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Abstract
Survival prediction is a pivotal task for estimating
mortality risk within a given timeframe based on
whole slide images (WSIs). Conventional models
typically assume that WSIs across patients are inde-
pendent and identically distributed, an assumption
that may not hold due to inherent variability in WSI
preparation and the uncertain condition of infected
tissues. These uncontrollable external factors intro-
duce significant variability in the numbers and reso-
lutions of WSIs across patients, leading to bias and
compromised performance, particularly for tail pa-
tients with limited data. In this paper, we propose
a novel approach, PathoKD, based on knowledge
distillation. Recognizing the hierarchical nature of
disease progression and the data scarcity issues as-
sociated with vanilla knowledge distillation meth-
ods, PathoKD integrates a novel curriculum learn-
ing framework with hierarchical knowledge distil-
lation. This integration effectively mitigates the
performance gap between head and tail patients,
thereby enhancing prediction accuracy across pa-
tient groups. Our proposal is extensively evalu-
ated over popular datasets and experimental results
demonstrate its superiority.

1 Introduction
Survival prediction, the estimation of mortality risk within
a given timeframe, represents a cornerstone of clinical on-
cology [Shedden et al., 2008]. This endeavor predominantly
entails the analysis of whole slide images (WSIs), which en-
capsulate intricate spatial patterns and the complexities of the
tumor microenvironment [Pantanowitz et al., 2011]. Deep
learning has emerged as a transformative paradigm, automat-
ing WSI analysis and offering unprecedented prospects for
alleviating pathologists’ burdens and empowering physicians
in critical decision-making [Hanna et al., 2020].

Existing WSI-based survival prediction models [Yao et al.,
2020a; Zhu et al., 2017; Liu et al., 2023; Shao et al., 2023a;
Tang et al., 2019] follow a two-stage paradigm: WSI prepara-
tion, which encompasses collecting WSIs, segmenting them

∗Corresponding Author: Xi Zhang.

Large and Many WSIsSmall and Few WSIsTail Patient

(a)

(c)(b)

Head Patient

Figure 1: Illustration of the biases in the numbers and resolutions of
WSIs across patients.

into patches, and encoding these patches to address gigapixel-
level resolution; and patient-level prediction, wherein pa-
tient outcomes are forecasted by leveraging both the encoded
patches and their inter-patch relationships. Most works [Shao
et al., 2023a; Liu et al., 2023] focus on developing sophisti-
cated prediction models for the patient-level prediction stage,
such as Transformers [Chen et al., 2022a], Graph Neural Net-
works [Gadiya et al., 2020] and Capsule Networks [Tang et
al., 2019]. However, the substantial bias introduced during
the WSI preparation stage is largely overlooked, which may
limit the effectiveness of current approaches and their poten-
tial to serve as a panacea [Jaume et al., 2021].

The efficacy of existing survival prediction models depends
on the assumption that the data are independent and identi-
cally distributed (IID), implying that the WSIs of different
patients are drawn from the same distribution. However, the
inherent limitations in the WSI preparation process, coupled
with the uncertain status of infected tissues and variability
in pathologist expertise, often undermine the validity of the
IID assumption in practical scenarios. For instance, biopsy
strategies [Strassburg and Manns, 2006] and tissue sectioning
practices [Fischer et al., 2008] are influenced by the heuristic
expertise of clinicians, leading to variation in the numbers of
WSIs across patients. In the TCGA-LUAD dataset [Tomczak
et al., 2015], 20.1% of patients have more than 6 WSIs, while
30.3% have fewer than 3. This non-IID nature of WSI num-
bers may result in imbalanced training data and skewed per-
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formance. Additionally, the variability in lesion morphology
and slice positioning leads to significant differences in reso-
lution across WSIs. As shown in Fig. 1(a), WSIs with higher
resolution tend to be more informative (e.g., containing more
tissue patches) than those with lower resolution.

To highlight the impact of the non-IID phenomenon on the
survival prediction task, a preliminary study is conducted us-
ing the popular baseline DeepAttnMISL [Yao et al., 2020a]
on the NLST dataset [Team, 2011]. Patients within the testing
set are divided into different groups based on two dimensions:
(1) the average numbers of WSIs, as indicated by the vertical
axis in Fig. 1(b), and (2) the average informative resolution
of WSIs, as indicated by the horizontal axis. The average
informative resolution is implemented as the average num-
ber of non-blank patches (500×500 pixels at a scaling factor
of 20) for each patient’s corresponding WSIs, calculated af-
ter applying the OTSU algorithm for filtering [Otsu, 1979].
Groups with larger labels correspond to a greater number of
WSIs or patches. Fig. 1(b) demonstrates the performance of
a well-trained model on different groups. One can clearly
see that: (1) patients with more WSIs consistently outper-
form those with fewer WSIs; and (2) given the same number
of WSIs, patients with WSIs of larger resolution (i.e., those
with a larger number of patches) achieve better performance.

In this paper, we focus on the novel problem of mitigat-
ing bias within both the numbers and resolutions of WSIs
across patients. A straightforward solution involves resam-
pling techniques [Good, 2006], while undersampling may re-
sult in information loss, while oversampling can contribute
to overfitting and noise [Zhang et al., 2024b], particularly in
the context of small survival prediction datasets [Zhang et al.,
2024a]. Inspired by the idea of transferring knowledge from
head patients, who possess more informative WSIs, to tail pa-
tients with less informative WSIs, we adopt knowledge dis-
tillation [Hinton, 2015] as a core methodology. Specifically,
a teacher model is trained on the head patients, and closeness
minimization losses are employed to facilitate the transfer of
knowledge [Zhao et al., 2023].

However, directly applying vanilla knowledge distillation
methods to survival prediction presents two challenges. (1)
Hierarchical Structure. Survival prediction operates at the pa-
tient level [Shao et al., 2023a], while biases in number and
resolution are hierarchically structured at both the inter- and
intra-WSI levels. Vanilla distillation models [Hinton, 2015]
overlook the interdependencies across these levels, thus fail-
ing to capture the comprehensive hierarchical information.
(2) Data Scarcity. Given the typically limited number of
available patient cases, vanilla knowledge distillation meth-
ods often split datasets to train the teacher and student mod-
els, further exacerbating the scarcity challenge.

To address the aforementioned challenges, we propose a
novel model, PathoKD, designed to enhance the robustness
of survival prediction through hierarchical knowledge distil-
lation within a triple curriculum framework. The learning
process is organized into three curricula, each targeting pro-
gressively difficult stages determined by the number and res-
olution of each patient’s WSIs. Specifically, patients are cat-
egorized into three groups: head patients, who exhibit a large
number of extensive WSIs; virtual tail patients, which are

synthesized by removing patches from the head patients to
simulate fewer and smaller WSIs, bridging the gap between
head and tail patients; and tail patients, who naturally possess
smaller and fewer WSIs. Curriculum I initiates the process by
training the teacher model to extract knowledge from head pa-
tients, employing a label-assistance strategy to mitigate data
scarcity. Building upon this, Curriculum II facilitates hier-
archical knowledge distillation across different levels, which
transfers knowledge from the teacher model to the student
models via virtual tail patients. To further alleviate the data
scarcity and to leverage the full spectrum of available data,
Curriculum III refines both the teacher and student models,
incorporating retrieval and generative enhancement to inte-
grate knowledge from tail patients. Extensive experiments
across multiple datasets validate its superiority. The key con-
tributions of this work are as follows:

• To the best of our knowledge, we are the first to examine
the novel issue of bias stemming from the numbers and
resolutions of WSIs across patients, and to investigate its
impact on the task of survival prediction.

• A novel curriculum learning framework is proposed
based on hierarchical knowledge distillation, which ef-
fectively bridges the gap between head and tail patients.

• The efficacy of our approach is demonstrated by show-
casing its superior performance over existing methods
across multiple real-world cancer datasets.

2 Problem Definition
Survival data refers to a set of patients’ data, denoted as P =
{P1, . . . , P|P|}, where each patient’s data Pi consists of a set
of WSIs and a survival outcome label, Pi = {Wi, Yi}. Each
WSI W i

j represents a tissue sample from patient Pi, and the
survival outcome label Yi = (ti, ci) includes the observation
time ti and survival status ci. The binary status ci ∈ {0, 1}
indicates whether ti is a survival time (ci = 1) or a right-
censored time (ci = 0). Censoring occurs when a patient is
still alive at the end of the study or is lost to follow-up. For
computational efficiency, each WSI is partitioned into fixed-
size patches, W i

j = {Ei
j,1, . . . , E

i
j,|W i

j |
}, which represent the

smallest unit in the hierarchical survival data structure.
WSI-based survival prediction forecasts a patient’s survival

outcome given a set of WSIs Wi. For a patient Pi with a
survival label comprising observed time ti and status ci, the
deep survival model f(Wi) predicts a survival time t̂i ∈ T :

argmax
t̂i∈T

Pr
(
t̂i = ti | Wi

)
, (1)

3 Methodology
Our method is organized into four parts. We begin by quan-
tifying biases in survival-prediction performance across pa-
tients with differing WSI coverage and quality. The next three
sections describe the PathoKD framework (Fig. 2), structured
as an easy-to-hard curriculum: (1) teacher training on head
patients (green solid box), (2) student training on virtual tail
patients (blue dotted box), and (3) progressive integration of
real tail patients into both models (red dotted box).
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Figure 2: Overview of the PathoKD Framework.

3.1 Analysis of the Biases across Patients

In an ideal scenario, all patients would possess an equal
number of uniformly-sized WSIs. However, real-world vari-
ability—arising from biopsy technique, scanner settings, and
QC—introduces two noise terms: resolution noise ϵi,jr (res-
olution fluctuations for the j-th WSI of patient i) and per-
patient noise ϵin (variation in total WSI count for patient i).
Modeling these terms allows us to quantify biases in WSI
coverage and quality across the cohort.

To mitigate the influence of ϵi,jr and ϵin, we assume that pa-
tients with large and more WSIs are less susceptible to noise,
treating them as an ideal reference set. We aim to construct
artificial noise ϵ̂in and ϵ̂i,jr , enabling a model to learn to predict
outcomes t̂i consistently, with or without noise:

argmax
t̂i∈T

Pr(t̂i = ti | Wi) ≈ Pr(t̂i = ti |Wi + ϵ̂in +

|Wi|∑
j=1

ϵ̂i,jr ),

(2)
This objective can be expressed as the minimization of the
prediction discrepancy between the clean and noisy sets:

min
f

EWi

∥∥∥∥∥∥f(Wi)− f(Wi +A(ϵin) +

|Wi|∑
j=1

A(ϵi,jr ))

∥∥∥∥∥∥
 .

(3)
By enforcing alignment between predictions in both settings,
this framework results in more reliable survival predictions
that remain invariant to noise artifacts.

3.2 Curriculum I: Teacher Model Training on
Head Patient

Given a training set of patient survival data Ptrain, head and
tail patients, Phead and Ptail, are identified based on average
resolution and WSI counts via pre-defined thresholds. For
each head patient P head

i , each WSI W i
j is segmented into

patches W i
j = {Ei

j,1, . . . , E
i
j,|W i

j |
}, which are mapped to a

representation space using a pre-trained histopathological en-
coder (e.g., HIPT [Chen et al., 2022a]). The representation
of the k-th patch of the j-th WSI for the i-th head patient is
denoted Xhead

i,j,k. WSI-level features are derived by modeling
patch relationships within each WSI, which are then aggre-
gated into patient-level features. These features are passed
through a Multilayer Perceptron (MLP) to predict the survival
score. The process is formulated as:

Shead
i,j = Ae

(
Xhead

i,j,1, ...,X
head
i,j,k, ...,X

head
i,j,|W i

j |

)
,

Dhead
i = Aw

(
Shead
i,1 , ...,Shead

i,j , ...,Shead
i,|Wi|

)
,

Ohead
i = fMLP

(
Dhead

i

)
.

(4)

The feature Xhead
i,j,1 is input into an inter-WSI aggregator Ae,

yielding Shead
i,j , the representation of the j-th WSI for the i-

th head patient. Dhead
i denotes the representation of the i-th

head patient. The predicted survival score Ohead
i is obtained

by passing Dhead
i through an MLP, fMLP.

Teacher Training with Noisy Survival Labels. The lim-
ited number of head patients may hinder teacher model train-
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ing. Therefore, the survival label is incorporated to provide
additional knowledge. Unlike traditional training, where test
set labels are unavailable, our teacher model uses survival la-
bels to guide the student model’s learning rather than pre-
dicting them. The survival label is encoded into an embed-
ding to incorporate it as input for training the teacher model.
Given that the survival label Y head

i = (thead
i , chead

i ) consists of
continuous (thead

i ) and discrete (chead
i ) components, which dif-

fer in dimensionality from the pathological data, two distinct
embedding functions are applied. The continuous observed
time thead

i is normalized and embedded into a learnable vec-
tor, while the discrete binary censored status chead

i ∈ {0, 1} is
embedded using a learned binary vector:

Ehead
t = Embedding(thead

i ),Ehead
c = Embedding(chead

i ),

Ehead
Y = [Ehead

t ,Ehead
c ].

(5)

where Ehead
Y represents the encoded survival label. Directly

incorporating the label with the WSI may lead to overre-
liance, diminishing generalizability. To mitigate this, Gaus-
sian noise is introduced into the label embedding, resulting in
a noisy embedding: ˆEhead

Y = Ehead
Y +ϵy, where ϵy ∼ N (0, σ2).

The noisy embedding is added to the patient feature represen-
tation: ˆDhead

i = Dhead
i + ˆEhead

Y .
Contrastive learning is employed to align augmented ver-

sions of the same patient’s data, thereby reducing the impact
of noise. The alignment loss Lalign is defined as:

Lalign = fdist(O
head
i,1 ,Ohead

i,2 ) = fdist(fMLP( ˆDhead
i,1 ), fMLP( ˆDhead

i,2 )).

where ˆDhead
i,1 and ˆDhead

i,2 are two versions of the patient rep-
resentation, each incorporating different noisy label embed-
dings. ˆOhead

i,1 and ˆOhead
i,2 are the predicted survival outcomes,

and fdist measures the dissimilarity between them.
The teacher model loss combines survival prediction losses

and the alignment loss:

LTeacher = Lsur( ˆOhead
i,1 , Y ) + Lsur( ˆOhead

i,2 , Y ) + λLalign( ˆOhead
i,1 , ˆOhead

i,2 ).

where Lsur is the survival loss and λ balances alignment. The
Cox loss [Zhu et al., 2016] is used to optimize hazard risk pre-
dictions, assigning higher risks to patients with shorter times:

Lsur(Oi, Y ) =
∑

i:ci=1

−Oi + log
∑

j:tj≥ti

exp(Oj)

 (6)

where Oi denotes the hazard risk for patient pi. This function
encourages higher hazard risk predictions for patients with
shorter survival times, improving overall accuracy.

3.3 Curriculum II: Hierarchical Knowledge
Distillation On Virtual Tail Patient

Head patients with a greater number and larger size of WSIs
exhibit increased robustness to noise (e.g., tissue information
loss) and thus can be utilized as a reference group with rel-
atively complete data [Hellmann et al., 2014]. To improve
predictions for tail patients, we introduce noise into the WSIs
of head patients, thereby simulating conditions characteristic

of patients with limited data. The teacher-student distillation
framework is formalized based on Eq. (7) as follows:

min
fstu

EWi

[∥∥∥ftch(Wi)− fstu(Ŵi)
∥∥∥] , (7)

where fstu and ftch are the student and teacher models, and
Wi and Ŵi represent the clean and noisy WSIs of the head
patient. Ŵi is the virtual tail patient, aligning the head and
tail patient distributions.
Virtual Tail Patient Construction. As shown in Eq. (3),
the virtual tail patient is generated by introducing artificial
noise into the data of the head patient. Given the WSIs of a
head patient, W head

i , noise is applied both to the number and
the resolution of the WSIs. The parameter ϵn modifies the
number of WSIs, yielding a modified set |W head

i + ϵn|, while
ϵr alters the resolution of each individual WSI, represented
as |W i,head

j + ϵr|. The noise addition follows a “simple-to-
difficult” strategy, wherein patches with low attention values
are initially masked, and progressively, patches with higher
attention values are also masked. Upon the application of
this strategy to the head patient’s WSIs W head

i , the resulting
virtual tail patient ˆW head

i is generated.
Hierarchical Knowledge Distillation. The distributional
differences between head and tail patients span WSI represen-
tations, aggregated patient embeddings, and prediction dis-
tributions [Guan and Liu, 2021; Zhang et al., 2024c], high-
lighting variations in data quality, feature representation, and
predictive outcomes, which challenge knowledge transfer and
model generalization. Thus, hierarchical knowledge distilla-
tion is applied at each level. A student model is constructed
to mirror the teacher model’s architecture, excluding the label
embeddings. The architecture is shown in Eq. (4).

WSI-level Distillation. For each head and virtual tail pa-
tient, WSIs are passed through both teacher and student mod-
els, producing feature embeddings Sh

i and Sv
i , respectively.

A feature-based distillation loss is applied to the WSI pairs:

LInst =
1

|W head
i |

|W head
i |∑

j=1

∥∥∥Sh
i,j − Sv

i,j

∥∥∥2

2
. (8)

Here, |W head
i | denotes the number of WSIs for the head pa-

tient. Given the data heterogeneity, directly minimizing the
pairwise WSI distance is inefficient. Instead, we minimize
the distance between individual WSIs and the domain-level
discrepancy, focusing on mean and variance alignment.

To align the mean of the distributions, the Maximum Mean
Discrepancy (MMD) loss [Gretton et al., 2006] is used:

Lmmd(S
h
i ,S

v
i ) = ||Est∼Sh

i
[k(·, st)]−Esv∼Sv

i
[k(·, sv)]||Hk , (9)

which measures the distance between the means of these two
distributions in the reproducing kernel Hilbert space (RKHS)
associated with the kernel function k.

To align the variance, the similarity matrices for WSIs
within each model are computed as

M
head
i =

[
sim(S

h
i,j , S

h
i,k)

]|W head
i |

j,k=1
,M

virtual
i =

[
sim(S

v
i,j , S

v
i,k)

]|W head
i |

j,k=1
.

(10)
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The difference between these matrices quantifies the gap:

Lsim =
∥∥∥Mhead

i −Mvirtual
i

∥∥∥2

2
. (11)

The total WSI-level loss is:

LWSI = LInst + Lmmd + Lsim. (12)

In our implementation, each loss function is assigned a corre-
sponding weight to balance its contribution to the overall loss.
However, to simplify the notation and avoid redundancy, we
omit the explicit representation of these weights.

Patient-level Distillation: At the patient level, alignment
of features, distribution mean, and dispersion is required. The
patient feature alignment mirrors the WSI-level losses:

LPatient = L′
Inst + L′

mmd + Lsim′ . (13)

Additionally, the predicted risk depends not only on the
score but also on the ranking within the batch. Thus, we min-
imize the distance between predicted scores and ranks:

Lot =
∥∥∥Oh

i −Ov
i

∥∥∥2

2
,Lrank =

∥∥∥Rank
(
Oh

i

)
− Rank (Ov

i)
∥∥∥2

2
.

(14)
where Lot represents the distance between predicted risk
scores, and Lrank is the distance between their rankings.

The total loss for the student model in Curriculum II is:

LStu = Lsur + LWSI + LPatient + Lot + Lrank. (15)

3.4 Curriculum III: Student-centered Progressive
Training On Tail Patient

Curriculum I extracts knowledge from head patients for the
teacher model, while Curriculum II transfers this knowledge
to the student model via virtual tail patients, reducing the
performance gap. However, both curricula depend solely
on head patient data, limiting tail patient usage. The chal-
lenge lies in the lack of identity-matched knowledge for direct
transfer to tail patients, complicating learning. Incorporating
tail patients with insufficient data risks performance degrada-
tion, especially in limited survival datasets. To address this,
we propose constructing virtual head patients by augment-
ing tail patient data with potential WSIs. The teacher model
learns from these virtual head patients, improving knowledge
transfer to the student model. This student-centered knowl-
edge distillation approach enhances tail patient representation
using augmented data before guiding the student model.
Virtual Head Patient Construction. To transform a tail
patient into a virtual head patient, we propose two methods:

Retrieval-based Expansion: A retrieval-based approach
is proposed to enhance the number and resolution of WSIs.
For resolution expansion, representative patches from the tail
patient’s WSI are selected based on attention scores. The
top-M patches Etail,k

i,j , which capture critical information, are
identified. Similar patches are then retrieved from the train-
ing set using a similarity function sim(·, ·), and the top-N1

patches with the highest average similarity are selected for
data augmentation. The expanded WSI Ŵ tail

i,j is defined as:

Ŵ tail
i,j = argmax

Etrain
i,j

1

M

M∑
k=1

sim(Etail,k
i,j , Etrain

i,j ), k = 1, . . . , N1.

Dataset # Patient # WSI # WSI of a patient Cancer Type
Mode Maximum

NLST [Team, 2011] 449 1,224

3

6 ADC&SCC

TCGA-LUSC [Tomczak et al., 2015] 504 1,612 13 SCC

TCGA-LUAD [Tomczak et al., 2015] 514 1,608 14 ADC

TCGA-BRCA [Tomczak et al., 2015] 1,098 3,111 9 BIC

TCGA-BLCA [Tomczak et al., 2015] 412 926 2 10 BUC

Table 1: The statistics of five datasets.

For number expansion, the aggregated WSI representations
are compared to identify the top-N2 similar WSIs, which are
incorporated into the tail patient’s data:

Ŵ tail
i = D2(W

tail
i ;ϕ).

Generative-based Expansion: To further expand WSI
resolution and number, a generative approach is employed
leveraging the Denoising Diffusion Probabilistic Model
(DDPM). For resolution expansion, the DDPM is trained by
masking representative patches, identified using attention val-
ues, and using the remaining patches as conditions to recon-
struct the masked regions. This enables the DDPM to learn
the latent feature space of critical regions, allowing it to gen-
erate synthetic patch features. For each tail WSI Ŵ tail

i,j , the
DDPM D1 generates synthetic patch features {Êtail,k

i,j }:

{Êtail,k
i,j } = D1(E

tail,k
i,j ; θ),

where θ represents the trained parameters of the DDPM.
For number expansion, another DDPM is trained to gen-

erate synthetic WSIs by masking complete WSIs and using
the remaining WSIs as conditions to reconstruct the masked
WSIs. The synthetic WSIs are obtained as:

Ŵ tail
i = D2(W

tail
i ;ϕ).

Progressive Training. The expanded WSIs of tail patients
Ŵ tail

i are first used to train the teacher model, and a progres-
sive curriculum is employed to incorporate orignal WSIs of
tail patients W tail

i into the student model. The proportion and
difficulty of the tail patients introduced increase over time.
The difficulty of a tail patient is quantified by the change in
survival risk before and after training the teacher model:

∆Rtail
i = R

tail, post-teacher
i −R

tail, pre-teacher
i , (16)

where ∆Rtail
i reflects the improvement in the model’s under-

standing of the patient. Tail patients are ranked by difficulty,
and the batch inclusion function γ(t) determines the propor-
tion of tail patients included at time t:

Ŵ tail
i (t) = {Ŵ tail

i | ∆Rtail
i ≤ Qγ(t)}, (17)

where Qγ(t) represents the difficulty threshold based on the
quantile of the sorted tail patients. The proportion γ(t) in-
creases over time following a sigmoid schedule:

γ(t) =
1

1 + e−λ(t−t0)
. (18)

This curriculum learning strategy enables a gradual introduc-
tion of simpler tail patients, followed by more challenging
ones, facilitating effective learning progression from simple
to complex cases.
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Architecture Model
Dataset

NLST LUSC LUAD BRCA BLCA

C-index STAGE-5 C-index STAGE-5 C-index STAGE-5 C-index STAGE-5 C-index STAGE-5

CNN WSISA 0.662.033 0.433.021 0.608.048 0.565.028 0.582.011 0.501.030 0.591.035 0.534.022 0.504.041 0.432.036
DeepAttnMISL 0.630.038 0.427.028 0.670.049 0.569.031 0.563.022 0.522.019 0.603.025 0.531.018 0.517.023 0.420.020

Transformer

HIPT 0.619.026 0.450.029 0.655.009 0.571.021 0.552.039 0.516.030 0.589.030 0.549.032 0.552.019 0.451.025
SeTranSurv 0.677.032 0.401.021 0.688.047 0.550.033 0.580.009 0.489.018 0.612.020 0.537.019 0.554.030 0.458.021
ESAT 0.730.039 0.435.034 0.681.050 0.564.033 0.593.019 0.510.014 0.625.031 0.522.015 0.568.017 0.472.032
LongViT 0.677.018 0.440.029 0.665.010 0.562.013 0.618.024 0.531.034 0.628.027 0.545.018 0.556.025 0.477.020
Prov-GigaPath 0.665.030 0.421.039 0.661.034 0.560.032 0.609.028 0.537.017 0.620.015 0.522.010 0.562.021 0.489.023

Bias

AugDiff 0.653.025 0.441.016 0.678.018 0.562.024 0.580.022 0.507.018 0.619.029 0.538.020 0.532.014 0.462.015
Resampling 0.639.040 0.425.035 0.675.044 0.573.045 0.562.018 0.490.018 0.631.020 0.522.041 0.544.010 0.470.055
MoE 0.650.011 0.423.037 0.685.010 0.573.029 0.592.009 0.529.045 0.630.044 0.550.025 0.541.022 0.476.021
Retrival 0.657.023 0.402.025 0.689.033 0.541.010 0.573.055 0.530.025 0.602.035 0.544.041 0.505.039 0.489.020
Ours 0.760.015 0.499.015 0.720.033 0.619.015 0.675.031 0.583.020 0.683.019 0.597.040 0.612.022 0.530.019

Table 2: The results achieved by all competing methods on five datasets. The boldface indicates the best results.

4 Experiment
4.1 Experimental Settings
Datasets We evaluate our proposal on five real-world can-
cer datasets. The first is the National Lung Screening Trial
(NLST) dataset [Team, 2011], which includes cases of adeno-
carcinoma (ADC) and squamous cell carcinoma (SCC). The
remaining four datasets are from The Cancer Genome Atlas
(TCGA) [Tomczak et al., 2015], encompassing lung cancer
(LUSC and LUAD), breast cancer (BRCA), and bladder can-
cer (BLCA). Each dataset contains WSIs stained with hema-
toxylin and eosin (H&E) and corresponding survival labels.

Baselines Three types of SOTA baselines are considered:
(1) Traditional CNN-based methods that using partial WSI
data: WSISA [Zhu et al., 2017] and DeepAttnMISL [Yao
et al., 2020b]; (2) Transformer-based methods utilizing full
WSI data: HIPT [Chen et al., 2022b], SeTranSurv [Huang
et al., 2021], ESAT [Shen et al., 2022], LongViT [Wang et
al., 2023a], and Prov-GigaPath [Xu et al., 2024]; and (3)
Methods addressing bias: AugDiff [Shao et al., 2023b], Re-
sampling [Good, 2006], MoE [Masoudnia and Ebrahimpour,
2014], and Retrieval [Wang et al., 2023b].

Implementation Details All baseline survival models are
re-implemented faithfully from their original publications
and available open-source repositories. For a fair compari-
son, we adopt a 5-fold cross-validation scheme: in each fold,
10% of the training split is held out as a validation set for
early stopping [Bai et al., 2021]. Models are trained for up
to 200 epochs (with patience of 10 epochs on validation loss)
using the AdamW optimizer (weight decay 1e−4) and a fixed
batch size of 64. All experiments are carried out in PyTorch
2.2.0 on NVIDIA V100 GPUs with 32 GB of memory. Per-
formance metrics are averaged over the five folds.

4.2 Quantitative Evaluation
Table 2 presents survival prediction results using the C-index
and STAGE-5 metrics. (1) PathoKD outperforms all state-
of-the-art baselines, with improvements of over 4.28% in C-
index and 4.58% in STAGE-5. (2) Transformer-based models
outperform earlier CNN-based methods, which rely on partial
WSI data, by processing the full WSI. (3) Our method further

improves performance by addressing the challenges of lim-
ited WSI number and resolution through knowledge distilla-
tion. (4) Compared to other models that tackle number and
resolution bias without distillation, our approach offers su-
perior performance by transferring high-level, task-relevant
knowledge rather than manipulating low-level model inputs.

4.3 Performance on Mitigating Bias
A controlled experiment is conducted to validate our ap-
proach in addressing resolution and number biases in WSIs
and its impact on survival prediction. Patients are catego-
rized into three groups based on WSI resolution and number:
low (fewer than 3 WSIs and the bottom 20% in size), medium
(exactly 3 WSIs and the middle 60%), and high (more than
3 WSIs and the top 20%). As shown in Table 3, applying
knowledge distillation significantly reduces the performance
gap between these groups, demonstrating that PathoKD effec-
tively mitigates this challenge. Notably, even the high group
benefits from knowledge distillation, underscoring the effec-
tiveness of our hierarchical alignment loss.

4.4 Ablation Study
We conduct ablation studies on the NLST and LUAD datasets
to evaluate the contribution of each module in PathoKD, with
results presented in Table 4. The first row shows that using
label embedding alone, without noise, leads to over-reliance
on labels and a significant performance drop, emphasizing
the need for noise incorporation. The second row reveals
that excluding Curriculum I severely degrades performance,
highlighting the importance of labels as external knowledge.
Removing instance distillation LInst results in a notable per-
formance decline, underlining its role in mitigating bias and
facilitating knowledge transfer. Omitting MMD distillation
Lmmd also decreases performance, stressing the importance of
aligning distributions between head and tail patients. Exclud-
ing similarity distillation LSim further reduces performance,
demonstrating its critical role in maintaining variance in the
representation distribution. The removal of prediction score
alignment—one of the highest-level features—has the most
significant impact, emphasizing the importance of ranking
in measuring prediction score distribution. Lastly, excluding
Curriculum III and neglecting tail patients results in a perfor-
mance decline, reinforcing the effectiveness of our progres-
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KD NLST LUAD LUSC

Low Medium High Gap Low Medium High Gap Low Medium High Gap

w/o KD 0.617.045 0.651.042 0.670.029 0.053 0.552.050 0.593.047 0.617.039 0.051 0.643.036 0.680.039 0.705.027 0.062

PathoKD 0.683.022 0.689.030 0.701.011 0.018 0.611.017 0.619.029 0.632.009 0.021 0.699.020 0.705.016 0.712.010 0.013

Table 3: C-index performance across different groups of patients with and without knowledge distillation.

Models C-index ↑ STAGE-5 ↑
NLST LUAD NLST LUAD

w/o Noise 0.652.053 0.600.042 0.381.055 0.501.028
w/o C I 0.730.041 0.642.035 0.453.027 0.548.020

w/o LInst 0.709.055 0.602.049 0.447.045 0.531.030
w/o Lmmd 0.731.030 0.635.022 0.466.033 0.554.047
w/o LSim 0.750.022 0.649.009 0.472.029 0.577.040
w/o LRank 0.742.038 0.650.027 0.471.029 0.556.035

w/o C III 0.748.029 0.659.037 0.482.020 0.565.041
Retrival 0.755.020 0.654.025 0.493.021 0.578.031
Generative 0.760.015 0.675.031 0.499.015 0.583.020

Table 4: Ablation study on two datasets.

sive learning approach. Between the two methods in Curricu-
lum III, the generative approach outperforms retrieval, show-
casing the DDPM’s ability to capture latent features.

4.5 Efficiency Study
The efficiency of the proposed model is evaluated on the
NLST dataset [Team, 2011] and compared with SOTA mod-
els. All configurations follow the original papers, using offi-
cial implementations where available. For WSISA, the imple-
mentation was recreated due to the absence of official code.
This study is the first to evaluate bias mitigation strategies
(Resampling, MoE, and Retrieval) on survival prediction. All
models were run on two Xeon E5-2690 v4 processors (2.60
GHz) and four NVIDIA V100 GPUs. Results show that
our approach outperforms others in both accuracy and infer-
ence speed. Specifically, (1) Our method achieves an 11.4%
higher C-index and runs 1.40 times faster than clustering-
based models like WSISA and DeepAttnMISL, due to the
transformer architecture’s direct processing of patches with-
out computationally expensive clustering. (2) Our approach
also outperforms other bias mitigation methods, achieving
34.6% faster inference by directly using original data with-
out the additional preprocessing required by other models.

4.6 Parameter Sensitivity Analysis
Influence of noise strength γ1 and γ2 of discarding WSIs
and patches: The γ1 and γ2 specify the number and percent-
age of discarding WSIs and patches. As illustrated in the left
side of Fig. 3, PathoKD performs best with a mask WSI num-
ber of 3 and a mask patch ratio of 50%. Lower mask ratios
might necessitate masking a greater proportion of WSIs to
align virtual tail patients with tail patients, while higher ra-
tios may leave too few visible histopathological features to
effectively capture prognosis.
Influence of noise strength γ3 and γ4 of expanding WSIs
and patches: The γ3 and γ4 specify the number and per-

Architecture Methods C-index Throughput Delay

(WSIs/s) (ms)

CNN WSISA 0.662.033 0.25 3528
DeepAttnMISL 0.630.038 0.14 8263

Transformer ESAT 0.730.039 0.28 4350
Prov-GigaPath 0.665.030 0.21 6187

Bias

AugDiff 0.653.025 0.10 9818
Resampling 0.639.040 0.26 5010

MoE 0.650.011 0.19 6802
Retrival 0.657.023 0.15 7974

Ours 0.760.015 0.35 2270

Table 5: Our performance and efficiency with comparisons to state-
of-the-art models trained on the NLST dataset.
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Figure 3: C-index results with varying strength of discarding (Left)
or expanding (Right) WSIs and Patches.

centage of expanding WSIs and patches. As illustrated in the
right side of Fig. 3, PathoKD performs best with an expand-
ing WSI number of 3 and a mask patch ratio of 30%. Lower
expansion ratios may require masking a larger proportion of
WSIs to align virtual head patients with actual head patients,
while higher ratios could introduce excessive noise due to the
reduced proportion of real WSIs.

5 Conclusion

In this paper, we propose PathoKD, a novel model for
WSI-based survival prediction, designed to address the chal-
lenges of data variability and scarcity, particularly for tail
patients. By integrating hierarchical knowledge distillation
with curriculum learning, PathoKD effectively mitigates the
performance gap between patients with limited and abun-
dant data. Extensive experiments on multiple widely used
datasets demonstrate its superiority in improving prediction
accuracy across diverse patient groups, providing a promis-
ing approach for developing more robust and equitable sur-
vival prediction models.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
Zhihao Tang is the first student author. This work was sup-
ported by the Natural Science Foundation of China (No.
62372057). This work was partially sponsored by the CAAI-
Huawei MindSpore Open Fund. Compute services from
Hebei Artificial Intelligence Computing Center.

References
[Bai et al., 2021] Ying-Long Bai, Erkun Yang, Bo Han,

Yanhua Yang, Jiatong Li, Yinian Mao, Gang Niu,
and Tongliang Liu. Understanding and improving
early stopping for learning with noisy labels. ArXiv,
abs/2106.15853, 2021.

[Chen et al., 2022a] Richard J Chen, Chengkuan Chen, Yi-
cong Li, Tiffany Y Chen, Andrew D Trister, Rahul G Kr-
ishnan, and Faisal Mahmood. Scaling vision transform-
ers to gigapixel images via hierarchical self-supervised
learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16144–
16155, 2022.

[Chen et al., 2022b] Richard J. Chen, Chengkuan Chen, Yi-
cong Li, Tiffany Y. Chen, Andrew D. Trister, Rahul G. Kr-
ishnan, and Faisal Mahmood. Scaling vision transformers
to gigapixel images via hierarchical self-supervised learn-
ing. 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 16123–16134, 2022.

[Fischer et al., 2008] Andrew H Fischer, Kenneth A Jacob-
son, Jack Rose, and Rolf Zeller. Paraffin embedding tis-
sue samples for sectioning. CSH protocols, 2008:pdb–
prot4989, 2008.

[Gadiya et al., 2020] Shrey Gadiya, Deepak Anand, and
Amit Sethi. Histographs: Graphs in histopathology. In
Medical Imaging: Digital Pathology, 2020.

[Good, 2006] Phillip I Good. Resampling methods. Springer,
2006.

[Gretton et al., 2006] Arthur Gretton, Karsten Borgwardt,
Malte Rasch, Bernhard Schölkopf, and Alex Smola. A
kernel method for the two-sample-problem. Advances in
neural information processing systems, 19, 2006.

[Guan and Liu, 2021] Hao Guan and Mingxia Liu. Domain
adaptation for medical image analysis: a survey. IEEE
Transactions on Biomedical Engineering, 69(3):1173–
1185, 2021.

[Hanna et al., 2020] Matthew G Hanna, Anil Parwani, and
Sahussapont Joseph Sirintrapun. Whole slide imaging:
technology and applications. Advances in Anatomic
Pathology, 27(4):251–259, 2020.

[Hellmann et al., 2014] Matthew D Hellmann, Jamie E
Chaft, William N William, Valerie Rusch, Katherine MW
Pisters, Neda Kalhor, Apar Pataer, William D Travis,
Stephen G Swisher, and Mark G Kris. Pathological re-
sponse after neoadjuvant chemotherapy in resectable non-
small-cell lung cancers: proposal for the use of major
pathological response as a surrogate endpoint. The lancet
oncology, 15(1):e42–e50, 2014.

[Hinton, 2015] Geoffrey Hinton. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531, 2015.

[Huang et al., 2021] Ziwang Huang, Hua Chai, Ruoqi Wang,
Haitao Wang, Yuedong Yang, and Hejun Wu. Integra-
tion of patch features through self-supervised learning
and transformer for survival analysis on whole slide im-
ages. In Medical Image Computing and Computer Assisted
Intervention–MICCAI 2021: 24th International Confer-
ence, Strasbourg, France, September 27–October 1, 2021,
Proceedings, Part VIII 24, pages 561–570. Springer, 2021.

[Jaume et al., 2021] Guillaume Jaume, Pushpak Pati,
Valentin Anklin, Antonio Foncubierta, and Maria
Gabrani. Histocartography: A toolkit for graph analytics
in digital pathology. ArXiv, abs/2107.10073, 2021.

[Liu et al., 2023] Pei Liu, Luping Ji, Feng Ye, and Bo Fu.
Graphlsurv: A scalable survival prediction network with
adaptive and sparse structure learning for histopathologi-
cal whole-slide images. Computer methods and programs
in biomedicine, 231:107433, 2023.

[Masoudnia and Ebrahimpour, 2014] Saeed Masoudnia and
Reza Ebrahimpour. Mixture of experts: a literature sur-
vey. Artificial Intelligence Review, 42:275–293, 2014.

[Otsu, 1979] Nobuyuki Otsu. A threshold selection method
from gray-level histograms. IEEE Trans. Syst. Man Cy-
bern., 9:62–66, 1979.

[Pantanowitz et al., 2011] Liron Pantanowitz, Paul N Valen-
stein, Andrew J Evans, Keith J Kaplan, John D Pfeifer,
David C Wilbur, Laura C Collins, and Terence J Col-
gan. Review of the current state of whole slide imaging
in pathology. Journal of pathology informatics, 2(1):36,
2011.

[Shao et al., 2023a] Zhuchen Shao, Yang Chen, Hao Bian,
Jian Zhang, Guojun Liu, and Yongbing Zhang. Hvtsurv:
Hierarchical vision transformer for patient-level survival
prediction from whole slide image. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37,
pages 2209–2217, 2023.

[Shao et al., 2023b] Zhuchen Shao, Liuxi Dai, Yifeng Wang,
Haoqian Wang, and Yongbing Zhang. Augdiff: Diffusion
based feature augmentation for multiple instance learning
in whole slide image. arXiv preprint arXiv:2303.06371,
2023.

[Shedden et al., 2008] Kerby Shedden, Jeremy M. G. Tay-
lor, Steven Enkemann, Ming-Sound Tsao, Timothy Yeat-
man, William L. Gerald, Steven A. Eschrich, Igor Ju-
risica, Thomas J. Giordano, David E. Misek, Andrew C.
Chang, Changyun Zhu, D. Strumpf, Samir M. Hanash,
Frances A. Shepherd, Keyue Ding, Lesley Seymour, Kat-
suhiko Naoki, Nathan A. Pennell, Barbara A. Weir, Roel
G. W. Verhaak, Christine Ladd-Acosta, Todd R. Golub,
Mike Gruidl, Anupama Sharma, János Szőke, Maureen F.
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