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Abstract
Multi-exposure image fusion (MEF) aims to inte-
grate a set of low dynamic range images, producing
a single image with a higher dynamic range than ei-
ther one. Despite significant advancements, current
MEF approaches still struggle to handle extremely
over- or under-exposed conditions, resulting in un-
satisfactory visual effects such as hallucinated de-
tails and distorted color tones. With this regard, we
propose TextMEF, a prompt-driven fusion method
enhanced by prompt learning, for multi-exposure
image fusion. Specifically, we learn a set of
prompts based on text-image similarity among neg-
ative and positive samples (over-exposed, under-
exposed images, and well-exposed ones). These
learned prompts are seamlessly integrated into the
loss function, providing high-level guidance for
constraining non-uniform exposure regions. Fur-
thermore, we develop a attention Mamba module
effectively translates over-/under- exposed regional
features into exposure invariant space and ensure
them to build efficient long-range dependency to
high dynamic range image. Extensive experimen-
tal results on three publicly available benchmarks
demonstrate that our TextMEF significantly outper-
forms state-of-the-art approaches in both visual in-
spection and objective analysis.

1 Introduction
Natural scenes exhibit a vast range of light intensities, rang-
ing from intense sunlight to faint starlight, differing by up to
100 million orders of magnitude [McCann and Rizzi, 2011].
However, conventional photography equipment, such as mo-
bile phones and SLR cameras, captures only a fraction of this
dynamic range. This limitation results in low dynamic range
(LDR) images that often exhibit over- or under-exposed ar-
eas, thereby failing to faithfully reproduce details visible to
the human eyes under extreme lighting conditions. High dy-
namic range (HDR) imaging has emerged as a solution to this
challenge, offering well-exposed images that enhance visual
perception and support various computer vision tasks includ-
ing super-resolution [Park et al., 2003], panoramic photogra-

Figure 1: (a) is the input–ground truth luminance mapping curve
on the SICEdataset, (b) and (c) are the generated results-ground
truth luminance mapping curve of HSDS-MEF and our proposed
TextMEF. A smaller area represents better results with fewer correc-
tion errors.

phy [Inanici, 2006], object detection [Biswas and Milanfar,
2017], and remote sensing [Palsson et al., 2017].

While specific hardware devices can directly produce HDR
images [Nayar and Mitsunaga, 2000], their high production
costs restrict widespread adoption in civil applications. Con-
sequently, MEF methods have garnered significant attention.
MEF aims to integrate multiple LDR images captured at
different exposures into a unified HDR image. Depending
on the number of input LDR images used, MEF methods
are broadly categorized into non-extreme [Li et al., 2013;
Shen et al., 2011; Li and Kang, 2012] and extreme expo-
sure fusion [Ma et al., 2017; Li et al., 2020] techniques.
Non-extreme methods rely on a larger set of input images
to achieve optimal fusion performance, albeit at the cost of
increased storage requirements and computational complex-
ity. In contrast, our work focuses on extreme fusion tech-
niques, which streamline the process by utilizing only a pair
of extreme exposure images to achieve efficient fusion with-
out compromising quality.

Recently, drawing on non-liner fitting ability of deep neu-
ral networks, a large numbers of learning-based MEF meth-
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ods [Xu et al., 2020b; Xu et al., 2020a; Zhang and Ma, 2021;
Xu et al., 2023; Wu et al., 2024] have been proposed and ap-
plied well. Despite great achievement, there are still come
across several challenges that hinder further improvement of
producing high-quality fused results. First, most of existing
approaches cannot precisely perceive the bright and dark re-
gions, causing over-enhancement in well-exposed regions or
under-enhancement in low-light ones. Second, when design-
ing neural networks, existing approaches often overlook sub-
tle details. As a result, the integrated outputs frequently fail
to accurately reproduce realistic textures, especially in exces-
sively dark or bright regions.

To address these challenges, we propose TextMEF, a
prompt guided multi-exposure fusion framework enhanced
by learning-based prompts, which effectively merges multi-
ple LDR images into an HDR result. Specifically, to mitigate
color discrepancies caused by uneven exposures, we develop
a new pipeline that adapts the Contrastive Language-Image
Pre-Training (CLIP) [Radford et al., 2021] model to our task.
This approach refines the prompts by learning distinct feature
distributions among over, under, and properly exposed im-
ages. The optimized prompts then direct the training of our
multi-exposure fusion network through text-image similarity
constraints in the CLIP embedding space. Given that network
interference often results in the loss of critical information,
we incorporate the advanced Mamba [Gu and Dao, 2023;
Zhu et al., 2024] block along with newly introduced atten-
tion Mamba and mutual guided Mamba, achieving enhanced
contrast and detail in the resultant fused image.

Thanks to the meticulously designed modules and the ef-
fective prompt learning strategy outlined above, our TextMEF
framework demonstrates superior performance across several
widely used datasets. A straightforward example is given in
Figure 1, where the results of our method not only enhance
visual appeal but also deliver fused images with distinct tar-
gets and realistic details. The main contributions of this paper
are summarized as follows:

• We leverage a pretrained CLIP model to provide cross-
modal contrastive constraints from text to image, ben-
efiting from its robust visual-language priors. Our
method achieves a trade-off between metric-oriented
and perceptual-oriented objectives.

• To fully unleash the potential of the CLIP priors, we em-
ploy prompt learning to discover more precise cues, thus
providing richer and more detailed semantic guidance.

• We design the attention Mamba module and the mutual-
guided Mamba module. The former helps capture
prominent features and protect them under varying ex-
posure levels, the latter promotes efficient feature fusion,
enabling the model to autonomously learn the comple-
mentary information between different exposure inputs.

• Evaluations on three prevailing benchmark datasets and
against seven state-of-the-art multi-exposure fusion ap-
proaches demonstrate that our proposed TextMEF can
significantly enhance color representation while accu-
rately recovering texture details.

2 Related Work

2.1 Learning-based MEF Approaches

In recent years, deep learning [Liu et al., 2024a] has made
significant advancements in the field of multi-exposure fu-
sion. DeepFuse [Ram Prabhakar et al., 2017], a pioneer-
ing approach, set a precedent by applying the feature pro-
cessing capabilities of neural networks to MEF. Subsequent
methods have predominantly focused on innovations in net-
work architecture and improvements in loss functions. Ar-
chitecturally, MEF-GAN [Xu et al., 2020b] and AGAL [Liu
et al., 2022] introduced Generative Adversarial Networks
(GANs), with the former leveraging GANs to effectively ex-
tract latent representations from reference images, while the
latter employed global-local hierarchical constraints to en-
hance network learning. More recently, TransMEF [Qu et al.,
2022] combined CNN and Transformer modules to extract
richer features through self-supervised multi-task learning,
and SwinFusion [Ma et al., 2022] utilized the advanced Swin-
Transformer to achieve global information integration and de-
tail preservation. Differently, CRMEF [Liu et al., 2024c] em-
ployed neural architecture search to adaptively derive a super-
network. In terms of loss functions, following the pioneering
MEF-SSIM [Ma et al., 2015], MEF-CL [Xu et al., 2023] and
HoLoCo [Liu et al., 2023] introduced contrastive learning-
based loss constraints, guiding the fusion process through dis-
tinct positive and negative sample settings. HSDS [Wu et al.,
2024], on the other hand, used an automated search method
to construct loss functions without human intervention. Un-
fortunately, most current structural improvements tend to fo-
cus on network stacking rather than simplification [Liu et al.,
2024b], and the potential of cross-modal constraints in loss
function improvements remains largely untapped.

2.2 Prompt Learning in Vision

Contrastive Language-Image Pre-Training (CLIP)[Radford et
al., 2021] achieved significant success in zero-shot prediction
by leveraging large-scale image-text pairs. It has since been
widely adapted for a range of visual tasks. By incorporat-
ing learnable prompt tokens, CLIP can internalize dataset-
specific biases, enhancing its recognition ability for tasks
such as object detection[Vidit et al., 2023], style transforma-
tion [Kwon and Ye, 2022], and image enhancement [Liang et
al., 2023]. CLIP-based prompt learning typically adopts tem-
plates from natural language processing, which are fed into
the text encoder, while image features are aligned with the
textual prompts through the image encoder. Techniques such
as StyleCLIP [Patashnik et al., 2021] and StyleGAN [Gal
et al., 2022] combine the generative power of GANs with
CLIP’s semantic guidance, allowing images to be optimized
toward target directions while being steered away from unde-
sired features. However, existing prompt learning approaches
have rarely addressed low-level vision tasks. In this work,
we explore the potential of prompt learning for extracting
more accurate exposure representations, enabling more effec-
tive multi-exposure image fusion.
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Figure 2: The workflow for our proposed TextMEF.

3 The Proposed Method
Our TextMEF is developed in two distinct phases. In the first
phase, using CLIP priors, we initialize a set of image prompts
derived from under-/over-exposed, and correctly exposed im-
ages. These prompts are then refined and fine-tuned to enable
better semantic alignment. In the second phase, the learned
prompts are fixed and used in conjunction with a contrastive
CLIP perceptual loss, which guides the multi-exposure image
fusion network based on Mamba architecture.

3.1 Prompt Learning
We start with a set of images, {Io, Iu, Iw}Mi=1, where Io repre-
sents over-exposed images, Iu represents under-exposed im-
ages, and Iw represents well-exposed images. The variable
M denotes the total number of images in the dataset.

For these images, we initialize one positive prompt Tp ∈
RN×512 and two negative prompts Tn1 and Tn2 ∈ RN×512,
where N refers to the number of embedded tokens in each
prompt. These prompts are intended to represent the differ-
ent lighting conditions of the images. The initialization is
done by feeding the images into the image encoder of a pre-
trained CLIP model to extract image features Φimage, and the
prompts are processed through the text encoder to generate
their respective text features Φtext.

For effective prompt learning, we leverage a multi-class
cross-entropy loss function to fine-tune these prompts so
that they properly differentiate between under-exposed, over-
exposed, and well-exposed images inspired by [Liang et al.,
2023]. The multi-class cross-entropy loss function is formu-
lated as:

Lprompt = −
M∑
i=1

3∑
c=1

yi,c log(ŷi,c), (1)

where ŷi,c is the predicted probability of the i-th sample be-
longing to class c, calculated as:

ŷi,c =
ecos(Φimage(Ii),Φtext(Tc))∑

c′∈{n1,n2,p} e
cos(Φimage(Ii),Φtext(Tc′ ))

, (2)

where the cosine similarity is used to measure the align-
ment between image features Φimage(Ii) and prompt features
Φtext(Tc).

The labels yi,c are one-hot encoded, indicating which class
the image belongs to. Specifically, [1, 0, 0] corresponds to
over-exposed images Io, [0, 1, 0] for under-exposed images
Iu, and [0, 0, 1] for well-exposed images Iw.

3.2 Loss Function
Once the prompt learning phase is complete, the learned
prompts can be used to guide the fusion network. The loss
function for the multi-exposure image fusion task consists
of two major components: Mean Squared Error (MSE) Loss
and CLIP Perceptual Loss. These losses are designed to en-
sure that the fused image both retains pixel-level accuracy and
aligns well with the learned semantic cues from the prompts.
CLIP Perceptual Loss. The purpose of the CLIP percep-
tual loss is to constrain the fused image to be semantically
closer to the positive prompt Tp and farther from the negative
prompts Tn1

and Tn2
in the CLIP feature space. The formula

for this loss is as follows:

Lclip =

∑
c∈{n1,n2} e

cos(Φimage(Ii),Φtext(Tc))∑
c∈{n1,n2,p} e

cos(Φimage(Ii),Φtext(Tc))
. (3)

This function uses cosine similarity to measure the alignment
between the image features Φimage(Ii) and the text features of
the prompts. The numerator calculates the distance between
the image and the negative prompts, and the denominator nor-
malizes the result by considering all prompts, including the
positive one.
Mean Squared Error Loss. To minimize pixel-wise differ-
ences between the ground truth and the fused image, we em-
ploy the Mean Squared Error (MSE) Loss, calculated as:

LMSE = ∥Igt − If∥22, (4)

where Igt is the ground truth image, and If is the fused im-
age. The MSE loss ensures that the final fused image retains
similar pixel intensities to the ground truth image, improving
the quality of the fusion process.
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Figure 3: Visual comparison of our method with seven state-of-the-art methods on SICE dataset. The signal maps demonstrate accurate pixel
intensity between the ground truth and our method.

Total Loss. The total loss function combines the CLIP Per-
ceptual Loss and the MSE Loss, weighted by a hyperparam-
eter λ:

Ltotal = LMSE + λLclip, (5)

where λ is a hyperparameter that controls the trade-off be-
tween the pixel-level similarity and the semantic alignment.

3.3 Network Architecture
To fully leverage the advantages of the State-Space
Model [Gu and Dao, 2023], we have integrated the Mamba
into our network. Specifically, our network architecture in-
cludes the Attention Mamba, Mutual-guided Mamba, and
Adaptive Deep Fuse modules. The source image is first pro-
cessed through a CNN to convert to feature space, then the
Attention Mamba module is used to extract important fea-
tures. Next, the Mutual-guided Mamba module performs pre-
liminary feature fusion, and then, the Adaptive Deep Fuse
module achieves adaptive information fusion. Finally, the
fused features are passed through a convolutional layer and
a skip connection from the source images to produce the final
fused image. Each module will be introduced below.
Attention Mamba Block. Given the feature maps FIu

i and
FIo
i ∈ RB×C×H×W for under-exposed and over-exposed im-

ages, respectively, the Attention Mamba module contributes
to compute attention weight maps to guide the extraction
of more prominent features, thereby laying a foundation for
more complementary and complete information fusion. The
feature extraction process can be defined as follows:

FIu
i+1 = Au(FIu

i )⊙ FIu
i ,

FIo
i+1 = Ao(FIo

i )⊙ FIo
i ,

(6)

where Au(·) and Ao(·) are the Attention Mamba Modules,
and ⊙ indicates point-wise multiplication.

Mutual-Guided Mamba Block. The mutual-guided Mamba
block achieves lightweight information complementarity
through a simple channel exchange method. Given the im-
age features FIu

i ∈ RB×N×C and FIo
i ∈ RB×N×C , the

Mutual-Guided Mamba aims to achieve lightweight informa-
tion complementarity and interaction through channel swap-
ping. Specifically, Mutual-Guided Mamba splits the features
along the channel dimension into two halves. The first half of
the channels from FIo

i is concatenated with the second half of
the channels from FIu

i to obtain FIu
i+1 and vice versa.

Adaptive Deep Fuse Block. The common element-wise ad-
dition fusion method overlooks the weights of the fused ob-
jects, which is detrimental to preserving prominent features.
Inspired by [Chen et al., 2024], we adopt a Content Guided
Attention (CGA)-based Mixup Fusion scheme to form our
adaptive deep fusion module. The CGA module provides
self-learned channel and spatial attention weights to adap-
tively modulate the feature fusion. The detailed feature fusion
process is defined as follows:

ω = CGA(FIu
i + FIo

i ), (7)

Ffuse = C1×1

(
FIu
i ∗ ω + FIo

i ∗ (1− ω) + FIu
i + FIo

i

)
. (8)

This final fused feature map Ffuse integrates the adaptive fu-
sion process, where the weights ω control the contributions
of the under-exposed and over-exposed images in the fusion
process. The convolutional layer C1×1 is used to process the
weighted fusion output.

In this formulation, we ensure that the network learns op-
timal fusion strategies by adapting the weight allocation dy-
namically, considering both channel and spatial attention.

4 Experiments
4.1 Implementation Details
We conduct experiments on the SICE [Cai et al., 2018]
dataset. The training process consists of prompt learning and
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Figure 4: Visual comparison of our method with seven state-of-the-art methods on MEF dataset.

Over/under exposed inputs

U2Fusion
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FILM
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Figure 5: Visual comparison of our method with seven state-of-the-art methods on Mobile dataset.

image fusion stages. In the first stage, we employ 315 pairs
of over/under-exposure images and 383 well-exposed images.
In the second stage, 367 over/under-exposed image sequences
with reference images are collected. To evaluate the perfor-
mance, 100/26/30 image sequences from SICE [Cai et al.,
2018], Mobile [Jiang et al., 2023], and MEF [Ma et al., 2017]
datasets are adopted for evaluation.

During the training process, all images are cropped to a
size of 224×224, and data augmentations including flip, ro-
tate, and zoom are used. The batch size and epochs for the
prompt learning and image fusion are set to 16/8 and 160/200,
respectively. We employ the Adam optimizer to guide param-
eter optimization. The learning rate for the prompt learning is
set to 5e−5, while the initial learning rate for the image fusion
is set to 2e−4, with a learning rate decay of 0.1 at epochs 100
and 135. The overall framework is implemented on Pytorch
with an NVIDIA Tesla V100 GPU.

4.2 Comparison Methods & Evaluation Metrics
We compare our method with seven state-of-the-art deep
learning-based competitors, i.e., U2Fusion [Xu et al., 2020a],
SDNet [Zhang and Ma, 2021], DeFusion [Liang et al., 2022],
MEFLUT [Jiang et al., 2023], HSDS-MEF [Wu et al., 2024],
DeepM2CDL [Deng et al., 2023], and FILM [Zhao et al.,
2024]. All methods are tested with their official codes.

For quantitative analysis, a total of nine metrics are
adopted, including three reference-based metrics, i.e.,
PSNR [Huynh-Thu and Ghanbari, 2008], SSIM [WANGZ et
al., 2004], and TMQI [Yeganeh and Wang, 2012], and six
no-reference metrics, i.e., EN [Roberts et al., 2008], AG [Es-

kicioglu and Fisher, 1995], EI [Rajalingam and Priya, 2018],
SF [Eskicioglu and Fisher, 1995], MUSIQ [Ke et al., 2021],
and PaQ-2-PiQ [Ying et al., 2020]. Among them, PSNR,
SSIM, TMQI, EN, MUSIQ, and PaQ-2-PiQ are employed for
quantitative comparisons on the SICE and Mobile datasets.
For the MEF dataset, which lacks reference images, we uti-
lize the aforementioned six no-reference metrics.

4.3 Qualitative Comparisons
We present a visual comparison on the SICE [Cai et al., 2018]
dataset in Figure 3. Certain methods, e.g., U2Fusion and
HSDS-MEF, suffer from significant detail loss in extremely
under-exposed and over-exposed areas (see the paper in the
red region of the first image sequence and the building in the
blue region of the second image sequence). Other methods,
e.g., DeFusion, MEFLUT, DeepM2CDL, and FILM, exhibit
noticeable artifacts (particularly evident in the unnatural col-
ors of the clouds in the second image sequence). Thanks to
the CLIP Perceptual Loss, our method excellently balances
details and luminance, producing fused results that realisti-
cally simulate natural illumination. Moreover, in the RGB
curves shown below, our method exhibits a distribution clos-
est to the ground truth, demonstrating the outstanding color
balance capability of our method.

Furthermore, we evaluate our method on the MEF [Ma et
al., 2017] and Mobile [Jiang et al., 2023] datasets, with the
comparison results shown in Figures 4 and 5. As illustrated
in Figure 4, most methods suffer from blurred artifacts, lead-
ing to the loss of high-frequency information. Additionally,
as seen in the second image sequence, many competing meth-
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Dataset SICE Mobile
Method Source EN PSNR SSIM TMQI MUSIQ PaQ-2-PiQ EN PSNR SSIM TMQI MUSIQ PaQ-2-PiQ

U2Fusion TPAMI’20 6.603 19.08 0.774 0.872 61.88 71.55 6.955 20.24 0.803 0.884 62.90 72.27
SDNet IJCV’21 6.638 19.27 0.808 0.888 65.91 73.66 7.142 20.10 0.836 0.893 68.15 74.21

DeFusion ECCV’22 6.648 12.79 0.718 0.736 59.78 71.96 7.076 17.07 0.802 0.838 64.95 73.09
MEFLUT ICCV’23 6.983 14.32 0.754 0.766 60.71 72.06 7.231 17.73 0.824 0.836 66.56 73.49

HSDS-MEF AAAI’24 7.039 20.20 0.862 0.908 67.09 73.66 7.232 20.96 0.833 0.893 66.83 73.71
DeepM2CDL TPAMI’24 6.698 18.91 0.779 0.892 61.64 71.96 6.969 20.65 0.802 0.895 61.89 72.34

FILM ICML’24 7.048 13.68 0.815 0.805 63.89 73.68 7.323 16.53 0.847 0.844 66.93 73.90
Ours Proposed 7.268 22.15 0.895 0.926 68.64 75.10 7.290 21.97 0.848 0.910 67.28 74.18

Improvement 0.220 1.950 0.033 0.018 1.550 1.420 -0.033 1.010 0.001 0.015 -0.870 -0.030

Table 1: Qualitative comparison with other state-of-the-art methods. Red: the best; Blue: the 2nd best.

Figure 6: Quantitative comparison with seven state-of-the-art meth-
ods on the MEF dataset.

ods display dull colors. Empowered by the specially designed
Mamba modules, our method excels at preserving edge infor-
mation while maintaining good contrast. Figure 5 presents a
similar situation to Figure 4, where our method demonstrates
superior ability to restore texture details and vibrant colors
compared to the competitors.

4.4 Quantitative Comparisons

Table 1 presents a qualitative comparison on the SICE and
Mobile datasets. Our method achieved significantly higher
performance on reference-based metrics compared to the
competitors, demonstrating that the proposed method delivers
image content structure and visual perception closest to the
ground truth. Moreover, on the learning-based no-reference
metrics, MUSIQ and PaQ-2-PiQ, our method achieves the
best performance on the SICE dataset and came in second
only to SDNet on the Mobile dataset, indicating that our
method strongly aligns with the priors of high perceptual
quality. Additionally, the quantitative comparison on the
MEF dataset is shown in Figure 6. It is notable that our
method significantly outperforms all other competitors across
all metrics, demonstrating its ability to produce images with
rich details, high edge strength and contrast, and alignment
with human visual perception.

4.5 Ablation Studies
Study on Prompt Learning. We investigated the impact of
prompt learning on the fusion stage using three variants for
constructing Lclip: fixed handcrafted prompts, a learnable
pair of one positive and one negative prompt, and our method.
Figure 7 and Table 2 shows that our learned prompts achieved
the best performance qualitatively and quantitatively, demon-
strating superior distinguishing capability.

Over/Under Inputs Fixed {p, n} {p, n1, n2}

Figure 7: Visual ablation results of prompt learning.

Study on CLIP Perceptual Loss Weight. We conducted
experiments on the weight of the CLIP perceptual loss. As
shown in Figure 8, λ = 0 (i.e., w/o Lclip) maintains over-
all proximity to the reference but struggles with varying
brightness, leading to local detail loss (prominently shown
on the building in the red rigion of the third image sequence).
Higher weights (i.e., λ = 5e−1) enhance texture details but
introduce unnatural colors and severe noise due to weakened
pixel constraints (see the first and third sequences). At a
weight of 1e−2, the loss function strikes an optimal balance
between pixel-level and semantic constraints, resulting in vi-
sually appealing outcomes. The quantitative results in Table 2
further validate this fact.
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Condition
Prompt Learning Ablation CLIP Loss Weight Ablation Network Architecture Ablation

Fixed {p, n} {p, n1, n2} 0 2e-3 1e-2 5e-1 w/o A w/o M w/o D Full Set
EN 7.290 7.286 7.268 7.254 7.261 7.268 7.207 7.237 7.185 7.252 7.268

PSNR 21.94 21.84 22.15 22.29 22.24 22.15 21.17 22.10 21.81 22.21 22.15
SSIM 0.862 0.861 0.895 0.897 0.897 0.895 0.797 0.888 0.876 0.890 0.895
TMQI 0.923 0.924 0.926 0.924 0.925 0.926 0.921 0.924 0.925 0.924 0.926

MUSIQ 66.32 68.81 68.64 67.60 68.54 68.64 66.03 68.95 68.35 68.24 68.64
PaQ-2-PiQ 73.19 75.08 75.09 74.74 74.99 75.10 73.89 75.14 74.46 75.08 75.09

Table 2: Quantitative results of ablation experiments on the SICE dataset. Bold: the best; underline: the 2nd best.

Inputs w/o Lclip λ = 5e−1 λ = 1e−2

Figure 8: Visual ablation results of CLIP perceptual loss weight.

w/o A w/o M w/o D Full Set GT

Figure 9: Visual ablation results of the network architecture. The
images are converted to the HSV color space.

Study on Network Architecture. To validate the effective-
ness of each network component, we constructed three vari-
ants: eliminating the Attention Mamba Block (w/o A), the
Mutual-guided Mamba Block (w/o M), and the Adaptive
Deep Fuse Block (w/o D). As shown in the HSV images in
Figure 9 and Table 2, w/o M significantly reduces the oppor-
tunity for image feature exchange, resulting in dull brightness
with low contrast. w/o A and w/o D weakens the ability to ex-
tract important features and adaptively fuse them, leading to

a drop in performance.
Extended Study. Figure 10 showcases experiments on fus-
ing images with varying exposure ratios. The proposed
method consistently produces robust and coherent results
across diverse exposure conditions, highlighting the adapt-
ability of the model.

Figure 10: Visual results of our method to fuse images under differ-
ent exposure ratios.

5 Conclusion
This paper propose a prompt-driven method enhanced by
prompt learning for multi-exposure image fusion. By lever-
aging CLIP’s rich priors and a prompt learning strategy, we
generate precise prompts that effectively characterize differ-
ent exposure images. Besides, we introduce two Mamba-
based modules to further enhance the vivid color and accurate
details of the fused images. This is the first study to use CLIP
to investigate image fusion, and we anticipate this methodol-
ogy will have broader applications in the future.
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