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Abstract

Emotion Recognition in Conversation (ERC) aims
to detect the emotions of individual utterances
within a conversation. Generating efficient and
modality-specific representations for each utter-
ance remains a significant challenge. Previous
studies have proposed various models to integrate
features extracted using different modality-specific
encoders. However, they neglect the varying con-
tributions of modalities to this task and introduce
high complexity by aligning modalities at the frame
level. To address these challenges, we propose
the Multi-modal Anchor Gated Transformer with
Knowledge Distillation (MAGTKD) for the ERC
task. Specifically, prompt learning is employed
to enhance textual modality representations, while
knowledge distillation is utilized to strengthen rep-
resentations of weaker modalities. Furthermore, we
introduce a multi-modal anchor gated transformer
to effectively integrate utterance-level representa-
tions across modalities. Extensive experiments on
the IEMOCAP and MELD datasets demonstrate
the effectiveness of knowledge distillation in en-
hancing modality representations and achieve state-
of-the-art performance in emotion recognition. Our
code is available at: https://github.com/JieLi-dd/
MAGTKD.

1 Introduction

Emotion plays a pivotal role in human communication, in-
fluencing not only the content but also the tone and context
of interactions. Emotion Recognition in Conversation (ERC)
aims to identify the emotional states expressed in each ut-
terance within a dialogue. This task is essential for applica-
tions in areas such as conversational agents, healthcare sys-
tems, and recommendation engines. While emotions are tra-
ditionally expressed through text, they are also richly con-
veyed in the audio and visual modalities [Poria et al., 2017,
Wu et al., 2025]. Figure 1 provides an illustrative example of
multi-modal ERC, showcasing how information from various
modalities can be integrated to improve emotion recognition.
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Ok, Paulo, why don't you just go get dressed, and
then you be on your way, ok, bye-bye.
=
N
I don't know, | just kinda ran into him last night.
[fear]

Where?

Rachel, how did this happen?

Figure 1:
dataset.

Multi-modal conversation example from the MELD

Recent research in ERC has primarily focused on indi-
vidual modalities. Text-based models often leverage con-
text modeling [Majumder er al., 2019; Song et al., 2022;
Hu et al., 2023; Yang et al., 2024] or incorporate external
knowledge [Zhong et al., 2019; Zhu et al., 2021; Lee and
Lee, 2022; Wang et al., 2025]. Audio-based models make
use of multi-task learning, attention mechanisms, and data
augmentation strategies [Latif er al., 2023; He et al., 2025;
Guo et al., 2025], while video-based models extract key
frames to enhance emotion recognition [Wei et al., 2021;
Poria et al., 2017]. However, relying solely on a single
modality for emotion recognition can overlook crucial emo-
tional cues embedded in other modalities, leading to sub-
optimal performance. This limitation has spurred increas-
ing interest in multi-modal ERC. Existing multi-modal mod-
els typically extract frame-level features for each modality,
align these features across modalities, and fuse them for
emotion classification [Tsai et al., 2019; Guo et al., 2022;
Zheng et al., 2023]. While effective, these approaches often
treat all modalities equally, disregarding the varying signifi-
cance of each modality in emotion recognition. Furthermore,
the complex alignment process increases the computational
burden, making these models less suitable for deployment in
resource-constrained environments. To address these chal-
lenges, a more efficient and adaptive approach to modality
representation and integration is needed.

Prompt-based learning has recently gained attention for its
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success in both natural language processing (NLP) and multi-
modal tasks. In ERC tasks focusing on textual data, well-
designed prompts can effectively guide models to extract rel-
evant contextual information, thereby improving the quality
of utterance-level features [Song et al., 2022; Son et al., 2022;
Yun er al., 2024]. Additionally, knowledge distillation tech-
niques have been widely explored to enhance the perfor-
mance of student models by enabling them to mimic bet-
ter the representations learned by teacher models [Lin et al.,
2022; Li et al., 2023; Yun et al., 2024; Ma et al., 2024]. To
overcome the challenges in multi-modal ERC, we introduce
the Multi-modal Anchor Gated Transformer with Knowledge
Distillation (MAGTKD), a framework designed to improve
the integration of multi-modal information for emotion recog-
nition tasks. Specifically, MAGTKD leverages context-aware
prompts to extract high-quality utterance-level textual rep-
resentations. These robust textual features are then used
within a knowledge distillation framework to enhance the
representation capacity of weaker modalities (e.g., audio and
video), ultimately improving the fusion of multi-modal fea-
tures for emotion recognition. In contrast to existing meth-
ods, which rely on frame-level feature interactions before fu-
sion—thereby increasing computational complexity [Tsai et
al., 2019; Guo et al., 2022; Zheng et al., 2023]—MAGTKD
directly fuses utterance-level features post-interaction, ad-
dressing the computational burden while maintaining or even
improving performance.

We evaluate MAGTKD on two widely-used bench-
mark datasets, [IEMOCAP and MELD. Experimental results
demonstrate that MAGTKD achieves state-of-the-art perfor-
mance on both datasets, surpassing existing methods in both
accuracy and efficiency.

The key contributions of this work are as follows:

* We propose MAGTKD, a novel framework for ERC that
effectively integrates multi-modal features, taking into
account the varying contributions of different modalities
to emotion classification.

* MAGTKD significantly reduces model complexity com-
pared to traditional frame-level feature fusion methods.

e MAGTKD sets new benchmarks for ERC, achieving
superior performance on the IEMOCAP and MELD
datasets.

2 Related Works
2.1 Prompt Learning

Prompt Learning has emerged as an effective approach
for leveraging pre-trained models by designing task-specific
prompts to fine-tune and integrate them for downstream tasks,
enabling improved modality representations. It has been
widely adopted across various NLP tasks [Gao er al., 2021;
Heinzerling and Inui, 2021; Xu er al., 2023]. Recently, re-
searchers have begun exploring the application of prompt
learning in multi-modal settings [Tsimpoukelli ez al., 2021;
Khattak er al., 2023; Zhu et al., 2023]. [Tsimpoukelli et al.,
2021] presents a simple, yet effective, approach for trans-
ferring this few-shot learning ability to a multi-modal set-
ting (vision and language). [Khattak er al., 2023] proposes

Multi-modal Prompt Learning (MaPLe) for both vision and
language branches to improve alignment between the vision
and language representations. [Zhu et al., 2023] develop Vi-
sual Prompt multi-modal Tracking (ViPT), which learns the
modal-relevant prompts to adapt the frozen pre-trained foun-
dation model to various downstream multi-modal tracking
tasks. With success in diverse NLP and multi-modal learn-
ing applications, we extend prompt learning to the emotion
recognition task, aiming to harness its potential for enhanc-
ing emotional feature extraction and representation.

2.2 Konwledge Distillation

Knowledge Distillation (KD) aims to transfer knowledge
from a large teacher network to a smaller student network.
This knowledge transfer typically occurs at three levels: soft
labels of the final layer [Hinton et al., 2015], intermediate-
layer features [Romero et al., 2015], and the relationships be-
tween features across layers [Yim er al., 2017]. Based on the
learning strategy, KD can be categorized into offline [Passalis
and Tefas, 2018; Li et al., 2020] and online [Zhang et al.,
2018; Chung et al., 2020] distillation. In offline distillation,
the teacher model is pre-trained to guide the student model’s
learning. In contrast, online distillation involves simultane-
ous training of the teacher and student models with joint pa-
rameter updates. KD has demonstrated its effectiveness in
transferring knowledge across modalities in multi-modal re-
search [Albanie er al., 2018]. Motivated by this, we adapt KD
techniques to the multi-modal ERC task, enabling efficient
knowledge transfer between modalities to enhance emotion
recognition performance.

2.3 Modal Fusion

In the domain of modality fusion, existing works predomi-
nantly focus on extracting frame-level features and perform-
ing feature interactions at this granularity. [Tsai et al., 2019]
introduces the Multi-modal Transformer (MulT) to generi-
cally address the above issues in an end-to-end manner with-
out explicitly aligning the data. [Zheng et al., 2023] extracts
three modal frame-level features and uses an attention mech-
anism to perform alignment operations on the three modal
features. However, frame-level feature alignment often intro-
duces significant computational complexity. Unlike these ap-
proaches, our work adopts utterance-level feature extraction
and designs a novel model for multi-modal feature fusion, ef-
fectively reducing complexity while maintaining strong per-
formance in emotion recognition tasks.

3 Methods

To enhance the representation of each modality and achieve
effective multi-modal fusion, we propose the MAGTKD
model for the ERC task. Figure 2 illustrates the overall archi-
tecture of the proposed framework, with detailed descriptions
provided in the following subsections.

3.1 Task Definition

Given a set of speakers S, utterances U, and emotion labels
Y, a conversation consisting of k utterances is represented
as [S;, U1, Ym, Sj, U2y Yny ---y Siy Uk, Ym ), Where s;,s; € S are
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Figure 2: Illustration of the architecture of MAGTKD.

speakers and y,,, Yy, € Y are one of the predefined emotion
categories. If i = j, s; and s; represent the same speaker.
Moreover, uy € U represents the k-th utterance. Each ut-
terance uy, = {ty,ax, v} contains three modalities, where
t, a,v represent text, audio and video, respectively. The goal
of ERC is to predict to which emotion label y,,, the utterance
uy, belongs.

3.2 Feature Extraction

Figure 2 illustrates the extraction of modality-specific fea-
tures using dedicated encoders for each input modality. In
this section, we explain the feature generation process in de-
tail:

Text: Following prior work [Lee and Lee, 2022; Song et
al., 2022], we utilize prompt learning to model both the con-
text and speaker information. For the text encoder, we adopt
ROBERTza [Liu et al., 2019]. We construct the contextual rep-
resentation C; and the prompt P, as follows.

Cr = Concat(s; : t1,8j : ta,...,8; : tg) €))

Py = For s; : ty Now s; feels < mask > 2)

F,, = Roberta(Cy, < /s> P) 3)

where < mask > represents a special token, F;, € R'*? is

embedding of < mask >, representing the aggregated emo-
tion feature, and d is the hidden dimension of the < mask >
token.

Audio: Self-supervised learning has achieved remarkable
success not only in natural language processing but also in au-
dio and video domains [Baevski et al., 2020; Baevski et al.,
2022]. For the audio encoder, we employ Date2vec [Baevski
et al., 2022], with the audio segment ay, of the k-th utterance
as input. The process of extracting audio features is formal-
ized as follows.

F,, = Data2vec(ay,) )

where F,, € R4 s the embedding of ay, and d is the hid-
den dimension of audio features.

Video: Similar to the audio feature extraction process, we
utilize Timesformer [Bertasius et al., 2021] as the video en-
coder. The process of extracting video features is formalized
as follows.

F,, = Timesformer(vg) %)
where vy, is the video input, and F,,, € R'*4 ig the embed-
ding of vy, and d is the hidden dimension of video features.

3.3 Knowledge Distillation

Unlike traditional knowledge distillation methods that utilize
KL divergence, the multi-modal ERC task involves cross-
modal knowledge distillation. We adopt a collaborative dis-
tillation strategy based on soft labels and intermediate-layer
features, using Pearson correlation coefficients as our cross-
modal measurement approach.

d(u,v) =1—p(u,v) (6)
where p(u, v) is the Pearson correlation coefficient between
two logit vectors » and v.

Soft Label-Based Distillation leverages the soft label out-
puts from the last layer of each modality encoder to compute
the knowledge divergence across modalities at both the sam-
ple and feature levels. Pearson correlation coefficients are
employed to measure the degree of knowledge disparity be-
tween different modalities. By reducing this disparity, the
textual features transfer knowledge to the audio features. The

process is formalized as:
Y! = softmax(P}

1/7

) )
Y% = softmax (P, /T) (8)
2

T
0T
- B 7_ C
s = E Z E Z d(Y?ja ij) (9)



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

where B is a training batch, C' is the emotion categories,
Pt, P ¢ RBXC are the prediction matrix of text and au-
dio modality, respectively. 7 is a temperature parameter to
control the softness of logits.

Intermediate-Layer Feature-Based Distillation computes
similarity matrices within a batch for the textual modality
as the target matrix (via dot product between text modality
features and their transpose). Similarly, a source matrix is
computed for the audio and text modalities. Using the soft-
max function, we derive the target and source distributions.
The KL divergence between these distributions is minimized
to enable the transfer of knowledge from textual features to
audio features. The process is defined as:

1, = /T e p (10)
> st €xp(Fis)
exp(F,
- —Bp( “J/T,) Vi,j€B (11
Dot exp<Fi,s)
1 B
Ly= E;KL(TZ-IISZ-) (12)

where F; ;, FZ/ ; € RB*B are the text-modal similarity ma-
trix and the text-audio modal similarity matrix, respectively.
T;, S; are target and source distributions.

The overall loss function includes the above two losses and
the cross-entropy loss:

B
1
Lop=—5 > vi-logpi (13)

i=1
Loy=Lcg+Ls+ Ly (14)
where y; is true labels and p; is predict labels.

3.4 Multi-modal Anchor Gated Transformer

In the first stage, we utilize prompt learning and knowledge
distillation to extract utterance-level features for each modal-
ity. However, directly concatenating these features for emo-
tion recognition, in figure 3, results in degraded model perfor-
mance. To address this issue, we propose a second stage that
employs a Multi-modal Anchor Gated Transformer (MAGT)
to effectively integrate features across the three modalities.
Specifically, each modality serves as an anchor to aggregate
complementary information from other modalities. Specifi-
cally, we first use the audio and video features as anchors to
aggregate information from the other modalities. Given the
strong performance of the text modality, the raw text features
are used as an anchor to aggregate the audio and video fea-
tures enriched by other modalities.

We construct the dataset at the conversation level, where
utterance-level features from different modalities are ar-
ranged sequentially based on temporal order. For each utter-
ance, speaker and positional embeddings are added. Speaker
embedding uniquely maps each speaker in the dataset to a
sequence ID, which is then embedded using an embedding
layer.

pos

100002/ dmoact) (15)
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Figure 3: Architecture of the Concat model. Each modality passes
through a linear layer, followed by Layer Normalization (LN) and
Dropout (DP). The outputs are then processed by a shared weights
module before classification through a final linear layer.

pos
100002/ dmoact) (16)

SE = Embedding[Su, , Sugs - -+ » Suy| (17)
H,, = F,, + PE+ SE (18)

where PFE is positional embedding and SF is speaker em-
bedding. s,, represents speaker of utterance uy. Fj, =
(Frmys Fingy oo, Fry) and m € {t,a,v}. Hp, is the
positional- and speaker-aware utterance sequence represen-
tation for m modality.

Given the remarkable success of Transformers in NLP, the
effectiveness of gating mechanisms for preserving salient fea-
tures, and the superior performance of the text modality com-
pared to audio and video in ERC tasks, we introduce an
Anchor-Gated Transformer. This structure leverages a Trans-
former encoder with three inputs (Query Q € Rla*% Key
K € R"**% and Value V € R'**9) to integrate features
across modalities.

H,—m = Transformer(Hy,, Hy,, Hy,) (19)

H, ., = Transformer(Hy, H,, H,) (20)

where m € {t,a,v} and n € {t,a,v} — {m}. Hpm
represents anchor modality aggregating its own information.
H, ., represents an anchor modality aggregating informa-
tion from other modalities.

To enhance the emotional representation of each modality,
we incorporate a gating mechanism to filter out irrelevant in-
formation and retain the most effective emotional features.

Ap—sm = J(Wn—nn . Hn—)m + bn—>m) (21)

’

H =

n—sm

PE(pos,Qi-l—l) = COS(

n—m & Onm (22)

where W,,_,,,, is a weight matrix, b,,_,,, is a bias parameter,
Qs Tepresents gate, and ® is the element-wise product.

3.5 Emotion Classifier

The emotion classification task is performed using a linear
layer. The features t/, extracted from the Multi-modal Atten-
tion and Graph-based Transformer (MAGT), are transformed
into the emotion label p; corresponding to each utterance u;.
The classification process can be formalized as follows:

p; = argmax (softmax(W -t' + b)), (23)

where W € R€*? and b € R are the weight matrix and bias
vector of the linear layer, respectively. Here, C' denotes the
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number of emotion classes, and d represents the dimension
of the feature vector ¢’. The softmax function ensures that
the outputs are normalized probabilities across all emotion
classes, and argmax selects the class with the highest proba-
bility as the predicted label p;.

3.6 Training

In the first stage, the utterance-level feature extraction is op-
timized using the loss function defined in Equation 14. In the
second stage, the multi-modal fusion is performed using the
knowledge distillation (KD) loss functions defined in Equa-
tions 9 and 12. These can be formalized as:

Liyp=1Ls+Ls (24)

where ¢ refers to either the audio or video modality.

The total loss function in the second stage is the sum of
the cross-entropy loss and the two distillation loss functions,
weighted by their respective coefficients. This can be ex-
pressed as:

Lot = Leg + aLip + BLxp (25)

where « and 3 are the coefficients for the distillation losses
of the audio and video modalities, respectively.

4 Experiments

4.1 Datasets

In this section, we introduce two widely adopted benchmark
datasets: MELD and IEMOCAP. Following descriptions for
specific details of these two datasets:

MELD [Poria et al., 2019] is a multiparty conversation
dataset containing over 1,400 dialogues and more than 13,000
utterances extracted from the TV show “Friends.” This
dataset includes seven emotion categories: neutral, surprise,
fear, sadness, joy, disgust, and anger.

IEMOCAP [Busso et al., 2008] consists of 7,433 utter-
ances and 151 dialogues, divided into five sessions, each in-
volving two speakers. Each utterance is labeled with one
of six emotion categories: happiness, sadness, anger, excite-
ment, frustration, and neutral. The training and development
datasets are randomly split from the first four sessions in a 9:1
ratio. The test dataset comprises the last session.

4.2 Experimental Setup

We evaluate the performance of our model on two datasets us-
ing Accuracy (Acc) and Weighted F1-score (W_F1) as met-
rics. We designed a two-stage experimental process. The

Stage Parameter | IEMOCAP | MELD
Dimensions 768 768
Feature Learning rate le-5 le-5
Extraction Batch 4 4
Epochs 10 10
Learning rate le-5 le-4
Multi-modal Batch 16 16
Fusion Epochs 30 30

a, B 0.7,0.8 0.01,0.09

Table 1. Hyperparameters used in the experiments.

IEMOCAP MELD
Model
Acc WIF1 Acc WF1
DialogueRNN 634 6275 60.31 57.66
DialogueGCN  65.25 64.18 - 58.1
MMGCN 66.22 - 58.65 -
DialogueCRN  66.05 66.2  60.73 58.39
A-DMN 646 643 - 60.45
DialogueINAB 67.32 67.22 60.52 57.78
SACCMA 6741 67.1 62.3 59.3
Ada2l 68.76 6897 63.03 60.38
GraphCFC 69.13 6891 6142 58.86
Ours 69.38 69.59 66.36 65.32

Table 2. Performance Comparison on [IEMOCAP and MELD. Best
results are in bold, second-best are underlined.

first stage focuses on extracting utterance-level features from
different modalities, while the second stage involves multi-
modal feature fusion using a dataset constructed at the con-
versation level. The hyperparameter settings are shown in
Table 1. All experiments are conducted on a single NVIDIA
GeForce RTX 2080 Ti GPU.

4.3 Baselines

We compare our proposed model, MAGTKD, against classic
baselines, including DialogueRNN [Majumder et al., 2019],
DialogueGCN [Ghosal et al., 2019], MMGCN [Hu et al.,
2021b], and DialogueCRN [Hu e al., 2021a], as well as state-
of-the-art models such as A-DMN [Xing et al., 2022], Dia-
logueINAB [Ding et al., 2023], SACCMA [Guo et al., 2024],
Ada2l [Nguyen er al., 2024], and GraphCPC [Li et al., 2024].

4.4 Comparative Experiments

Table 2 compares our model with prior works on IEMO-
CAP and MELD. Our model achieves the best performance
on both datasets, setting new state-of-the-art (SOTA) results.
On IEMOCAP, we achieve 69.38% accuracy and 69.59%
weighted F1 (W_F1), outperforming GraphCFC by 0.99%
and 1.56%, respectively. On MELD, our model achieves
66.36% accuracy and 65.32% W_F1, with improvements of
5.17% and 6.83% over Ada2l, the previous SOTA. These re-
sults demonstrate our model’s ability to effectively integrate
multi-modal features and handle challenges in conversational
emotion recognition through prompt learning, knowledge dis-
tillation, and advanced fusion techniques.

4.5 Visualization and Analysis

Figure 4 shows t-SNE visualizations of the feature represen-
tations from the IEMOCAP and MELD datasets. We visual-
ize single-modal features (text, audio, and video) as well as
features enhanced by knowledge distillation, where the text
modality guides the audio and video modalities.

The visualizations indicate that the text modality has the
strongest discriminative power across both datasets, followed
by audio, while video shows the least discriminative ability.
After applying knowledge distillation, the audio modality im-
proves significantly, benefiting from the text modality’s guid-
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Figure 4: t-SNE visualization of feature representations for [IEMOCAP (top row) and MELD (bottom row) datasets. “kd” refers to knowledge

distillation.

ance. However, the video modality struggles to learn effec-
tively, highlighting the challenge of transferring knowledge
to modalities with weaker feature representations.

Furthermore, the audio modality in IEMOCAP shows
stronger discriminative power compared to MELD, which
results in better performance when learning from the text
modality. In the next sections, we will provide quantitative
results to further explore this trend.

4.6 Ablation Studies

Table 3 shows the results of ablation studies on feature extrac-
tion and multi-modal fusion. We evaluate individual modal-
ities and the effects of knowledge distillation from the text
modality to audio and video modalities.

The results highlight that knowledge distillation improves
the performance of the audio modality but has little effect on
the video modality. This aligns with the observations in Fig-
ure 4, where the video modality struggles to learn effectively
from the text modality due to its weaker feature representa-
tion. On the other hand, the audio modality benefits more
from the distillation process, particularly in the IEMOCAP
dataset where it has a stronger feature representation com-
pared to MELD.

For multi-modal fusion, we first tested the Concat method.
The best performance was achieved by fusing the strongest
modality features (text, distilled audio, and undistilled video).
However, adding the distilled video modality degraded per-
formance. We then tested the MAGT fusion method, which
also performed best when fusing the strongest modalities.
Notably, MAGT maintained stable performance even when
the weakest modality, the distilled video, was included.

These results demonstrate that MAGT effectively inte-
grates emotional cues from different modalities, even when
some modalities contribute less useful information.

4.7 Complexity Analysis

We define the feature dimensions of the prior frame-level
model as (S, L, D), and for the proposed utterance-level
model as (C, U, D), where:

* S: number of samples,

» L: frame sequence length,

¢ D: hidden feature dimension,

¢ C: number of conversations,

e U: number of utterances per conversation.

Assuming C'-U = S and L is consistent across modalities.

Spatial Complexity The frame-level model has spatial

complexity:

O(S-L-D) (linear with respect to .S and L).
while the utterance-level model has:

O(C-U-D) (linear with respect to C and U).

which reduces by a factor of L since C'- U = S.

Temporal Complexity
complexity is:

The frame-level model’s temporal

O(S - L*- D) (quadratic with respect to L).
whereas the utterance-level model’s complexity is:
O(C-U?-D) (quadratic with respect to U).

Thus, the relative temporal complexity is:

O(C-U?-D) el

O(S-1L2-D) L*
For shorter dialogues (U < L), the proposed model has a sig-
nificant reduction in complexity. Additionally, spatial com-
plexity is reduced by a factor of L. In summary, the proposed
model is more efficient, with linear spatial and quadratic tem-
poral complexity in U, compared to the frame-level model’s
quadratic temporal complexity in L.
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IEMOCAP MELD

Module

Acc WF1 Acce W1
Feature Extraction
T 67.09 6746 62.79 62.99
A 47.01 4591 50.38 44.80
A% 27.84 2628 4091 36.84
Axp 50.03 49.65 49.08 45.69
Vkbp 25.63 20.21 4045 36.06
Multi-modal Fusion
Concat
T+A+V 68.52 68.64 6571 65.06
T+A+Vkp 64.70 6438 6046 55.74
T+Axp+V 68.64 68.70 6586 65.18
T+Axp+Vkp 65.37 65.19 60.61 55.67
MAGT

T+A+V 68.08 68.29 6632 65.30
T+A+Vkp 68.08 68.18 65.79 64.73
T+Axp+V 69.38 69.59 66.36 65.32
T+Axp+Vkp 68.88 69.02 6579 64.73

Table 3. Ablation studies on different modalities and fusion methods
for [IEMOCAP and MELD. “KD” indicates knowledge distillation,
“Concat” is the simple fusion method, and “MAGT” is our proposed
fusion method. Best results are in bold.

4.8 Hyper-parametric Analysis

Figure 5 shows the effect of varying the hyperparameters «
(audio distillation coefficient) and S (video distillation co-
efficient) on model performance for [IEMOCAP and MELD.
For IEMOCAP, changing « significantly affects performance
when [ is fixed, while adjusting S with a fixed « results in
smaller variations. This suggests that the audio modality bet-
ter benefits from knowledge distillation, whereas the video
modality shows weaker learning. This aligns with the ob-
servations in Figure 4, where the audio modality has better
feature discriminability than the video modality. In MELD,
setting & = 0 and increasing [ initially improves perfor-
mance, but further increases lead to a decline. Similarly, set-
ting 8 = 0 and varying « shows an initial performance boost

Figure 5: (a) Hyperparametric analysis for IEMOCAP, (b) Hyper-
parametric analysis for MELD. Here, a and f3 are the coefficients
for audio and video knowledge distillation losses, respectively.
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Figure 6: (a)-(b) show the variations in Total Loss and Knowledge
Distillation (KD) Loss over training epochs for IEMOCAP across
training, validation, and test sets. (d)-(f) show the same for MELD.

followed by a decrease, confirming that the KD loss improves
model performance but requires careful tuning.

4.9 Convergence Analysis

Figure 6 presents the convergence behavior of the model on
IEMOCAP and MELD datasets. For IEMOCAP (a)-(c), as
the number of epochs increases, both the total loss and the
KD loss for audio and video modalities converge. The KD
loss for the audio modality converges steadily, while the video
modality experiences fluctuations before stabilizing, which is
consistent with the lower discriminability of video features,
as shown in Figure 4. Similar patterns are observed for the
validation and test sets. For MELD (d)-(f), the trends are
similar, with both the total loss and the KD losses for audio
and video modalities converging as epochs increase. These
results confirm the effectiveness of our model and the posi-
tive impact of knowledge distillation on training stability and
performance.

5 Conclusion

The proposed MAGTKD model effectively addresses the
challenges of multi-modal ERC by leveraging prompt learn-
ing to extract robust textual representations and employing
knowledge distillation to enhance weaker modalities. The
subsequent use of MAGT enables efficient aggregation of
emotional information across modalities, resulting in state-
of-the-art performance on both the MELD and IEMOCAP
datasets. Future work will explore extending MAGTKD to
handle more complex multi-modal scenarios, such as incor-
porating dynamic contextual information in real-time conver-
sations or addressing challenges posed by highly imbalanced
datasets.
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