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Abstract

Smoothed online convex optimization (SOCO), in
which the online player incurs both a hitting cost
and a switching cost for changing its decisions,
has garnered significant attention in recent years.
While existing studies typically assume that the
gradient information is revealed immediately, such
an assumption may not hold in some real-world ap-
plications. To overcome this limitation, we inves-
tigate SOCO with delayed feedback, and develop
two online algorithms that can minimize the dy-
namic regret with switching cost. Firstly, we ex-
tend Mild-OGD, an existing algorithm that adopts
the meta-expert framework for online convex op-
timization with delayed feedback, to account for
switching cost. Specifically, we analyze the switch-
ing cost in the expert-algorithm of Mild-OGD, and
then modify its meta-algorithm to incorporate this
cost when assigning the weight to each expert.
We demonstrate that our proposed method, Smelt-
DOGD can achieve an O(,/dT(Pr + 1)) dynamic
regret bound with switching cost, where d is the
maximum delay and Pr is the path-length. Sec-
ondly, we develop an efficient variant to reduce the
number of projections per round from O(log T') to
1, yet maintaining the same theoretical guarantee.
The key idea is to construct a new surrogate loss de-
fined over a simpler domain for expert-algorithms
so that these experts do not need to perform the
complex projection operations in each round. Fi-
nally, we conduct experiments to validate the effec-
tiveness and efficiency of our algorithms.

1 Introduction

This paper investigates smoothed online convex optimiza-
tion (SOCO) [Goel and Wierman, 2019], a popular vari-
ant of online convex optimization (OCO) [Shalev-Shwartz,
2012]. SOCO is motivated by real-world scenarios where the
changes in states introduces additional costs, such as ther-
mal management [Zanini et al., 2010], dynamic right-sizing
for data centers [Lin et al., 2011], video streaming [Joseph

*Lijun Zhang is the corresponding author.

and de Veciana, 2012], spatiotemporal sequence prediction
[Kim et al., 2015], speech animation [Kim et al., 2015], etc.
Specifically, SOCO is typically formulated as a game be-
tween a player and an adversary. In each round ¢ € [T],
the player begins by selecting a decision x; from a convex
feasible set X C R", where n is the dimensionality. When
the online player makes a decision x;, the adversary simulta-
neously chooses a convex loss function fi(-): X — R. The
player then incurs both a hitting cost f;(x;) and a switching
cost m(x¢, x;—1) for changing its decisions between rounds.
For general convex functions, a natural choice of switching
cost is the distance between the successive decisions, i.e.,
m(x¢, X¢—1) = ||X¢ — X¢—1]|| [Zhang er al., 2022].

Following the previous work [Chen ef al., 2018; Zhang et
al., 2021], we adopt the dynamic regret with switching cost
to measure the performance of the online player, which is
formally defined as:

D-R-SC(uy, ...
T

auT)
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(fr(xe) + lIxe = xeal)) = D felwy),

t=1

where uy, ..., ur € X is a sequence of any feasible compara-
tors. Over the past years, a few algorithms [Li er al., 2018;
Chen et al., 2018; Goel et al., 2019; Zhang et al., 2021;
Zhang et al., 2022] have been proposed to minimize the dy-
namic regret with switching cost for SOCO. The optimal dy-
namic regret bound for SOCO is O(\/T(Pr + 1)) [Zhang er
al., 2021], where

T
PT(ula"'auT) :Z”ut_ut_l“ (2)
t=1

denotes the path length of an arbitrary comparator sequence
ug,..,ur € X.

However, existing work typically assumes that informa-
tion about the hitting cost, such as the gradient V fi(x;),
can be obtained immediately after the player makes a deci-
sion x;, which is often hard to satisfy in some practical sce-
narios. For example, in online advertising, the decision in-
volves selecting ad delivery strategies for users. Advertisers
adjust their strategies based on the interactions of users, like
advertisement clicks, but there is often a delay in receiving
the feedback. [McMahan et al., 2013; Joulani et al., 2013;
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He et al., 2014; Wan et al., 2022a; Wan et al., 2022c;
Wan et al., 2023; Yang et al., 2025]. Motivated by this is-
sue, we focus on SOCO with arbitrary delays, in which the
gradient of the loss function V f;(x;) arrives at the end of the
round t 4+ d; — 1, where d; > 1 represents an arbitrary delay
at round ¢.

Delayed feedback has been investigated in the standard
OCO setting over the past decades [Weinberger and Or-
dentlich, 2002; Joulani et al., 2013; Quanrud and Khashabi,
2015; Korotin et al., 2020; Wang et al., 2021; Wan et al.,
2022b; Wan et al., 2022c]. Recently, Wan er al. [2024] pro-
pose a delayed variant of OGD [Zinkevich, 2003], termed
delayed online gradient descent (DOGD), and establish an

O(VdT(Pr+1)) dynamic regret bound, where d is the max-
imum delay and Pr is the path-length defined in (2). To fur-
ther enhance the dynamic regret bound, they develop a two-
layer structured algorithm, named as Mild-OGD, which runs
several DOGD instances as the expert-algorithms at the same
time and uses delayed Hedge [Korotin et al., 2020] as the
meta-algorithm to track the best one. Mild-OGD achieves
an O(y/dT'(Pr + 1)) dynamic regret bound. However, it
lacks consideration for the switching cost, which restricts
its applicability in SOCO. Additionally, owing to maintain-
ing O(log T') expert-algorithms simultaneously, Mild-OGD
requires multiple projections onto the feasible domain per
round, which could be computationally expensive when the
feasible domain is complex.

In this paper, we develop a smoothed variant of Mild-
OGD, named as smoothed multiple delayed online gradient
descent (Smelt-DOGD), to deal with SOCO under delayed
feedback. Similar to Mild-OGD, Smelt-DOGD adopts the
meta-expert framework but explicitly accounts for the switch-
ing cost. Specifically, we prove that the expert-algorithm,
DOGD, can obtain an O(vVdT(Pr + 1)) dynamic regret
bound with switching cost. Then we modify the meta-
algorithm by additionally considering the switching cost
when deriving the weight for each expert. Smelt-DOGD
achieves an O(/dT(Pr + 1)) dynamic regret bound, which
is on the same order as the dynamic regret bound without
switching cost [Wan er al., 2024]. Moreover, if the delay
does not alter the arrival order of gradients, the dynamic re-
gret bound with switching cost can be further improved to
O(\/S(Pr +1)), where S = Zthl d; < dT represents the
sum of delays.

Furthermore, to develop an efficient method, we em-
ploy a black-box technique [Cutkosky and Orabona, 2018;
Cutkosky, 2020; Zhao ef al., 2022], which reduces the pro-
jection complexity from O(log T') to 1. Particularly, we sim-
plify the optimization task over the complicated domain X to
an optimization problem within the smallest Euclidean ball
Y encompassing X so that the projection onto ) is much
cheaper. We construct a surrogate loss over the domain )/,
which is minimized by the expert-algorithm. In this way,
the expert-algorithm only performs a simple rescaling opera-
tion instead of the complex projection and the meta-algorithm
projects the weighted decision onto the domain X" just once
per round. The theoretical analysis indicates that the efficient
variant achieves a regret bound of the same order as Smelt-

DOGD. Finally, we conduct numerical experiments on online
classification and online regression problems, and the results
demonstrate the superiority and efficiency of our algorithms.

2 Related Work

In this section, we provide a brief review of related research
in dynamic regret, SOCO and OCO with arbitrary delays.

2.1 Dynamic Regret

Dynamic regret is introduced by Zinkevich [2003] to deal
with the changing environment, where the optimal deci-
sion may vary over time. It is defined as the difference
between the loss of the online player and a sequence of
any comparators uj,...,ur € X, typically formulated as

S fe(x) = SO0, fi(uy). Zinkevich [2003] first estab-

lishes an O(v/T(1 + Pr)) dynamic regret bound for OGD,
where Pr is defined in (2). To further reduce the dynamic
regret, Zhang et al. [2018a] propose a two-layer algorithm,
named Ader, which achieves the optimal O(\/T(Pr + 1))
dynamic regret bound. Specifically, Ader runs O(logT)
OGD instances with different learning rates simultaneously
and combines them using Hedge [Freund and Schapire,
1997]. In recent years, several studies have achieved tighter
dynamic regret bounds by leveraging the curvature of loss
functions, such as exponential concavity [Baby and Wang,
2021] and strong convexity [Baby and Wang, 2022]. This
two-layer structure has gained widespread adoption in recent
years [Zhang et al., 2020; Zhang er al., 2021; Wang et al.,
2024; Yang et al., 2024al.

While uy,...,ur € X can be an arbitrary sequence in
dynamic regret, several studies [Jadbabaie er al., 2015;
Mokhtari et al., 2016; Zhang et al., 2017; Zhang et al., 2018b;
Wan et al., 2021; Wang et al., 2021] investigate the re-
stricted dynamic regret where the comparator sequence for
dynamic regret is minimizers of the online functions, i.e.,
u; = argmingey f:(x). However, as mentioned in Zhang
et al. [2018al, the restricted dynamic regret is too pessimistic
and may lead to overfitting in some problems.

2.2 Smoothed Online Convex Optimization

Due to the fact that changes of decisions may introduce addi-
tional cost in numerous real-world scenarios, SOCO has re-
ceived extensive attention in the machine learning commu-
nity. In the literature, there are two performance metrics de-
signed for SOCO: competitive ratio and dynamic regret with
switching cost. While various algorithms have been proposed
to reduce the competitive ratio, all of them are limited to the
lookahead setting where the learner can observe the hitting
cost fi(-) before making the decision, and may rely on strict
conditions, such as the strong convexity and quadratic growth
[Lin et al., 2011; Bansal et al., 2015; Chen et al., 2015;
Li et al., 2018; Goel and Wierman, 2019; Li et al., 2020;
Zhang et al., 2021; Wang et al., 2021]. For this reason, our
subsequent discussion will primarily focus on the dynamic re-
gret with switching cost, which requires weaker assumptions.

Li et al. [2018] consider a setting where the online player
has access to the next W hitting costs and propose reced-
ing horizon gradient descent (RHGD) to minimize the dy-
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namic regret with switching cost. However, they choose
the switching cost in the form of a quadratic function, i.e.,
lx: — x¢_1]|?/2, which may not be well-suited for general
convex functions. Moreover, their analysis relies on the strin-
gent conditions, like the strong convexity and smoothness,
which are difficult to satisfy in practical applications. On-
line balanced descent (OBD) [Chen et al., 2018], a classic
algorithm in SOCO, achieves an O(v/T'L) dynamic regret
bound with switching cost, where L is the upper bound of
the path-length, i.e., Pr = 23:1 llu; —ui—1|| < L. No-
tably, this upper bound is nonadaptive as it depends on L,
rather than the actual path-length Pr. Later, regularized
OBD (R-OBD) [Goel et al., 2019] improves the dynamic
regret bound with switching cost to O(y/T'Pr,), where

Prg, = Zle lu; — uy_1]|>. Although the regret bound
of R-OBD is adaptive, R-OBD chooses the squared ¢3-norm
as the switching cost. To overcome this limitation, Zhang
et al. [2021] propose Smoothed Ader (SAder), which is a
smoothed variant of Ader. Similar to Ader [Zhang et al.,
2018al, SAder employs a two-layer structure and is proven
to attain an O(y/T(Pr + 1)) dynamic regret bound with
switching cost.

2.3 OCO with Delayed Feedback

Weinberger and Ordentlich [2002] first consider the setting in
which the feedback of each decision x; will be received at
end of round ¢ +d’ — 1, where d’ is a fixed delay, and develop
a method for adapting classic OCO algorithms to delayed set-
ting. They choose the static regret as the performance metric
and demonstrate that if a vanilla OCO algorithm achieves a
regret bound of R(T") in non-delayed setting, this method can
obtain a regret bound of d’' R(T'/d’). However, in practice, the
delays are typically arbitrary, which limits the applicability of
this method.

To deal with OCO with arbitrary delays, Joulani et al.
[2013] extend the above technique, which can attain a re-
gret bound of dR(T'/d) for traditional OCO algorithm with
R(T) regret, where d is the maximum delay. Later, Quan-
rud and Khashabi [2015] propose a variant of OGD to handle
the OCO with delays, which achieves a static regret bound of

O(V/S), where S = Z?:l d; > T is the sum of delays over
T rounds. In recent years, Korotin ef al. [2020] consider the
problem of prediction with expert advice and propose delayed
Hedge, achieving an O(+/S) static regret bound. However, all
the aforementioned studies focus on the static regret, which is
only meaningful for environments where at least one fixed de-
cision can minimize the cumulative loss, and is not suitable
for non-stationary environments in which the optimal deci-
sion varies over time.

To address this issue, Wan et al. [2024] investigate the
dynamic regret under delayed OCO and develop DOGD, a
variant of OGD, which can achieve a dynamic regret bound
of O(V/dT (P +1)). DOGD queries the gradient V f; (x;) at
round ¢ and because of delayed feedback, it only uses each
gradient received at round ¢ to perform a gradient descent
step. To further reduce the dynamic regret bound, Wan et
al. [2024] design Mild-OGD, which runs several DOGD in-
stances at the same time and uses delayed Hedge [Korotin et

al., 2020] to track the best one. While Mild-OGD is proven to
obtain an optimal O(\/dT'(Pr + 1)) dynamic regret bound,
it is inefficient as it performs O(logT') projection operations
in each round.

3 Main results

In this section, we first start with necessary assumptions and
then present our Smelt-DOGD with theoretical guarantees.
Finally, we develop an efficient version of Smelt-DOGD.

3.1 Assumptions

We adopt the common assumptions of online convex opti-
mization (OCO) [Shalev-Shwartz, 2012].

Assumption 1. (Convexity) All loss functions fi(-) are con-
vex in the domain X.

Assumption 2. (Bounded gradient norms) The norm of the
gradients of all loss functions over the domain X is bounded

by G, ie. |V f()|| < G, Vt € [T).

Assumption 3. (Bounded domain) The diameter of the do-
main X is at most D, i.e., maxxyex |x —y|| < D, and
0ck.

While the above assumptions is enough to handle SOCO
with delayed feedback, previous work [McMahan and
Streeter, 2014; Wan et al., 2024] additionally introduces the
following assumption to achieve a tighter regret bound.

Assumption 4. (In-Order property) The delay of queries
does not alter the arrival order of the gradients, i.e., for any
1<i<j<T, Vfi(x;)arrives before V f;(x;).

Although Assumption 4 may appear overly stringent, it is
indeed satisfied in certain applications. For instance, in par-
allel and distributed optimization, the delay d; in each round
tends to gradually increase, i.e., d; < d;41, meaning that the
gradient queried first is more likely to arrive first [McMahan
and Streeter, 2014; Zhou et al., 2018]. Therefore, it is reason-
able to assume that the delay enjoys the In-Order assumption.
Notably, we need to emphasize that Assumption 4 is not al-
ways required and we will explicitly state the requirement in
subsequent theorems.

3.2 Smelt-DOGD

Due to the lack of consideration for switching cost, Mild-
OGD cannot be directly applied to SOCO with delayed feed-
back. To overcome this limitation, we first provide a novel
analysis of its expert-algorithm, DOGD, and then modify the
meta-algorithm to account for the switching cost. Our pro-
posed method is outlined below.

Expert-algorithm. As described in Algorithm 2, we
choose DOGD as the expert-algorithm. The input of expert-
algorithm is the learning rate n. Due to the delayed feedback,
we receive a set of gradients {V fj (xx) | k € F;} in each
round ¢, where 7y = {k € [T] | k + d — 1 = t} represents
the index set of queried gradients arriving in round ¢ and the
elements in this set are sorted in the ascending order. For each
gradient received in round ¢, the expert-algorithm performs a
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Algorithm 1 Smelt-DOGD: Expert-algorithm

Algorithm 2 Smelt-DOGD: Meta-algorithm

Require: A learning rate n
1: Initializationz] = Oand 7 =1
2: for time stept = 1to T do
3:  Submit x; = 2" to the meta-algorithm
4:  Receive gradients {V fj(xx)|k € F:} from the meta-
algorithm
5 for k € F; do
6 Compute z" | = Iy [27 — 0V fi(xk)]
7: Setr=71+1
8: end for
9: end for

gradient descent update based on its arrival order and then
projects the result onto the feasible domain, i.e.,

NV fr(xx)], 3)

where Iy [-] is the projection onto the domain X'.

Although Wan er al. [2024] have established the dynamic
regret bound for DOGD, they do not consider the switching
cost. In the following, we derive the dynamic regret bound
with switching cost for DOGD.

Theorem 1. Under Assumptions 1, 2 and 3, for any compara-
tor sequence uy,...,ur € X, by setting n = 2

no_ n
Zry1 = x [ZT -

G Tlmf

DOGD ensures

D? 4+ DP d
D-R-SC(uy, ..., uy) < % +0G*> my
t=1

+ C +nGT
<O(S(Pr+1)+0),

wherem; =t — Y '_ |Fil, S = 23:1 dy < dT is the sum
of delays, d is the maximum delay and

B { 0, if Assumption 4 holds,

min{ DGT, 2dGPr}, otherwise. @

Remark 1. From the analysis of Wan er al. [2024], it is
direct to verify that min{ DGT,2dGPr} < G+/2dTDPr

and Zthl my < Zthl dy = S < dT. Therefore, Theorem 1
implies that the dynamic regret with switching cost of DOGD
is O(V/dT (Pr+1)) in the worst case and can achieve a better
regret bound of O(v/S(Pr + 1)) when Assumption 4 holds.

Remark 2. It is worth noting that if we set the learning rate

asn = Y D§+PT DOGD enjoys an O(\/dT(Pr + 1))
=1 Mt
regret bound whllch is better than the bound in Theorem 1.

This indicates that if we know the path-length beforehand,
we can tune the learning rate to obtain an improved bound. To
deal with the uncertainty of the path-length, we choose to run
multiple instances of DOGD with different learning rates and
track the best one using the meta-algorithm outlined below.

Meta-algorithm. As summarized in Algorithm 2, the meta-
algorithm takes two input parameters: the hyper-parameter
step size « and the set of learning rates for experts H. We

Require: A parameter o and a set H containing learning
rates for experts
1: Activate a set of experts { E™|n; € H} by invoking the
expert-algorithm for each learning rate n; € H
2: Sort learning rates in the ascending order and set wi* =

H|+1
“LJJW, let x1, {x]"})¥., be any point in X

for time stept = 1 to T" do
Receive x;* from each expert E”f‘
Play the decision x; = >, 5, w/"x/"
Query V f+(x;) and receive {V fi.(xx)|k € Fi}
Update the weight of each expert according to (6)
Send {V fi.(xx)|k € Fi} to each expert E

end for

D e A

first active a set of experts { E"|n; € H} by invoking the
expert-algorithm for each ; € H in Step 1. It’s worth noting
that the learning rates 7); are arranged in the ascending order,
meaning 177 < ... < Nx - In Step 2, we initialize the weight
w{" of each expert as

B (s R
i+ DA

In each round t € [T, the meta algorithm receives the de-
cision x;" from each expert-algorithm E" and then com-
putes a welghted decision x; based on these decisions: x; =
Z eH wi’x;". Subsequently, the meta-algorithm queries
the gradlent V fi(x:) of the current decision x;. Due to the
delayed feedback of the gradient, it only receives the results
of previous queries {V fi(xx)|k € F:}. The meta- algorithm
then updates the weight of each expert algorithm w}’} ; ac-
cording to:

&)

. i
i U}?ZB a(zke-rt S""(xkl)

Ja (6)
o ZMEH wfeia(zkeﬁ s (o )+ ||t =4 1)

where « is a parameter and sy (x;") = (V fi.(xx), X' — X),
in which we use the surrogate loss to avoid the inconsistent
delay between the meta-algorithm and the expert-algorithm.
Diverging from the Mild-OGD, Smelt-DOGD incorporates
the switching cost into the loss of each expert-algorithm
to measure its performance in (6). In the last, the meta-
algorithm sends the queried gradient {V f(xx)|k € Fi} to
each expert £*. Then we present the following theorem to
establish the theoretical guarantee for Smelt-DOGD.

Theorem 2. Under Assumptions 1, 2 and 3, for any com-
parator sequence Uy, ..., ur € X, by setting

27D . 1
L Ko T

where N = [$logy(T+1)] + 1,8 = Y, my,my =t —
)
D-R-SC(uy, ...,ur) < O(\/S(Pr + 1) + O),

where S = ZZ;I dy and C'is defined in (4).
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Remark 3. Theorem 2 implies that Smelt-DOGD attains an
O(\/S(Pr + 1) 4+ C) bound for dynamic regret with switch-
ing cost, which is on the same order as Mild-OGD. If As-
sumption 4 holds, Smelt-DOGD can achieve an regret bound
of O(\/S(Pr + 1)). Conversely, if Assumption 4 is not sat-

isfied, Smelt-DOGD obtains an O(\/dT (Pr + 1)) dynamic
regret bound, where d is the maximum delay.

3.3 Efficient Smelt-DOGD

In Smelt-DOGD, each expert-algorithm is required to project
its decision point z; onto the feasible domain X" in (3) per
round. Since Smelt-DOGD simultaneously runs O(log T')
expert-algorithm instances, it requires O(logT") projections
on average per round, which may be computationally ex-
pensive, especially when the feasible domain X is com-
plex. To overcome the above-mentioned issue, we develop
an efficient version of Smelt-DOGD by using a black-box
technique [Cutkosky and Orabona, 2018; Cutkosky, 2020;
Zhao et al., 2022; Yang et al., 2024b], which reduces the pro-
jection complexity from O(log T') to 1. The theoretical anal-
ysis demonstrates that the efficient variant achieves the same
order of dynamic regret bound as Smelt-DOGD. Although
this reduction method has been previously utilized to reduce
the projection complexity under the standard OCO, our re-
sults demonstrate that it is also applicable to SOCO with de-
layed feedback for the first time.

The key idea of our reduction technique is to replace
the expensive projection onto the feasible domain X" in the
expert-algorithm with a cheaper rescaling operation. Firstly,
we introduce a simpler domain ) to replace the feasible
domain X. In particular, we choose ) as the minimum
Euclidean ball containing the feasible domain, i.e., )V =
{x||Ix|| < D} 2 X. Then, following the approach of the
previous work [Cutkosky, 20201, we construct a surrogate
loss function g; : ) — R over the domain }:

gt(y?) = (V fi (x¢) ,Y? —¥i)

(7
— L fix) viy<oy - (Ve (x¢), ve) - Ma(y}),

where My (y) = infyxcx ||y — x| is the distance between
y and domain X, v; = (y: — x¢) / ||y+ — x¢|| is a unit vec-
tor indicating the projection direction and Iy is an indicator
function defined as

Lesr = 1 if A holds,
A=Y 0 else.

Our expert-algorithm will minimize the surrogate loss
g+(y?) so that it only performs a simpler rescaling opera-
tion to the surrogate domain ). In each round, we project
the weighted decision point y; back onto the feasible domain
X only once in the meta-algorithm. Applying this reduction
technique to Smelt-DOGD, we develop the efficient version
of Smelt-DOGD, as described below.

Expert-algorithm. As shown in Algorithm 3, our expert-
algorithm performs the gradient descent step using the gradi-
ent Vg (y) of the surrogate loss over the domain ). In each
round, after receiving the gradient set {Vgi(yr)|k € Fi}
from the meta-algorithm, the expert algorithm utilizes the

Algorithm 3 Efficient Smelt-DOGD: Expert-algorithm

Require: A learning rate n
1: Initialize z] = 0and 7 = 1
2: for timestept = 1to 7 do
3:  Submity; = z” to the meta-algorithm
4:  Receive gradients {Vgi(yr)|k € F:} from the meta-
algorithm
5 for k£ € F; do
6 Compute 2" | = 27 —nVgi(yr)
7: Project ! ; to the domain ) according to (8)
8
9
0

Sett=717+1
end for

10: end for

Algorithm 4 Efficient Smelt-DOGD: Meta-algorithm

Require: A parameter o and a set 7 containing learning
rates for experts

1: Activate a set of experts { E"|n; € H} by invoking the
expert-algorithm for each learning rate ; € ‘H

: Set wy’ of each expert according to (5) and initialize
x1, {y7"}, to be any point in X

: for time stept = 1to 7 do

Receive y,* from each expert £

Compute the decision ;11 = 3, 3 wi'y"

Submit X1 = Iy [yt+1]

Query V fi(x;) and receive {V f,(xx )|k € F:}

For each gradient in {V fi(xx)|k € F;}, calculate

{Var(yr)lk € Fi}

9:  Update the weight of each expert according to (9)

10:  Send {Vgy(xx)|k € F;} to expert EM

11: end for

[\%]

e AN U

gradient of the surrogate loss to update its own decisions. Af-
ter we update the decision 2. 11 in Step 6, we can just use
a scaling operation to project this decision into the surrogate

domain V:
D
no _m T
Bre1 T P (H{ a7,,[|<0} T z7, || H{HZZ+1||>D}> ’
(8)

which is more efficient than the traditional projection opera-
tion.

Meta-algorithm. Our meta-algorithm is presented in Algo-
rithm 4. Similar to Smelt-DOGD, we first activate a set of
experts { E"|n; € H} with different learning rates. In each
round ¢, the meta-algorithm receives decisions y,” from the
expert algorithms and computes a weighted sum of these de-

cisions:
_ MNi i
Yt+1 = E W'Yy -
ni€H

Since these decisions y,” lie within the domain ), the
result y,y+; needs to be projected onto the feasible do-
main X, which is the only projection performed in each
round. After receiving the gradient information, we calcu-
late the gradient {Vgy(yx)|k € Fi} using {V fr(xx)|k €
Fi}. According to the Lemma 1 in Zhao er al. [2022],
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it is not hard to verify that for any y € ), when
(Vfi(xt),vs) > 0, we ensure Vg, (y) = Vfi(xi), where
ve = (y — Tx[y]) / |y — Iyl When (VF; (x:) ,vs) <
0, we have Vg, (y) = Vi (x¢) — (Vfi (x¢), V) - v¢. No-
tably, when deriving the gradient Vg, (y:), we encounter the
need to calculate Iy [y;]. However, we can simply utilize the
previous results x; from Step 6 in Algorithm 4. We also in-
corporate the switching cost of each expert algorithm over the
domain Y into the surrogate loss function:

)

—a(Sher, O HyE—yi )’

whie~ (e, e +|yi -y,
i __ t
Wiy =

)]
Zue’H wfe
where
he(yi) = (Vr(yr), ¥ — yr)-
From the above discussion, it is evident that our effi-
cient Smelt-DOGD reduces the projection complexity from

O(logT) to 1. Next, we present the dynamic regret bound
with switching cost for the efficient Smelt-DOGD.

Theorem 3. Under Assumptions 1, 2 and 3, for any com-
parator sequence Uy, ...,up € X, by setting

2D _ 1
"= {”f:m"—lv‘"“}’a— 2(C+2)DVB

where N = [$1logy(T +1)] + 1,8 = Zthl me,my =t —
22:1 | Fi|, efficient Smelt-DOGD ensures

D-R-SC(uy,...,ur) <OKS(Pr+1)+C),

where S = Ethl dy and C'is defined in (4).

Remark 4. Theorem 3 demonstrates that the efficient Smelt-
DOGD can achieve an O(+/S(Pr + 1) + C) dynamic regret
with switching cost, which implies that it reduces the projec-
tion complexity of Smelt-DOGD from O(logT) to 1 while
preserving the order of its regret bound.

4 Experiments

In this section, we evaluate the performance of the proposed
Smelt-DOGD and efficient Smelt-DOGD methods against an
existing algorithm for OCO with delayed feedback, Mild-
OGD [Wan et al., 2024], through numerical experiments. For
the parameters, we set those of Smelt-DOGD and efficient
Smelt-DOGD according to Theorem 2 and Theorem 3, re-
spectively. As for Mild-OGD, we follow recommendations
from Theorem 3 in Wan et al. [2024].

4.1 Online Classification

We implement the online classification on ijcnn1 dataset from
LIBSVM Data [Chang and Lin, 2011; Prokhorov, 2001]. Let
T denote the number of total rounds. In each round ¢ € [T,
a batch of training examples {(x¢.1,%¢.1) - - -, (Xt.ms Yt.m) }
arrive, where (x¢ ;,4;;) € [-1,1]" x {-1,1},i=1,...,m.
The online learner aims to predict a linear model w; € WV and
suffers both a hitting cost fi(w;) = 2 37" |w/ x;; — ]
and a switching cost ||w; — w;_1]|. In practical applica-
tions, there is often a trade-off in the switching cost, i.e.,

A ||wy — wy_1||, thus the total loss in each round is Hy(w;) =
Ly ‘w:xm‘ - ym‘—&—)\ |w; — w_1||. Although Smelt-
DOGD only considers the setting where A = 1, we can

rescale the loss function to satisfy the requirement. Specif-
ically, we redefine the hitting cost as f t(;“) , and our methods

will minimize the following loss function

1 m
he (we) = . Z |W;|—Xt,i — yt,i| + [[we — weq |-
i=1

In this experiment, we set domain diameter as D = 10 and
follow Zhao et al. [2022] to choose the domain WV as an ellip-
soid W = {w € R" | w'Ew < A\pin(E) - (D/2)?}, where
E is a certain diagonal matrix and A, denotes its minimum
eigenvalue. To simulate the changing environment, we flip
the labels of samples every 1000 iterations. For this dataset,
dimensionality n = 22 and we set T' = 4000, batch size
m = 256,G = /22, A\ = 10 and delay d, is selected uni-
formly at random from [1, 5].

The results, including the cumulative loss Zle hi(wy),
the instantaneous loss h;(w;) and the running time (in sec-
onds), are presented in Figure 1 with error bars. All curves
are averaged over 10 runs under different random seeds. As
can be seen, both of our proposed methods suffer less cu-
mulative loss than Mild-OGD. Moreover, our efficient Smelt-
DOGD achieves a comparable performance to Smelt-DOGD,
while achieving approximately 4 times speedup due to the
improved projection complexity.

4.2 Online Regression

In this experiment, we consider a least mean square regres-
sion problem. In each round ¢, a small batch of training
examples {(%¢,1,%¢,1),- -, (Xt,m, Yt,m)} arrive, and simul-
taneously, the learner makes a prediction w; of the unknown
parameter. The learner suffers a loss, defined as fi(w;) =
LS (W xei — yri)? + AW — wie_1]], where m is the
batch size and ) is the trade-off parameter. We also aim to
minimize the rescaled function

1
o Z (W:Xt,i = ym)Q + Wy —wyq]].

=1

m

ht (Wt) =

We conduct the experiments on a synthetic dataset, which
is constructed through the following process. We first sam-
ple the ground truth vector w, from an ellipsoid W =
{weR" | w Ew < A\uin(E) - (D/2)?}, where D is set to
be 10, E is a certain diagonal matrix and Ay, denotes its
minimum eigenvalue. As for the feature vector x; ;, we sam-
ple them uniformly at random from [—1, 1]™. Afterwards, we
generate y; ; according to a linear model: y; ; = W*Txm + €,
where the noise ¢; is drawn from a normal distribution with a
mean of 0 and a standard deviation of 0.1. We set the dimen-
sionality n = 500, T' = 4000, batch size m = 128, trade-
off parameter A = 10, D = 200 and delay d; is selected
uniformly at random from [1,5]. To simulate the changing
environment, we flip w, every 1000 iterations.

We report the cumulative loss Zil hi(wy;), the instanta-
neous loss h(w;) and the running time (in seconds) in Fig-
ure 2 with error bars. All curves averaged over 5 runs under
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Figure 1: Results for the online classification.
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Figure 2: Results for the online regression.

different random seeds. As shown in Figure 2, our Smelt-
DOGD and efficient Smelt-DOGD suffer less loss than Mild-
OGD. Additionally, efficient Smelt-DOGD is significantly
more efficient compared with other methods, albeit with a
slight compromise on the cumulative loss.

To summarize, the empirical results demonstrate the effec-
tiveness of our methods in addressing the switching cost, as
well as efficient Smelt-DOGD’s superiority in terms of the
running time.

5 Conclusion

In this paper, we investigate SOCO with arbitrary delays. We
extend Mild-OGD, a two-layer algorithm for OCO with de-
layed feedback, to account for the switching cost. We first
provide a novel analysis of its expert-algorithm, and take the
switching cost into consideration when assigning the weight
to each expert in the meta-algorithm. Our proposed method,
Smelt-DOGD, can achieve an O(y/dT(Pr + 1)) dynamic

regret bound with switching cost. Moreover, to reduce the
computational overhead, we employ a black-box technique
to develop an efficient version of Smelt-DOGD, which only
performs a single projection per round, yet still keeps the or-
der of its regret bound. Finally, the results of experiments
further validate the superiority of our methods.
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