minimize the
number of clauses not passed to the SAT solver by comput-
ing the MHS of all known unsatisfiable cores. This process is
repeated iteratively until a satisfiable solution is found. Typ-
ically, mixed integer programming (MIP) solvers are used to
solve the MHS. Notable MHS-guided solvers include LMHS
[Saikko et al., 2016] and MaxHS [Bacchus, 2022].

In this paper, we propose a core-guided MaxSAT solver,
built upon the UWrMaxSAT solver [Piotrów, 2024], with
two key improvements. The first and most important im-
provement is a novel extended stratified strategy that guides
the algorithm to focus primarily on solving high-weight soft
clauses. This strategy is applied adaptively, based on the spe-
cific characteristics of the instance, thereby improving over-
all efficiency. The second improvement is a stratified-based
method for extracting multiple disjoint unsatisfiable cores in
each iteration, which helps accelerate the solving process.

By incorporating these two ideas, we developed an en-
hanced MaxSAT solver, CASHWMaxSAT, which was sub-
mitted to the MaxSAT Evaluation 20241. Extensive ex-
periments are conducted to evaluate CASHWMaxSAT on
the complete weighted benchmarks of the MaxSAT Evalu-
ations from 2022 to 2024. The experimental results demon-
strate that CASHWMaxSAT outperforms eight state-of-the-
art MaxSAT exact solvers across all benchmarks. Further-
more, our analysis reveals that the proposed strategies signif-
icantly contribute to the outstanding performance of CASH-
WMaxSAT.

This paper is organized as follows: Section 2 provides the
preliminaries. Sections 3 and 4 describe the two proposed
strategies. Section 5 reviews the framework of our proposed
MaxSAT solver. Section 6 presents an empirical evaluation
and analysis of our solver. Section 7 concludes the paper.

2 Preliminaries
Let V = {x1, x2, . . . , xn} be a set of propositional variables.
A literal is either a variable x or its negation ¬x. A clause is a
disjunction of k literals, i.e., cj = lj1 ∨ lj2 ∨ · · · ∨ ljk, where
lji represents the literal in the clause and |cj | = k denotes

1https://maxsat-evaluations.github.io/2024/

the length of the clause. A clause is called a unit clause if it
contains exactly one literal. A propositional formula in con-
junctive normal form (CNF) is a conjunction of m clauses,
i.e., F = c1 ∧ c2 ∧ · · · ∧ cm, where |F | = m represents the
number of clauses in the formula. A truth assignment ρ as-
signs each variable in V a truth value from {0, 1}, where 0
represents false and 1 represents true. A literal x is satisfied
by a truth assignment ρ if x = 1, and a literal ¬x is satisfied
if x = 0. A clause is satisfied if at least one of its literals is
satisfied, and a CNF formula is satisfied if all its clauses are
satisfied.

The Boolean satisfiability (SAT) problem is to determine
whether there exists a truth assignment that satisfies a given
CNF formula F . A SAT formula is considered satisfiable if
there exists a truth assignment that satisfies all its clauses;
otherwise, it is deemed unsatisfiable. For an unsatisfiable
SAT formula F , an unsatisfiable core (core) is a subset of the
clauses in F that is itself unsatisfiable. A minimal unsatisfi-
able core is an unsatisfiable core with the additional property
that removing any clause from it results in a satisfiable set of
clauses. An optimized version of SAT, known as MaxSAT,
seeks to determine whether there exists a truth assignment
that satisfies the maximum number of clauses in F . In partial
MaxSAT, the clauses are divided into hard clauses Fhard and
soft clauses Fsoft, and the goal is to find a truth assignment
that satisfies all hard clauses and maximizes the number of
satisfied soft clauses. In weighted partial MaxSAT (WPMS),
each soft clause c ∈ Fsoft is assigned a weight w(c) to reflect
its importance, and the objective is to find a truth assignment
that satisfies all the hard clauses while maximizing the total
weight of the satisfied soft clauses. Given a soft clause set
F ′, we use maxw(F ′), minw(F ′), and avgw(F ′) to repre-
sent the maximum, minimum, and average weight values of
all soft clauses in F ′, respectively.

In the process of solving MaxSAT, the input MaxSAT
instance is first normalized. Given a CNF formula F =
Fhard∪Fsoft, for each non-unit soft clause c = l1∨l2∨· · ·∨ll
(i.e., |c| > 1), we introduce a relaxation variable ri to trans-
form the clause into a unit soft clause. Specifically, we
add a literal ¬ri to the clause c, resulting in a new clause
cnew = l1 ∨ l2 ∨ · · · ∨ ll ∨ ¬ri. This new clause is treated
as a hard clause and added to Fhard. The original clause c is
then removed from Fsoft, and a unit clause ri, whose weight
equals w(c), is added to Fsoft. If the relaxation variable ri
is assigned true, it indicates that the original clause c is satis-
fied; otherwise, c is not satisfied. During the search process,
we will maintain a lower bound (LB) and upper bound (UB)
of the total weight of unsatisfied soft clauses, and the assump-
tion set (assump) is defined as the set of unit soft clauses that
must be satisfied under the current assignment during a SAT
solver call.

Core-guided MaxSAT solver typically starts by adding all
unit soft clauses in Fsoft to the assumption set assump. The
solver then iteratively calls a SAT solver on the working for-
mula Fhard ∪ assump. The SAT solver will say whether the
formula is satisfiable or not, and in case the formula is unsat-
isfiable, it will give an unsatisfiable core core. At this point
the algorithm will produce new relax variables, one for each
clause in core. The working formula will consist in adding

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://maxsat-evaluations.github.io/2024/

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

the new variables to the formulas of the core, adding a cardi-
nality constraint saying that exactly one of the new variables
should be true, and increasing LB by 1. This procedure is
applied until the SAT solver returns satisfiable.

3 Extended Stratified Strategy for WPMS
Many previous MaxSAT solvers, such as MaxHS [Bacchus,
2022], start with the initial assumption that all soft clauses
must be satisfied and pass this assumption directly to the SAT
solver for processing. However, this approach has a signifi-
cant drawback: the SAT solver must handle all soft clauses
from the beginning, regardless of their varying weights. As
a result, the solver may spend substantial time on low-weight
soft clauses, diverting focus from high-weight clauses that are
more critical.

To tackle this issue, Ansótegui et al. [2012] proposed the
stratified strategy. The key idea behind this strategy is to limit
the clauses passed to the SAT solver, prioritizing high-weight
soft clauses first.

3.1 Traditional Stratified Strategies
The stratified strategy proposed by [Ansótegui et al., 2012]
optimizes the solving process by dividing the soft clauses into
multiple layers based on their weights and solving them layer
by layer. The minimum weight value for the current layer
(denoted as assump weight in our work) is set to be the
maximum weight among all unprocessed soft clauses. These
unprocessed soft clauses include the remaining original soft
clauses (denoted as F ′

s) and the soft clauses whose weights
have been decreased to below assump weight during the
handling of unsatisfiable cores (denoted as delay). In detail,
when processing a current layer, all soft clauses with weight
values greater than or equal to assump weight should be re-
moved from both F ′

s and delay, and added to the assumption
set assump for further processing. In addition, if any clause
c ∈ assump is later found to have w(c) < assump weight,
it should be removed from assump and added to delay for
deferred handling.

The UWrMaxSAT algorithm improves upon the strati-
fied strategy by introducing two key enhancements [Piotrów,
2020]. First, the algorithm separately evaluates F ′

s and delay
and selects the candidate set with the larger maximum weight
(maxw) between the two. If both sets have the same maxw,
delay is prioritized as the candidate set. Second, the algo-
rithm refines the determination of assump weight based on
the selected candidate set. When the candidate set is F ′

s,
assump weight is set to the second-highest weight if the
difference between the highest and second-highest weights
is only 1; otherwise, it is set to the highest weight. When the
candidate set is delay, assump weight is always set to the
highest weight.

3.2 Details of Extended Stratified Strategy
In this subsection, we first analyze the drawbacks of tradi-
tional stratified strategies and then introduce our extended
stratified strategy.

The traditional stratified strategies described above
adopt a fine-grained approach to stratification, where the

assump weight value for each layer is set close to the maxi-
mum weight value among all unprocessed soft clauses. How-
ever, if the assumption sets for several successive layers (i.e.,
different unprocessed soft clauses) are set to true individually,
and the SAT solver repeatedly returns true without generat-
ing any unsatisfiable core—particularly in cases where satis-
fying the hard clauses is inherently challenging—this fine-
grained approach can significantly slow down the solving
process. A potential improvement is to merge multiple suc-
cessive layers into a single layer, allowing the SAT solver to
handle them collectively in one step. On the other hand, if the
assump weight value of the current layer is set significantly
lower than the maximum weight among all unprocessed soft
clauses, the approach becomes coarse-grained. This results in
excessive processing within a single layer, thereby reducing
the algorithm’s ability to prioritize high-weight soft clauses
effectively.

To strike a balance between fine-grained and coarse-
grained approaches, our method sets assump weight to
⌊maxw(F ′

s)/2⌋ + 1 when handling F ′
s. The rationale for

this value is explained below, followed by an example to pro-
vide a more concrete illustration. With our method, each
soft clause is processed at most once in the current layer.
Specifically, once a soft clause appears in an unsatisfiable
core and is processed, it is removed from the current layer
and added to delay for subsequent handling. Additionally,
to prevent the top layer from becoming overloaded with too
many soft clauses, we compare ⌊maxw(F ′

s)/2⌋ + 1 with
avgw(F ′

s). The larger of these two values is selected as the
assump weight for the top layer.

Furthermore, we analyze the triggering condition for
adopting our proposed extended stratified strategy. Prelimi-
nary experiments revealed that for certain instances, the al-
gorithm performs better without using the stratified strategy.
Upon analyzing the structural features of these instances, we
observed that they often exhibit similar weight distributions,
characterized by a ratio of the standard deviation to the aver-
age weight (denoted as coeff) smaller than 1. We hypothesize
that when the weight distribution of a problem is highly dis-
persed, it is more effective to process the problem layer by
layer. Based on this observation, our algorithm applies the
stratified strategy only if coeff ≥ 1; otherwise, the stratified
strategy is bypassed.

Example 1. Consider an example where maxw(F ′
s) is 9,

and let c be a unit soft clause with the maximum weight value
in F ′

s. According to our approach, we set assump weight =
⌊maxw(F ′

s)/2⌋ + 1 = 5. If c appears in an unsatisfiable
core, then after processing the core, w(c) becomes at most
4. Because w(c) is now smaller than assump weight, the
clause c is removed from the current layer.

Based on the above considerations, we propose an ex-
tended stratification strategy, outlined in Algorithm 1.
First, the algorithm determines whether the stratified strategy
should be applied. If the stratified strategy is not used, all soft
clauses are returned directly (Line 1). Otherwise, the algo-
rithm calculates the assump weight value for the top layer
based on the larger of avgw(F ′

s) and (⌊maxw(F ′
s)/2⌋ + 1),

moves all satisfied soft clauses from F ′
s to assump, and then

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 1: Stratification
Input: the remaining soft clauses F ′

s

Output: the modified assumption set assump
1 if coeff < 1 then mark := −1 and return F ′

s ;
2 if mark = 0 then
3 if avgw(F ′

s) > ⌊maxw(F ′
s)/2⌋+ 1 then

assump weight := ⌊avgw(F ′
s)⌋ ;

4 else assump weight := ⌊maxw(F ′
s)/2⌋+ 1 ;

5 mark := 1;
6 for each ci ∈ F ′

s do
7 if w(ci) ≥ assump weight then

F ′
s := F ′

s \ {ci}, assump := assump ∪ {ci} ;

8 return assump;

9 if state = SAT then
10 if delay ̸= ∅ and maxw(F ′

s) ≤ maxw(delay) then
11 assump weight := maxw(delay);
12 for each ci ∈ delay do
13 if w(ci) ≥ assump weight then
14 delay := delay \ {ci};
15 assump := assump ∪ {ci};

16 else
17 assump weight := ⌊maxw(F ′

s)/2⌋+ 1;
18 for each ci ∈ F ′

s do
19 if w(ci) ≥ assump weight then
20 F ′

s := F ′
s \ {ci};

21 assump = assump ∪ {ci};

22 else if state = UNSAT then
23 for each ci ∈ assump do
24 if w(ci) < assump weight then
25 assump := assump \ {ci};
26 delay := delay ∪ {ci};

27 else if state = UNKNOWN then
28 for each ci ∈ assump do
29 if w(ci) = assump weight then
30 assump := assump \ {ci};
31 delay := delay ∪ {ci};

32 assump weight := minw(assump);

33 return assump;

returns the updated assump (Lines 2–8). During the sub-
sequent stratified process, if the SAT solver returns SAT,
the algorithm selects a candidate set (either delay or F ′

s)
for further processing (Lines 9–10). If delay is selected,
assump weight is set to maxw(delay) (Line 11); other-
wise, it is set to ⌊maxw(F ′

s)/2⌋ + 1 (Line 17). The cor-
responding sets are then updated accordingly (Lines 12–15
and Lines 18–21). If the SAT solver returns UNSAT, all soft
clauses in assump with weights less than assump weight
are removed and added to delay (Lines 22–26). If the
SAT solver returns UNKNOWN, the algorithm removes the
soft clauses in assump with the smallest weight, adds them
to delay, and updates assump weight to minw(assump)
(Lines 27–32). Finally, assump is returned (Line 33).

Algorithm 2: MUS
Input: CNF formula Fhard, an unsatisfiable core core
Output: the minimal unsatisfiable core core

1 foreach ci ∈ core do
2 core := core \ {ci};
3 state := SATSolver(Fhard ∪ core);
4 if state ̸= UNSAT then core := core ∪ {ci} ;

5 return core;

4 Stratified-Based Multi-Unsatisfiable Cores
Extraction Method for WPMS

Several existing works focus on extracting multiple unsatis-
fiable cores to improve MaxSAT solving efficiency. For in-
stance, in the first stage of the MaxHS algorithm [Davies and
Bacchus, 2011], identifying as many disjoint unsatisfiable
cores as possible significantly enhances the algorithm’s per-
formance. Furthermore, Saikko [2015] demonstrates that ex-
tracting multiple disjoint unsatisfiable cores in each iteration
can improve the efficiency of MHS-guided MaxSAT solvers.
Building on this idea, Berg et al. [2017] introduces a weight-
aware core extraction technique for the WPMS, which lever-
ages disjoint unsatisfiable cores. The authors [2017] propose
that, instead of requiring all unsatisfiable cores within the
same disjoint phase to be strictly disjoint, soft clauses with
higher weight values may be shared among multiple cores.
This approach aims to increase the number of unsatisfiable
cores extracted during the same disjoint phase.

Given these advancements, a natural question arises: can
our proposed extended stratified strategy be combined with
the multi-unsatisfiable cores extraction method? To explore
this, we adapt the existing unsatisfiable core extraction tech-
niques to align with our extended stratified strategy, resulting
in a novel stratified-based multi-unsatisfiable cores extraction
(MUCE) method.

4.1 Extraction of Minimal Unsatisfiability Core
To extract multiple unsatisfiable cores, the first step is to ob-
tain a single unsatisfiable core. In the context of MaxSAT,
an unsatisfiable core is a set of clauses from soft clauses that
cannot be satisfied simultaneously, regardless of the truth as-
signments to the involved soft clauses. This subset inherently
contains a conflict that prevents any possible satisfying as-
signment. Our proposed MaxSAT solver relies on a SAT
solver to extract unsatisfiable cores. When an unsatisfiable
core is obtained, at least one clause within the core is guar-
anteed to be unsatisfiable, enabling the derivation of a cardi-
nality constraint. To generate these constraints, we adopt the
OLL procedure [Andres et al., 2012; Morgado et al., 2014;
Ignatiev et al., 2019] and convert the resulting cardinality
constraints into clauses using the encoding approach outlined
in UWrMaxSAT [Piotrów, 2020].

However, the unsatisfiable core extracted by the SAT solver
is typically not minimal, meaning it may include redundant
clauses that are not necessary for its unsatisfiability. As high-
lighted by EvalMaxSAT [Avellaneda, 2020], smaller unsatis-
fiable cores lead to better performance in the OLL procedure.
To address this, we apply a core minimization technique pro-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 3: MUCE
Input: CNF formula Fhard ∪ assump, lower bound LB,

an unsatisfiable core core, minimum weight value
assump weight for the current layer

Output: lower bound LB, hard clauses Fhard, the
assumption set assump

1 assumpt := assump;
2 wt(c) := w(c), for each c ∈ assumpt ;
3 cores := corem := ∅;
4 while assumpt ̸= ∅ do
5 corem := MUS(Fhard, core);
6 LB := LB +minw(corem);
7 cores := cores ∪ {corem};
8 foreach ci ∈ assumpt do
9 if ci ∈ corem then

10 wt(ci) := wt(ci)−minw(corem);
11 if wt(ci) < assump weight then
12 assumpt := assumpt \ {ci};

13 (state, ρ, core) := SATSolver(Fhard ∪ assumpt);
14 if state ̸= UNSAT then break;

15 for corem ∈ cores do
16 (Fhard, assump) := OLL(corem, Fhard, assump);

17 return (LB,Fhard, assump)

posed by Marques-Silva et al. [2010] after extracting the un-
satisfiable core. This step removes redundant clauses, result-
ing in a minimal unsatisfiable core (MUS).

Algorithm 2 illustrates the process of minimizing the un-
satisfiable core. The algorithm iterates through all the unit
soft clause ci in the core and removes each soft clause from
the core (Line 2). Then, we call the SAT solver to check the
satisfiability of the remaining core, which also includes the
hard clauses (Line 3). If the solver returns UNSAT, this means
ci is a redundant soft clause in the core and should be deleted.
Otherwise, ci is an essential part of the unsatisfiable core, and
the algorithm adds it back to the core (Line 4). Finally, the
obtained minimal unsatisfiable core is returned (Line 5).

4.2 Details of the MUCE Method
The MUCE method, presented in Algorithm 3, begins by
initializing a temporary set, assumpt, to store the assump-
tion set assump (Line 1), and an array, wt, to store the
weight values of each unit soft clause c in assumpt (Line
2). Two core sets, cores and corem, are also initialized as
empty sets (Line 3). The algorithm proceeds to enumerate the
minimal unsatisfiable cores until assumpt becomes empty
(Line 4). After minimizing the current unsatisfiable core
(Line 5), the algorithm updates the lower bound by the mini-
mum weight value of the current minimal unsatisfiable core,
minw(corem) (Line 6), and adds the minimal core corem to
cores (Line 7). For each unit soft clause in assumpt, if it ex-
ists in the current minimal unsatisfiable core, the algorithm
reduces its weight by minw(corem) (Line 10). Because
the MaxSAT algorithm uses the proposed extended stratified
strategy, the weight value of every unit soft clause in assump
is always greater than or equal to the minimum weight of the
current layer, assump weight. As a result, the algorithm

removes those unsatisfied unit soft clauses from assumpt
(Lines 11–12), which is mainly different from previous ex-
traction methods. Next, the algorithm calls the SAT solver
to solve the formula Fhard ∪ assumpt. If the result is UN-
SAT, this indicates that additional unsatisfiable cores exist in
the formula; otherwise, the enumeration process terminates
(Lines 13–14). Finally, for all minimal unsatisfiable cores,
the algorithm converts them into corresponding clauses us-
ing the OLL procedure and adds them to Fhard and assump
(Lines 15–16). The algorithm then returns the lower bound,
LB, along with the updated Fhard and assump (Line 17).

5 The Framework for CASHWMaxSAT
Algorithm 4 presents the framework of our proposed CASH-
WMaxSAT. We first introduce the key variables and functions
used in our proposed algorithm.

The remaining set of soft clauses is expressed as F ′
s. To

facilitate our stratification method, we use assump weight
to record the minimum weight value in the current layer un-
der the proposed stratified strategy, i.e., all soft clauses whose
weight is not smaller than assump weight in F ′

s being added
into the assumption set assump as the current layer. The tag
variable mark can take three possible values: -1 indicates
that the algorithm does not use the proposed stratified strat-
egy; 0 indicates that the algorithm is using the proposed strat-
ified strategy for the first time; and 1 indicates that the pro-
posed stratified strategy has already been applied more than
once.

The current assignment is denoted as ρ, while the best
assignment found so far is represented as ρ∗. The func-
tion cost(F, ρ) computes the total weight of unsatisfied soft
clauses under the assignment ρ. Each SAT solver call returns
a triple (state, ρ, core), where state represents the solver’s
status: satisfiable (SAT), unsatisfiable (UNSAT), or unknown
(UNKNOWN). If the solver returns SAT, ρ is the current as-
signment that satisfies Fhard ∪ assump. If the solver re-
turns UNSAT, it indicates no assignments can satisfy all as-
sumptions, and core contains a subset of soft clauses from
Fhard ∪assump that form an unsatisfiable core. If the solver
returns UNKNOWN, it means the solver fails to resolve the
current formula. In our work, the termination condition of
the SAT solver is that when the number of conflicts gener-
ated during the search reaches a certain threshold, the solver
returns UNKNOWN.

The input CNF formula F is normalized, meaning that
each soft clause is a unit soft clause. The algorithm begins
by initializing necessary variables (Lines 1–2). It then applies
an extended stratification strategy to organize the soft clauses
based on their weights and returns the minimum weight of the
top layer as assump weight (Line 3).

The main iterations of the algorithm are carried out in
Lines 4–13. If UB equals LB, it indicates that the optimal
solution has been found, and the loop terminates (Lines 9 and
12). In each iteration, the SAT solver is invoked on the cur-
rent formula, which consists of all hard clauses and the as-
sumption set assump. This process essentially sets all unit
soft clauses (treated as literals) in assump to true. The SAT
solver then returns its result, which is stored in the variable

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 4: CASHWMaxSAT
Input: CNF formula F = Fhard ∪ Fsoft

Output: upper bound UB, truth assignment ρ∗

1 assump := delay := ρ∗ := ρ := ∅;
2 UB :=

∑
c∈Fsoft

w(c), mark := LB := 0, F ′
s := Fsoft;

/* Extended Stratified Strategy */
3 assump := Stratification(F ′

s);
4 while true do
5 (state, ρ, core) := SATSolver(Fhard ∪ assump);
6 if state = SAT then
7 if UB > cost(F, ρ) then
8 UB := cost(F, ρ), ρ∗ := ρ;

9 if UB = LB then return (UB, ρ∗);

10 else if state = UNSAT then
/* Cores Extraction Method */

11 (LB,Fhard, assump) := MUCE(Fhard ∪
assump,LB, core,minw(assump));

12 if UB = LB then return (UB, ρ∗);

/* Extended Stratified Strategy */
13 if mark ̸= −1 then assump := Stratification(F ′

s) ;

state (Line 5).
If the SAT solver returns SAT, the algorithm retrieves a

truth assignment from the solver (Line 6). If UB is im-
proved, the algorithm updates UB and ρ∗ accordingly (Lines
7–8). If the SAT solver returns UNSAT, indicating a con-
flict within assump, the proposed MUCE method is em-
ployed to enumerate disjoint unsatisfiable cores (Lines 11–
12). This method incorporates unsatisfiable core minimiza-
tion techniques to generate a high-quality set of disjoint un-
satisfiable cores. The MUCE method returns updated values
for LB, Fhard, and assump. At the end of each iteration,
the algorithm calls the proposed stratified strategy to update
assump accordingly (Line 13).

In our proposed algorithm, we also use some additional ex-
isting techniques to further improve the performance of our
algorithm, including the harden strategy [Ansótegui et al.,
2013] to transform soft clauses with relatively large weights
into hard unit clauses based on the current values of lower and
upper bounds whenever the value of lower or upper bound is
changed, the mixed strategy [Piotrów, 2020] to switch from
core-guided linear search to binary search if the predefined
time limit is exceeded, the preprocessing strategy [Ignatiev et
al., 2019] to preprocess the literals of assump to detect unit
cores and at-most-one cores after using the stratified strat-
egy, and a general Boolean multi-level optimization tech-
nique [Paxian et al., 2021] to detect weighted instances that
encode multi-objective problems with a lexicographic opti-
mality criterion, optimizing the search procedure accordingly.

6 Computational Experiments
We conducted an experimental investigation to evaluate the
performance of the proposed CASHWMaxSAT solver. De-
veloped based on the COMiniSatPS SAT solver [Oh, 2016],
the CASHWMaxSAT was implemented in C++11 with -O3
optimization to ensure high performance. All experiments

were conducted on a system running Ubuntu 22.04.5 LTS,
equipped with an Intel(R) Xeon(R) Platinum 8260 CPU @
2.40GHz and 512GB of memory.

We selected all test instances from the complete weighted
track of the MaxSAT Evaluation (MSE) 2022, 2023, and
20242, resulting in a total of 1,736 instances. These instances
span a wide range of domains, including combinatorial opti-
mization, artificial intelligence, circuit design, software engi-
neering, and bioinformatics, ensuring both diversity and rep-
resentativeness for a comprehensive evaluation of algorithm
performance. For each test instance and algorithm, the run-
time was set to 3,600 seconds, aligning with the competition’s
time limit.

To ensure a fair comparison, we excluded all hybrid solvers
that rely on other independent solvers and focused solely on
the latest versions of independent MaxSAT exact solvers that
participated in the complete weighted track of the MSEs from
MSE2022 to MSE2024, excluding our algorithm. This re-
sulted in the selection of seven solvers: Exact [Devriendt,
2024], Open-WBO [Martins et al., 2023], Pacose [Paxian and
Becker, 2024], CGSS2 [Ihalainen et al., 2024], WMaxCDCL
[Li et al., 2024], UwrMaxSAT [Piotrów, 2024], and Eval-
MaxSAT [Berg et al., 2024]. Additionally, we included SCIP
(version 8.1.0) [Bestuzheva et al., 2021], a constraint inte-
ger programming solver often used in combination with other
MaxSAT solvers as an independent solver in recent MSEs, as
a competitor. In total, we compared our method against eight
state-of-the-art MaxSAT solvers.

Furthermore, many algorithms in recent MSEs have
adopted hybrid approaches by combining multiple solvers
to improve performance. In this context, we also com-
pare the hybrid version of our algorithm with five state-of-
the-art hybrid MaxSAT solvers from the complete weighted
track of the MSEs: WMaxCDCL+Open-WBO [Li et al.,
2024], MaxHS [Bacchus, 2022], UwrMaxSAT+SCIP [Pi-
otrów, 2024], WMaxCDCL+SCIP+MaxHS [Coll et al.,
2023], and EvalMaxSAT+SCIP [Berg et al., 2024]. It is im-
portant to note that MaxHS, in addition to being a MaxSAT
solver based on a SAT solver, also utilizes the commer-
cial linear programming solver CPLEX3 for solving the hit-
ting set problem, which classifies MaxHS as a hybrid al-
gorithm. In the WMaxCDCL+SCIP+MaxHS configuration,
the SCIP is called by using the competition version of Uwr-
MaxSAT+SCIP, but this version does not execute SCIP for
certain large instances and instead runs UwrMaxSAT. As a re-
sult, this hybrid algorithm essentially combines four distinct
solvers. Among these solvers, some provide multiple param-
eter configurations in recent MSEs, and for consistency, we
selected the best-performing configuration for each algorithm
(including our own competition version) for comparison.

6.1 Overall Results
Independent Algorithm Comparison. Table 1 presents a
comparison of all algorithms across three sets of instances.
#solve represents the number of instances solved, while avg
denotes the average time in seconds required to solve these

2https://maxsat-evaluations.github.io/
3https://www.ibm.com/products/ilog-cplex-optimization-studio

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://maxsat-evaluations.github.io/
https://www.ibm.com/products/ilog-cplex-optimization-studio

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Solver MSE22 (607) MSE23 (558) MSE24 (571)
#solve avg PAR2 #solve avg PAR2 #solve avg PAR2

SCIP 253 317.34 4331.28 264 208.75 3899.30 261 227.16 4019.80
Exact 283 190.43 3931.95 330 328.39 3141.73 317 242.27 3343.12
Open-WBO 334 320.61 3414.63 363 163.37 2626.92 352 162.71 2866.60
Pacose 364 199.19 3001.82 382 140.12 2371.13 384 197.48 2495.14
WMaxCDCL 412 256.78 2487.31 387 140.64 2308.12 398 204.37 2327.96
CGSS2 410 224.23 2488.20 412 141.13 1991.64 415 186.41 2106.25
EvalMaxSAT 412 423.66 2600.57 418 309.66 2041.69 419 300.81 2140.73
UwrMaxSAT 408 206.65 2499.36 418 140.3 1914.98 425 167.69 1969.24
CASHWMaxSAT 423 216.47 2333.39 431 156.64 1759.70 438 156.64 1822.78

Table 1: Results for all the instances of the complete weighted track of the MSE 22–24 within CASHWMaxSAT and 8 top independent
solvers.

Solver MSE22 MSE23 MSE24
WMaxCDCL+Open-WBO 418 409 414
MaxHS 428 425 443
EvalMaxSAT+SCIP 435 434 433
UwrMaxSAT+SCIP 434 435 442
WMaxCDCL+SCIP+MaxHS 444 435 445
CASHWMaxSAT+SCIP 443 445 448

Table 2: Results for the number of solved instances of all the bench-
marks within CASHWMaxSAT and 5 top hybrid solvers.

Solver MSE22 MSE23 MSE24
CASHWMaxSAT\MUST 405 418 417
CASHWMaxSAT+TSTR 408 412 423
CASHWMaxSAT\STRA 418 418 429
CASHWMaxSAT\MUCE 413 421 426
CASHWMaxSAT 423 431 438

Table 3: Results for the number of solved instances of all the bench-
marks within CASHWMaxSAT and its variants.

instances. PAR2 refers to the penalized average runtime [Hut-
ter et al., 2009], with a penalization constant of 2, which
is used for the first time in the MSE2024. The results in-
dicate that our solver not only achieves the highest number
of optimal solutions across all benchmark tests but also out-
performs the second-best solver by more than 10 instances
solved to optimality per benchmark set, while maintaining
significantly lower average solving times. Furthermore, in
terms of the PAR2 score, our algorithm clearly demonstrates
an advantage, with at least 100 fewer penalized average run-
time compared to the other algorithms, underscoring its supe-
rior performance in both solution quality and solving speed.
Additionally, Figure 1 illustrates the increase in the number
of solutions processed by all algorithms over time, with our
algorithm consistently outperforming the others at every time
interval, further emphasizing its efficiency.

Hybrid Algorithm Comparison. Table 2 presents a com-
parison of all hybrid algorithms, showing that our algorithm
performs slightly worse than WMaxCDCL+SCIP+MaxHS
on the MSE22 benchmark, where it achieved two additional
optimal solutions. However, on the other two benchmarks,
our algorithm outperforms all the others, clearly demonstrat-
ing its superior performance. As shown in Tables 1 and 2,
our solver with SCIP solves 44 more instances than the ver-

sion without SCIP. In comparison, EvalMaxSAT and UWr-
MaxSAT with SCIP solve 60 and 53 more instances, re-
spectively, than their versions without SCIP. These results
suggest that while incorporating SCIP into our method does
lead to improvements, the gain is less significant compared
to its contribution in other solvers. Additionally, our pro-
posed CASHWMaxSAT utilizes the best-performing config-
uration of WMaxCDCL+SCIP+MaxHS, resulting in a new
solver, CASHWMaxSAT+SCIP+MaxHS. The results show
that our new algorithm achieves 449 optimal solutions, which
represents the best performance on the MSE 22 instances.
Due to the lower server configuration used in our experi-
ments compared to those in MSE 23, our results are slightly
less favorable than those reported in MSE 23. To ad-
dress this, we extended the time limit for the top three
performing solvers to 7200 seconds and re-ran these algo-
rithms on all the instances from MSE 23. The results show
that CASHWMaxSAT+SCIP, WMaxCDCL+SCIP+MaxHS,
EvalMaxSAT+SCIP, and UwrMaxSAT+SCIP achieved 451,
446, 442, and 439 optimal solutions, respectively.

6.2 Evaluating Two Strategies
We conducted an effectiveness analysis on two strate-
gies of our algorithm: the extended stratified strategy and
the MUCE method. Table 3 compares CASHWMaxSAT
with the following variants: 1) CASHWMaxSAT\STRA.
CASHWMaxSAT ignores the proposed stratified strategy;
2) CASHWMaxSAT+TSTR. CASHWMaxSAT uses a tra-
ditional stratified strategy, as implemented in UWrMaxSAT
[Piotrów, 2020], instead of the proposed stratified strategy;
3) CASHWMaxSAT\MUCE. CASHWMaxSAT ignores the
MUCE; 4) CASHWMaxSAT\MUST. CASHWMaxSAT ig-
nores the MUCE and the proposed stratified strategy.

These results highlight the impact of stratified strategy and
MUCE on the algorithm’s performance under various condi-
tions. From the comparison with CASHWMaxSAT\MUST,
our algorithm achieves 17.3 more instances solved to op-
timality per benchmark set compared to this, it is evi-
dent that the strategies we designed are highly effective
in improving the solving performance. Moreover, the
effectiveness of the additional techniques, including the
hardening strategy, preprocessing strategy, BMO technique,
mixed strategy, and others, can be assessed through the
results of CASHWMaxSAT\MUST presented in Table 3.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 1: The cumulative distribution functions of state-of-the-art
MaxSAT solvers for all the benchmarks.

CASHWMaxSAT\MUST performs worse than both Eval-
MaxSAT and UwrMaxSAT, suggesting that the application of
additional techniques alone is insufficient. A significant per-
formance gain can only be achieved when these techniques
are combined with the two main extensions.

The number of optimal solutions found by CASHW-
MaxSAT+TSTR is, on average, 7.3 fewer per benchmark
compared to CASHWMaxSAT\STRA, indicating that the
previous stratified strategy did not integrate well with our
designed MUCE strategy. On the other hand, CASHW-
MaxSAT+TSTR has, on average, 16.3 fewer instances solved
to optimality per benchmark set than our algorithm, further
highlighting that the new stratified strategy we designed in-
tegrates exceptionally well with the MUCE strategy, leading
to a significant improvement in performance. The number of
optimal solutions obtained by CASHWMaxSAT\MUCE and
CASHWMaxSAT\STRA both show a noticeable gap com-
pared to our algorithm, especially in the MSE23 benchmark,
where the difference is most apparent. This clearly demon-
strates that both strategies are indispensable. In contrast, our
algorithm outperforms both, demonstrating that our designed
stratified strategy integrates more effectively with the MUCE
strategy, leading to a significant improvement in the solving
performance. Additionally, Figure 2 illustrates the number of
optimal solutions obtained by each algorithm over time, of-
fering a more intuitive comparison of the effectiveness of our
algorithm.

7 Conclusions and Future Work
In this paper, we present CASHWMaxSAT, an efficient un-
satisfiable core-guided MaxSAT solver that leverages an
extended stratified strategy and a stratified-based multi-
unsatisfiable core extraction method. Our experiments
demonstrate the excellent performance of our solver.

As future work, while the MaxSAT community has tradi-
tionally focused on maximizing the number of optimal solu-
tions, the introduction of the PAR2 scoring evaluation in MSE
24 has highlighted the importance of minimizing runtime. In
addition, when combined with SCIP, the solving time tends
to be longer. This suggests that future work should involve
adjusting the model inputs to SCIP in order to improve per-

Figure 2: The cumulative distribution functions of CASHW-
MaxSAT and its five modified versions for all the benchmarks.

formance.

Acknowledgements
We would like to thank the anonymous referees for their help-
ful comments. This work is supported by National Crypto-
logic Science Fund of China 2025NCSF02046, NSFC under
Grant No. 61806050, Jilin Science and Technology Depart-
ment YDZJ202201ZYTS412.

References
[Abramé and Habet, 2014] André Abramé and Djamal Ha-

bet. Ahmaxsat: Description and evaluation of a branch and
bound max-sat solver. Journal on Satisfiability, Boolean
Modeling and Computation, 9(1):89–128, 2014.

[Andres et al., 2012] Benjamin Andres, Benjamin
Kaufmann, Oliver Matheis, and Torsten Schaub.
Unsatisfiability-based optimization in clasp. In ICLP,
2012.

[Ansótegui and Gabàs, 2017] Carlos Ansótegui and Joel
Gabàs. Wpm3: an (in) complete algorithm for weighted
partial maxsat. Artificial Intelligence, 250:37–57, 2017.

[Ansótegui et al., 2009] Carlos Ansótegui, Maria Luisa
Bonet, and Jordi Levy. Solving (weighted) partial maxsat
through satisfiability testing. In SAT, pages 427–440,
2009.

[Ansótegui et al., 2010] Carlos Ansótegui, Maria Luisa
Bonet, and Jordi Levy. A new algorithm for weighted par-
tial maxsat. In AAAI, pages 3–8, 2010.

[Ansótegui et al., 2012] Carlos Ansótegui, Maria Luisa
Bonet, Joel Gabas, and Jordi Levy. Improving sat-based
weighted maxsat solvers. In CP, pages 86–101, 2012.

[Ansótegui et al., 2013] Carlos Ansótegui, Maria Luisa
Bonet, and Jordi Levy. Sat-based maxsat algorithms. Ar-
tificial Intelligence, 196:77–105, 2013.

[Avellaneda, 2020] Florent Avellaneda. A short description
of the solver evalmaxsat. MaxSAT Evaluation, 8:364,
2020.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Bacchus, 2022] Fahiem Bacchus. Maxhs in the 2022
maxsat evaluation. MaxSAT Evaluation 2022, page 17,
2022.

[Berg and Järvisalo, 2017] Jeremias Berg and Matti
Järvisalo. Weight-aware core extraction in sat-based
maxsat solving. In CP, pages 652–670, 2017.

[Berg et al., 2019] Otto Jeremias Berg, Antti Juhani Hytti-
nen, and Matti Juhani Järvisalo. Applications of maxsat
in data analysis. In SAT, pages 50–64, 2019.

[Berg et al., 2024] Jeremias Berg, Matti Järvisalo, Ruben
Martins, Andreas Niskanen, and Tobias Paxian. Maxsat
evaluation 2024: Solver and benchmark descriptions.
MaxSAT Evaluation 2024, 2024.

[Bestuzheva et al., 2021] Ksenia Bestuzheva, Mathieu
Besançon, Wei-Kun Chen, Antonia Chmiela, Tim
Donkiewicz, Jasper van Doornmalen, Leon Eifler, Oliver
Gaul, Gerald Gamrath, Ambros Gleixner, et al. The scip
optimization suite 8.0. arXiv preprint arXiv:2112.08872,
2021.

[Biere et al., 2009] Armin Biere, Marijn Heule, and Hans
van Maaren. Handbook of satisfiability, volume 185. IOS
press, 2009.

[Coll et al., 2023] Jordi Coll, Shuolin Li, Chu-Min Li, Felip
Manyá, Djamal Habet, Mohamed Sami Cherif, and Kun
He. Wmaxcdcl in maxsat evaluation 2023. MaxSAT Eval-
uation 2023, pages 16–17, 2023.

[Cook, 1971] Stephen A Cook. The complexity of theorem-
proving procedures. In STOC, pages 151–158, 1971.

[Davies and Bacchus, 2011] Jessica Davies and Fahiem Bac-
chus. Solving maxsat by solving a sequence of simpler sat
instances. In CP, pages 225–239, 2011.

[Devriendt, 2024] Jo Devriendt. Exact: evaluating a pseudo-
boolean solver on maxsat problems (2024). MaxSAT Eval-
uation 2024, pages 11–12, 2024.

[Fu and Malik, 2006] Zhaohui Fu and Sharad Malik. On
solving the partial max-sat problem. In SAT, pages 252–
265, 2006.

[Heras and Larrosa, 2006] Federico Heras and Javier Lar-
rosa. New inference rules for efficient max-sat solving.
In AAAI, pages 68–73, 2006.

[Heras et al., 2008] Federico Heras, Javier Larrosa, and Al-
bert Oliveras. Minimaxsat: An efficient weighted max-sat
solver. Journal of Artificial Intelligence Research, 31:1–
32, 2008.

[Hutter et al., 2009] Frank Hutter, Holger H Hoos, Kevin
Leyton-Brown, and Thomas Stützle. Paramils: an auto-
matic algorithm configuration framework. Journal of arti-
ficial intelligence research, 36:267–306, 2009.

[Ignatiev et al., 2019] Alexey Ignatiev, António Morgado,
and João Marques-Silva. Rc2: an efficient maxsat solver.
Journal on Satisfiability, Boolean Modeling and Compu-
tation, 11(1):53–64, 2019.

[Ihalainen et al., 2024] Hannes Ihalainen, Jeremias Berg,
and Matti Järvisalo. Cgss2 and cgss2-abstcg in the 2024

maxsat evaluation. MaxSAT Evaluation 2024, page 13,
2024.

[Kautz et al., 1992] Henry A Kautz, Bart Selman, et al. Plan-
ning as satisfiability. In ECAI, volume 92, pages 359–363,
1992.

[Koshimura et al., 2012] Miyuki Koshimura, Tong Zhang,
Hiroshi Fujita, and Ryuzo Hasegawa. Qmaxsat: A partial
max-sat solver. Journal on Satisfiability, Boolean Model-
ing and Computation, 8(1-2):95–100, 2012.

[Kügel, 2010] Adrian Kügel. Improved exact solver for the
weighted max-sat problem. Pos@ sat, 8:15–27, 2010.

[Le Berre and Parrain, 2010] Daniel Le Berre and Anne Par-
rain. The sat4j library, release 2.2. Journal on Satisfia-
bility, Boolean Modeling and Computation, 7(2-3):59–64,
2010.

[Li et al., 2005] Chu Min Li, Felip Manya, and Jordi Planes.
Exploiting unit propagation to compute lower bounds in
branch and bound max-sat solvers. In CP, pages 403–414,
2005.

[Li et al., 2006] Chu Min Li, Felip Manya, and Jordi Planes.
Detecting disjoint inconsistent subformulas for computing
lower bounds for max-sat. In AAAI, pages 86–91, 2006.

[Li et al., 2007] Chu Min Li, Felip Manya, and Jordi Planes.
New inference rules for max-sat. Journal of Artificial In-
telligence Research, 30:321–359, 2007.

[Li et al., 2009] Chu Min Li, Felip Manya, Nouredine Mo-
hamedou, and Jordi Planes. Exploiting cycle structures in
max-sat. In SAT, pages 467–480, 2009.

[Li et al., 2021a] Chu-Min Li, Zhenxing Xu, Jordi Coll, Fe-
lip Manyà, Djamal Habet, and Kun He. Boosting branch-
and-bound maxsat solvers with clause learning. AI Com-
munications, pages 1–21, 2021.

[Li et al., 2021b] Chu-Min Li, Zhenxing Xu, Jordi Coll, Fe-
lip Manyà, Djamal Habet, and Kun He. Combining clause
learning and branch and bound for maxsat. In CP, pages
38–1, 2021.

[Li et al., 2024] Shuolin Li, Chu-Min Li, Jordi Coll, Djamal
Habet, Felip Manyà, and Kun He. Wmaxcdcl in maxsat
evaluation 2024. MaxSAT Evaluation 2024, page 17, 2024.

[Li et al., 2025] Shuolin Li, Chu-Min Li, Jordi Coll, Djamal
Habet, and Felip Manyà. Improving the lower bound in
branch-and-bound algorithms for maxsat. In AAAI, pages
11272–11281, 2025.

[Marques-Silva et al., 2015] Joao Marques-Silva, Mikoláš
Janota, Alexey Ignatiev, and António Morgado. Efficient
model based diagnosis with maximum satisfiability. In IJ-
CAI, pages 1966–1972, 2015.

[Marques-Silva, 2010] Joao Marques-Silva. Minimal unsat-
isfiability: Models, algorithms and applications. In IS-
MVL, pages 9–14, 2010.

[Martins et al., 2014] Ruben Martins, Vasco Manquinho,
and Inês Lynce. Open-wbo: A modular maxsat solver. In
SAT, pages 438–445, 2014.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Martins et al., 2023] Ruben Martins, Norbert Manthey,
Miguel Terra-Neves, Vasco Manquinho, and Inês Lynce.
Open-wbo maxsat evaluation 2023. MaxSAT Evaluation
2023, page 18, 2023.

[Morgado et al., 2014] António Morgado, Carmine Dodaro,
and Joao Marques-Silva. Core-guided maxsat with soft
cardinality constraints. In CP, pages 564–573, 2014.

[Oh, 2016] Chanseok Oh. Improving SAT solvers by exploit-
ing empirical characteristics of CDCL. New York Univer-
sity, 2016.

[Paxian and Becker, 2024] Tobias Paxian and Bernd Becker.
Pacose: An iterative sat-based maxsat solver. MaxSAT
Evaluation 2024, page 26, 2024.

[Paxian et al., 2021] Tobias Paxian, Pascal Raiola, and
Bernd Becker. On preprocessing for weighted maxsat. In
VMCAI, pages 556–577, 2021.

[Piotrów, 2020] Marek Piotrów. Uwrmaxsat: Efficient solver
for maxsat and pseudo-boolean problems. In ICTAI, pages
132–136, 2020.

[Piotrów, 2024] Marek Piotrów. Uwrmaxsat entering the
maxsat evaluation 2024. MaxSAT Evaluation 2024,
2024:27–28, 2024.

[Saikko et al., 2016] Paul Saikko, Jeremias Berg, and Matti
Järvisalo. Lmhs: a sat-ip hybrid maxsat solver. In SAT,
pages 539–546, 2016.

[Saikko, 2015] Paul Saikko. Re-implementing and extending
a hybrid SAT-IP approach to maximum satisfiability. PhD
thesis, Master’s thesis, University of Helsinki, 2015.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

