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Abstract

Multi-player multi-armed bandits (MP-MAB) have
been extensively studied due to their application in
cognitive radio networks. In this setting, multiple
players simultaneously select arms and instantly re-
ceive feedback. However, in realistic decentralized
networks, feedback is often delayed due to sensing
latency and signal processing. Without a central
coordinator, explicit communication is impossible,
and delayed feedback disrupts implicit coordina-
tion, since it depends on synchronous observations.
As a result, collisions are frequent and system per-
formance degrades significantly. In this paper, we
propose an algorithm in MP-MAB with stochastic
delay feedback. Each player in the algorithm in-
dependently maintains an estimate of the optimal
arm set based on their own delayed rewards but
only pulls arms from the set, which is, with high
probability, identical to those of other players, thus
avoiding collisions. The identical arm set also en-
ables implicit communication, allowing players to
utilize the exploration results of others. We estab-
lish a regret upper bound and derive a lower bound
to prove the algorithm is near-optimal. Numeri-
cal experiments on both synthetic and real-world
datasets validate the effectiveness of our algorithm.

1 Introduction

Multi-armed Bandits (MAB) is a classic framework widely
applied in diverse fields such as online advertising, clin-
ical trials, and recommendation systems [Lattimore and
Szepesviri, 2020]. In this framework, at each time s, a sin-
gle player sequentially selects an arm k from a finite set
[K] := {1,...,K} and receives a random reward X(s).
However, in many real-world scenarios involving multiple
users, the standard MAB framework may fail to capture the
complexities. For instance, in cognitive radio systems de-
signed to efficiently share spectrum resources among users,
a key distinction from the traditional MAB problem is that
when multiple users select the same channel, they collide and
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no message is transmitted. This situation motivates multi-
player multi-armed bandits (MP-MAB) framework in which
M players simultaneously pull arms. If two or more players
pull the same arm, their rewards turn to zero which represents
failed transmission.

A problem is referred to as centralized when players can
freely communicate about their actions and rewards through
a central coordinator at each time step. In this scenario, play-
ers coordinate their actions using shared information with-
out cost [Komiyama et al., 2015]. Yet the centralized setting
incurs significant energy costs in cognitive radio networks.
To address this limitation, recent research has shifted focus
to the decentralized MP-MAB, where each player has ac-
cess only to her own information, and explicit communica-
tion is prohibited. Many studies develop implicit communi-
cation by intentionally inducing collisions to pass binary in-
formation [Boursier and Perchet, 2019; Wang et al., 2020;
Shi et al., 2020]. The mechanism enables players to fully uti-
lize the information of others and achieve performance com-
parable to the centralized setting, but it relies on synchronous
feedback from all players.

However, in practical networks, a more realistic scenario
involves users experiencing delay due to various inherent fac-
tors, including spectrum analysis, heterogeneous link layer
protocols, path loss, and wireless link errors [Akyildiz er al.,
2006; Ahmad et al., 2020]. Although the MP-MAB prob-
lem has been well studied, most existing approaches strug-
gle in the presence of delayed feedback [Shi er al., 2021;
Huang et al., 2022]. In decentralized settings, players rely on
immediate feedback to perform implicit communication, and
delays break this mechanism, leading to frequent collisions
and poor exploration efficiency.

While single-player MAB with delayed feedback has been
extensively studied, these approaches cannot be directly ap-
plied to multi-player settings, as they may lead to compe-
tition and frequent collisions among players. Specifically,
in single-player MAB, a player selects an arm but observes
the reward only after a period of delay [Joulani et al., 2013;
Lancewicki et al., 2021; Tang et al., 2024]. However, when
multiple players are involved, they tend to compete for the
same optimal arm, leading to frequent collisions. Also note
that, in single-player bandits, although delayed feedback pri-
marily affects the timeliness of updates, each feedback is sub-
stitutable over time. Specifically, if one is delayed, subse-
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Setting Algorithm Regret bound
Centralized lower bound Q (Zk>]w (I;Ag](éfl)c LM Zk>1\4 Ak g _ % )
Centralized DDSE O (> sm i}ng(WTZ + JJ 4 M Zf? ]X[Al L R[]
Decentralized DDSE O(Sians gfgi + & dz N Zk>1\/f A, kd )
i 1 log(T) dod. E[d]
Decentralized DSE O (> s HZgM,k + 2 + Zk>1u &7 + exp( e + K2M2))

Table 1: Comparison of lower bound and upper bounds of algorithms. The first row comes from Theorem 1. The second row is derived

from Corollary 1, the third row is based on Theorem 2, and the last row comes from Theorem 3. Define d; := E[d] —

d> := E[d] + /02 log(1/(1 — 0)) and d3 := E[d] +

o20/(1-0),

021og(K), where 6 € (0,1) is a quantile of delay distribution. &7 is the sub-

Gaussian parameter of delay distribution and E[d] is the expectation. We also define Ay i = f1(g) — (k).

quent feedback can still guide learning. In contrast, in the
multi-player setting, some feedback is irreplaceable: miss-
ing it may lead to miscoordination and persistent collisions.
These collisions are particularly harmful, as players pulling
the same arm receive no reward, resulting in significant re-
gret. Therefore, a key challenge for MP-MAB with delayed
feedback lies in maintaining coordination even with incom-
plete or delayed feedback. In this paper, we address this chal-
lenge, and our contributions are presented below.

1.1 Contribution

Motivated by the pressing challenge of delay in cognitive ra-
dio networks, we propose a novel bandit framework of multi-
player multi-armed bandits with stochastic delay which fol-
lows a o2-sub-Gaussian distribution with expectation E[d].
For this problem, we introduce an algorithm DDSE (Delayed
Decentralized Successive Elimination), where every player
maintains a set of arms with the highest empirical rewards
at each time. They estimate the delay and choose a set of
arms updated from an earlier time slot, which is considered to
be consistent with the choices of all players with high prob-
ability. By selecting arms from the identical arm set, play-
ers avoid collisions and mitigate the impact of delay. They
also engage in implicit communication with other players by
pulling arms from the identical arm set, thereby utilizing the
exploration results of others. Therefore, this approach effi-
ciently addresses the challenge outlined in Section 1.

Table 1 compares the regret bound of our algorithm with
DSE (Decentralized Successive Elimination), which is a sim-
plified version of DDSE. In DSE, players directly select
arms in the latest updated set of arms with the highest em-
pirical rewards, leading to a regret of O(exp(E[d]/KM +

o2/ K*M 2)) which grows exponentially with increasing
E[d} and o2. Through careful algorithm design, DDSE
successfully prevents this exponential term. The term
O(%d;}) in DDSE is the regret that players coor-
dinate with each other to select the same set of best empirical

arms. Compared with O(%E[d]) in the central-

ized upper bound, the regret of our algorithm in the decentral-

!Simplified version of DDSE. In this algorithm, players do not
estimate delay and use the latest set of arms.

ized setting differs by only O(X 2= 8k | /5100 (77))

which diminishes when the delay remains stable, i.e., 02 ap-
proaches zero. Additionally, we establish a lower bound in
Table 1, demonstrating that our regret bound is near-optimal.
We also extensively evaluate DDSE through a large number
of experiments, validating its effectiveness across various de-
layed feedback scenarios.

2 Related Work

The problem of multi-player multi-armed bandits has recently
been studied in different settings in the existing literature,
where most of the efforts have concentrated on the decen-
tralized setting. Boursier and Perchet [2019] propose an im-
plicit communication mechanism where players intentionally
collide to signal information, achieving performance compa-
rable to centralized approaches. Wang et al. [2020] improve
this communication phase by electing a leader and only al-
lowing the leader to communicate with followers. Research
also has focused on heterogeneous reward settings [Besson
and Kaufmann, 2018; Bistritz and Leshem, 2018; Tibrewal
et al., 2019; Shi et al., 20211, adversarial collision scenar-
ios [Mahesh et al., 20221, incomplete feedback [Boursier and
Perchet, 2019; Shi et al., 2020; Lugosi and Mehrabian, 2022;
Huang et al., 2022], and shareable arms Wang et al.; Xu et
al. [2022; 2023]. Recently, Richard et al. [2024] consider
asynchronous multi-player bandits in the centralized setting
and derive a constant or logarithmic regret.

There has been growing interest in stochastic delay in
multi-armed bandits. Vernade e al. [2017] investigate de-
layed Bernoulli bandits, although their approach requires
knowledge of the delay distribution. Pike-Burke et al. [2018]
consider scenarios where a sum of observations is received
after some stochastic delay. Zhou et al. [2019] explore con-
textual bandits with stochastic delay. Arm-dependent delay is
discussed by Gael et al. [2020], and Lancewicki et al. [2021]
later remove the restriction on delay distribution. Tang et al.
[2024] focus on strongly reward-dependent delay and achieve
near-optimal results. Yang et al. [2024] propose a reduction-
based framework to handle delays with sub-exponential dis-
tributions.

A similar setting to ours is multi-agent bandits with de-
lay. Existing literature has focused on decentralized coop-
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erative bandits [Cesa-Bianchi et al., 2016; Martinez-Rubio
et al., 2019], while non-cooperative game with delay is dis-
cussed in Bistritz et al.; Bistritz et al. [2019; 2022]. Zhang et
al. [2023] consider multi-agent reinforcement learning with
both finite and infinite delay. Li and Guo [2023] discuss ad-
versarial bandit problem with delayed feedback from multiple
users. Hanna et al. [2024] propose an algorithm in multi-
agent bandits with delay and derive a sub-linear regret. How-
ever, none of these works consider collisions between players.
Since collisions result in a loss of reward, current algorithms
in multi-agent bandits cannot be directly applied to our prob-
lem.

3 Preliminaries

We consider a multi-player multi-armed bandits problem with
delayed feedback. Denote by M the number of players and
K the number of arms. Let 71" denote the time horizon. At
each time s € [T, every player j selects an arm k and
has a reward which she does not observe immediately. De-
note by 7/ the arm that is selected by player j at s. If
more than one player selects the same arm at the same time,
a collision occurs, and their reward turns to zero. Define
Nk(s) == 1{|Ck(s)| > 1} as the collision indicator where
Ci(s) == {j € [M] | ©f = k} is the set of players who
pull the same arms at time step s. After a period of delay d?,
at time ¢ such that s + d/ = t, player j receives ni(s) and
areward 17 (s) 1= X} (s) [1 — ni(s)], where X} (s) is drawn
ii.d. from an unknown fixed distribution with expectation
ur € [0,1]. Note that K > M so that there is at least one
arm available for each player without mandatory overlap or
collision. Denote by [M] the set of all players and [K] the set
of arms. The expected regret is defined as

T
Rr:=T Z piy — E Z Z ri(s)]| ,
]

JE[M] s=1je[M

where (15 is j-th order statistics of p, i.e. puy > pz) >
e 2 (K-

Define d(f) := min{vy € N|P(d < ) > 6} as the quantile
function of the delay distribution. We consider the following
assumption.

Assumption 1. Let {d] }tT:Tr j—1 denote independent non-
negative random variables with sub-Gaussian distribution.
Denote by o2 the sub-Gaussian parameter and E[d] the ex-
pectation of the distribution. Then for any a > 0,

2
P(|d ~E[d]| > a) < 2exp(—ory).
203

Assumption 1 models the delay as a light-tailed random

variable, where larger delays occur with lower probability.

This behavior is consistent with real-world networks, where

delays often arise from bounded processing times, network

latency, or short-term queuing, and are typically constrained

by hardware and protocol limitations [Azarfar et al., 2015].

As a result, sub-Gaussian distributions provide a realistic and

analytically tractable model for capturing such stochastic de-
lays.

Algorithm 1 DDSE (Leader with j = M)

Input: K (number of arms), M (number of players), T'
1: Initialize M} randomly, K = [K],p =0, ¢; = 0, /i}, =
0, (63)7 = 0, fu(t) = 0.
2: whilet <T'do )
3 Explore in M;,_,and C/M,,_ .
4 if j receive a feedback from time s then
5: Al —t—s.
6
7
8

Update 27), (62)7, fur(t) accordingly.
end if
Remove from K the arm k satisfying:

i | Vi # k,i € Ks.t. LCB, (i) > UCB, (k)}| > M.
9: if t mod (K Mlog(T)]) = 0 then

10: p<p+ L

11: M, < {k | ju(t) ranks in the top-M of f1;(t).
foralli € K}.

12: if MJ # M _| then

13: Communication().

14: else VirtualCom(M;,_, ).

15: end if

16: Find g; s.t. (1).

17: end if

18: if || = M and ¢; = 0 then

19: Select M7 (j) until T.

20: end if

21: end while

Considering cognitive wireless sensor networks, sensor
nodes are usually pre-deployed [Joshi et al., 2013], so they
are equipped with information on the total number of nodes
and their ID. Consequently, we assume that each player in our
algorithms is initialized with her ID among all players and is
aware of the total number of players. Discussion on removing
this assumption is in Appendix G.

4 Algorithm

The proposed algorithm DDSE (Delayed Decentralized
Successive Elimination) is composed of exploration phase,
communication phase and exploitation phase. Denote by
Pmax the maximum number of communication phases within
a given time horizon. M7 denotes the set of the top M arms
with highest empirical rewards for player 5 during the p-th
communication phase. We have [M7| = M for all j € [M]
and p < pmax. The key idea of DDSE is to estimate de-
lay and pick /\/lf,_ o after the p-th communication phase, so
that Mj,_, = M _, for j # ( with high probability. To
better understand our algorithm, we also give an example in
Appendix B.

4.1 Exploration Phase

We assign each player an ID j and initialize M}, for each
player j € [M]. The player with j = M becomes the leader,
and others are followers. Algorithm 1 describes DDSE from
the view of the leader. The algorithm from the view of follow-
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Algorithm 2 Communication (Leader with j = M)

Algorithm 3 Communication (Follower 7)

1: Initialize i, ,at by comparing MJ and /\/lp 1-
Part 1: Remove Arm
2: for M time steps do
3: Select My, (ia-).
4: end for
Part 2: Add Arm
5: for K time steps do
6: Select at.
7: end for
Part 3: Notify End
8: for M time steps do

9. if || = M then
10: Pmax — p.

11: i < [t mod M].
12: Select /\/lf,_qj ().
13: else .

14: Select M;,qj (J)-
15: end if

16: end for

ers is in Appendix B. Define Ny (k) := Y, _, 1{nl = k,j =
M} as the number of times that the leader chooses arm k be-
fore t. Also define ny(k) := > _, 1{m] = k,d] +s <
t,7 = M} as the number of received feedback of the leader
from arm k before ¢. Denote by K the active arm set, and it is
initialized with K = [K]. The leader selects arms from K in
a round-robin way. When receiving the feedback of arm k& at
t in the exploration phase, she updates

21og(T)
ny(k) ’

21og(T)

UCB. (k) := fix(t) + ne(k) ’

LCB (k) == jus(t) —

where fiy(t) := Sk (t)/n:(k) is the empirical reward of arm k
and S (t) is the sum of rewards that the leader has collected
on arm k by the end of time ¢. During the exploration phase,
the leader eliminates an arm & from /C at ¢ if there exist more
than M arms whose lower confidence bounds are bigger than
UCBg(t).

When t mod KM [log(T)] = 0, the leader enters a new
communication phase. She sorts /i (¢) and places the arms
corresponding to the top M highest /i (t) into MJ. If M7
has changed, the leader communicates the update to the fol-
lowers by sending collisions in Communication. Otherwise,
she runs a VirtualCom, during which no collisions are sent.
Details about VirtualCom are in Appendix B. From the per-
spective of a follower /, it takes time for her to receive the
update because of the delay. However, since the leader only
communicates with followers after ./\/lé has changed, if fol-

lower / has not received the update, /\/lj #* ij. Therefore,

players need to pick a previous set Mp ¢;» Which is con-
sidered to be received by all players with high probability.
Specifically, by the sub-Gaussian property of delay, we know
that when

t — pK Mlog(T) > E[d] + /203 log(M — 1)(K +2M)(T),

1: Com ¢ ComU {(t,t+ M + K)}.
Use <~ UseU{p—g;}.
Part 1: Remove Arm
for M time steps do
« [(t+ 7) mod M].
Select M, (i).
end for
Part2: Add Arm
for K time steps do
+ [(t+ j) mod K].
Select the i-th arm in [K].
end for
Part 3: Notify End
11: for M time step do
12: Select M;,_, (7).
13: end for
14: if j has received two collisions 75 (), 7 (s’) such that
Ji,s < s',s € Com(i) and s’ € Com(7) then

N

A

@9 *® A

1

15: to,t1 < Com(i).

16: po  to/KM[log(T)] and u < Use(i).
17 iq— ¢ the index of k in MJ and a™ + k'.
18: Mpo (ig-)  at.

19: end if

/\/l{) is received by all followers with high probability. When
a player j receive a feedback at time ¢, she update the estima-
tion of E[d] and o2 with

2 (1) = ngt (dg]l{s‘FdZ < t})
alt) = S s+l <1}
S (i - 0 s+l < 1))

Esgt IL{S + d% S t}
Thus, each player j aims to find ¢; € N such that

q; :argmin {q | t > [i(t) + (p — q) K M log(T)

(D

+/2(63)7 (1) log (M—l)(K+2M)(T))} :

Then in exploration phase, followers only select arms from
M;, ¢, in around-robin way. To avoid collision with follow-
ers and ensure sufficient exploration, the leader first selects
arms in M;_ 4 with followers. Then she selects other arms
in K in a round-robin way while skipping arms in M;,_%
In other words, the leader constantly explores all arms except
those that have been eliminated. An example of the process
of arm selection is in Appendix B.

Sub-optimal arms in K are gradually eliminated by the
leader. When |K| = M, she tells the final result to follow-
ers in the next communication phase. After that, the leader
remains in the exploration phase until ¢; = 0, at which point
she moves to the exploitation phase and pulls Mgmax (4).
When a follower j receives the final update and finds ¢; = 0,
she also begins the exploitation phase and continuously se-
lects arm M7, (j) until T.
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4.2 Communication Phase

Players begin a communication phase at time ¢ such that
t = K MTlog(T)]. The length of each communication phase
is K + 2M. Motivated by Wang et al. [2020], the communi-
cation phase in our algorithm is divided into three parts. The
first and second parts are used for removing and adding an
arm in M,,. The third part is used for the leader to send the
ending signal. Let a~ denote the arm to remove and a™ the
arm to add. Given a list A, let i;, denotes the index of item &
in A such that A(ix) = k.

Part 1: Remove Arm

The leader firstly initializes i,- and a™ by comparing the dif-
ference between M7 and M; . Followers save the time
duration of current communication phase to Com and save
p — q; to Use. Then in this part, the leader selects arm

/\/l;,”_ ¢, (ia—) for M consecutive rounds. Meanwhile, follow-

ers select arms from ./\/lg,, ¢, in a round-robin way, ensuring
that each follower collides once with the leader. The round of
collision represents the index of the arm to be removed. Since
M, is ordered for all p < prax, followers can receive the up-
date of the leader to remove arm a~ from /\/l{7 by selecting

arms in M;f q;- Thus, the information is passed successfully

even if Mg is incomplete for follower j, allowing our algo-

rithm to adapt to large delays.

Part 2: Add Arm

In this part, the leader continuously selects a™ for K rounds
while followers select arms in [K] in a round-robin way. Each
follower also collides once with the leader. The collision de-
notes the arm to be added. Later, if a follower j receives two
collisions 7s(k) and 74 (k") where s < s’ and they belong to
the same Com(i), we say that she has completely received an
update of a communication phase in which the updated result
should be stored in M,,, with pg = to/KMlog(T)] and

to € Com(i). Since Use saves the index (p — g;) of M;,_
that player j uses in each communication phase p < pPyax,
the index at communication phase p is v := Use(4). Thus,
follower j finds the index of k in My, is i,- and then places

a™ in the position of M7 (i,-), which does not break the
order of M

po-
Part 3: Notify End

If |IC| = M, it indicates that all sub-optimal arms have been

eliminated and the leader selects arms in M;qu sequen-
tially, while followers continuously select arm M;, _ (j) for
M times. Otherwise, the leader does not send collisions by
selecting M (j) for M times. Finally, each follower re-
ceives a collision, which is a symbol of the end of exploration.

The reason why the beginning of our communication phase
is fixed rather than starts as Mg) changes is that players need
to ensure synchronization with others. In Wang et al. [2020],
the leader sends a collision to followers as the beginning sig-
nal of communication. However, when the feedback of this
collision is delayed, followers hardly receive it at the same
time and then stagger with the leader. Once players are not

aligned with others, followers may receive incorrect infor-
mation during the communication phase. Furthermore, since
communication and exploration are alternating, players might
end up selecting the same arm during the exploration phase,
resulting in collisions.

Denote by p’ a communication phase such that M;, is the
most recent to have been completely received by player j.
If the delay is sufficiently small, players can receive the feed-
back from the p-th communication phase before the (p+1)-th
communication begins. Then q is equal to zero in our algo-
rithm, and players continue selecting arms from MJ. We
discuss DSE, which is a simplified version of DDSE, where
players directly pull arms in M;/. This version does not esti-

mate ﬂg or (62)7 and also does not coordinate players to pull
in the same set of best empirical arms. Details on DSE are
presented in Appendix B.

S Theoretical Analysis

In this section, we provide a comprehensive analysis of our
algorithms, examining both the decentralized and centralized
settings. Additionally, we derive a lower bound to demon-
strate the near-optimality of the regret upper bound.

5.1 Centralized Lower Bound

Note that a key objective in decentralized MP-MAB is to
match the performance of the centralized setting. In the cen-
tralized case, a central coordinator enables communication
without incurring any regret. In contrast, players in the de-
centralized setting rely on implicit communication, typically
through intentional collisions, which inevitably induces some
regret. The goal is to ensure that this communication-induced
regret remains a constant, independent of the time horizon
T. Therefore, comparing the regret of decentralized algo-
rithms against the centralized lower bound is both meaningful
and standard [Boursier and Perchet, 2019; Shi et al., 2020;
Shi et al., 2021]. Theorem 1 presents a centralized lower
bound for MP-MAB with delays. Full proof of this theorem
is provided in Appendix F.

Theorem 1. For any sub-optimal gap set Sn = {Apy |
Anr ke = pary — Heey € [0,1]} of cardinality K — M and a
quantile 0 € (0, 1), there exists an instance with an order on
S and a delay distribution under Assumption 1 such that

fp > 3 (o) os()

k>M 20A]W,k
term I
/0 M 2 @
+ (E[d] — 04 1_9> ﬁ Z AM,k - 5»
k>M

term II

5.2 Regret of DDSE

Theorem 2 presents our main result, which establishes the
regret upper bound of DDSE in the decentralized setting. The
complete proof of Theorem 2 is provided in Appendix C.
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Theorem 2. In decentralized setting, for delay distribution
under Assumption 1, given any K, M, . and a quantile 6 €
(0,1), the regret of DDSE satisfies

323log(T) 15 1
< ———+ — | E 21
Rr< ), NI ( 4] + o Og(1—9)>

k>M
term A term B
+ (QE[d] +040/31 (K)) M Y a
o -
d 0g K_M Lk
k>M
term C
6561203
e + 3604+ \C/l/ ,
term E
term D
(3)
—52/2
where C1 = 3,1 gar— + e

M,k

Only the first terms in (2) and (3) are related to 7. Term
A is aligned with term I up to constant factors. Term E arises
due to the decentralized environment and is not related to de-
lay. Regarding delay, a comparison of term II with terms B,
C, and D reveals that the difference on K and M is only
O(m) log(K'). This indicates that the regret caused
by delay does not increase rapidly as K and M increase.
Therefore, our result is near-optimal.

Moreover, since the decentralized setting is generally more
challenging than the centralized one, the near-optimality of
our result (Theorem 2) with respect to the centralized lower
bound further highlights the strength of our approach. We
also establish a centralized upper bound for DDSE in Corol-
lary 1, with the proof provided in Appendix D.

We also analyze the regret of DDSE in the centralized set-
ting, where players can freely exchange information. The re-
gret upper bound is presented in Corollary 1.

Corollary 1. In centralized setting, for delay distribution un-
der Assumption 1, given any K, M, u and a quantile 6 €
(0,1), the regret of DDSE satisfies

323 log 9 1
< e 2 -
Rr E N 9 (E[d] +4/2051og (1 0))

term A

term F

656[011
OK2 2 +3\[0d

term D

MZAlk

k>M

term G

When DDSE is executed in the centralized setting, fol-
lowers are immediately aware of the leader’s latest explo-
ration results. Once the leader identifies the optimal set of
arms M*, exploitation begins without incurring the regret of
O(oglog(K)) in term C. Comparing with term II in Theo-
rem 1 and term F, G, D, we note that the regret due to delay
differs by O(m) on K and M. Proof of Corollary 1 is

provided in Appendix D.

5.3 Regret of DSE

This section presents the regret of DSE, where players do not
adjust to the same M'Z,f ¢;- Theorem 3 shows that it is critical
to maintain consistency between players. The detailed proof
is included in Appendix E.

Theorem 3. In decentralized setting, for delay distribution
under Assumption 1, given any K, M, 1w and a quantile 0 €
(0, 1), the regret of DSE is bounded by

R <z3231°g + o4 <3¢6+f zlog<119>>

k>M 6 M,k
MY o Ak 656v/202
(9+ ot KM Eldl + e
dads ds
+0 + +C5
< OKM Y sy A ]\/Ik)
term H
o (Eld o3
PAKM T 2K2M2 )
term J

If players do not estimate the delay and pull arms in M;,,
followers will collide with the leader after each communi-
cation phase ends. This happens because the leader begins
communication after she updates M7, while the followers
have not yet received this update, ultimately contributing to
term H. Additionally, followers receive incorrect information

during the communication phase if M;, # M, which leads

to an exponential regret in term J.

Compare Theorem 3 with Theorem 2 and we find by using
./\/lf,_ a4 instead of M, players will not collide with each
other after the communication ends, thereby avoiding term
H, which could be large when A?\L i is sufficiently small.
Moreover, since Mp — q¢;/ = Mp — ¢, for all j,¢ € [M]
with high probability, followers receive consistent informa-
tion from the leader. As a result, the regret due to asyn-
chronous feedback and coordination errors is reduced from
O(exp(E[d])) in term J to O(E[d]) in Theorem 2, highlight-
ing the effectiveness of our delay-aware coordination mecha-
nism.

Remark 1 (On Relaxing Assumption 1). The analysis relies
on Assumption 1, which is used to estimate the delay quan-
tile. Specifically, the sub-Gaussian assumption allows us to
derive high-probability bounds on delay, which are essential
for player coordination. Similar guarantees can also be ob-
tained under sub-exponential delay distributions.

More generally, since our goal is to estimate a delay thresh-
old d such that most delays fall below it, the delay quantile
can be estimated directly without assuming a specific distri-
bution. Given a quantile level 6, the number of observed de-
lays below d follows a Binomial(n, #) distribution, where n
is the number of samples. This enables us to bound the quan-
tile estimation error using standard binomial tail inequalities
in a distribution-free manner. We believe this quantile-based
approach offers a promising direction for extending our algo-
rithm to settings with heavy-tailed or unknown delay distri-
butions, which we leave as future work.
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Figure 1: Captured spectrum data from paging frequency bands.

6 Experiments

We conduct experiments to validate our theoretical results.
Let A S U denote the average reward
gap between consecutive arms. Each experiment runs for
T = 300,000 rounds and is averaged over 20 trials. De-
fault parameters are K = 20, M = 10, E[d] = 200,

= 100, and A = 0.05. We assume Gaussian rewards
and compare DDSE with DSE; SIC-MMAB [Boursier and
Perchet, 2019], MCTopM, RandTopM, Selfish [Besson and
Kaufmann, 2018]; Game of Throne [Bistritz and Leshem,
2018]; and ESER [Tibrewal et al., 2019]. Real-world results
are reported below, while numerical simulations are deferred
to Appendix A.

We evaluate our algorithms using real-world spectrum data
collected in Finland by the 5G-Xcast project’. Figure 1 shows
a sample of power measurements across four bands. In cogni-
tive radio networks, secondary users share spectrum with pri-
mary users without causing interference. Multi-player ban-
dit algorithms help secondary users identify available chan-
nels. A channel is considered occupied by a primary user if
its power measurement exceeds the threshold of —90 dBm,
as in Alipour-Fanid et al. [2022]. We assess performance us-
ing cumulative throughput and collisions [Wang et al., 2021;
Alipour-Fanid et al., 2022]. Throughput is computed using
Shannon’s formula:

B =Wlog,(1+ SNR),

where W denotes bandwidth and SN R denotes signal to
noise ratio. No throughput is achieved when a user selects
a busy channel or experiences a collision.

Figure 2(a) illustrates the cumulative throughput over time
for different algorithms. Our algorithm, DDSE, achieves
the highest throughput, demonstrating its effectiveness. DSE
performs slightly worse than DDSE due to the inconsistent
M%. Selfish also shows an increasing throughput as time
progresses. However, as the name suggests, players in the
Selfish algorithm explore independently without communica-
tion. In contrast, our DDSE algorithm leverages an adjusted
form of implicit communication that is robust to incomplete
feedback, making it more effective in the presence of delays.

Figure 2(b) compares the cumulative collisions across var-
ious algorithms. Notably, DDSE achieves a remarkably low
level of cumulative collisions due to the carefully designed
nature of our algorithm. It is worth mentioning that ESER

The full dataset used in this experiment is publicly available at
https://zenodo.org/records/1293283.
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Figure 2: Real-world simulation results across different algorithms.

experiences nearly zero collisions, thanks to its unique mech-
anism, where players select fixed arms in a round-robin fash-
ion during the exploration phase and pull their optimal arms
during the exploitation phase. In contrast, DDSE allows
most players (i.e., followers) to exploit arms in ./\/lfj, while
the leader explores and updates her results for the followers.
Although this method incurs slightly higher collisions than
ESER, DDSE achieves a higher throughput, demonstrating
its superior performance in terms of overall efficiency.

7 Conclusion

In this paper, we proposed the algorithm DDSE for multi-
player bandits with delayed feedback and derive a regret up-
per bound. Rather than allowing players to update blindly, co-
ordinating to maintain consistency with other players signif-
icantly improves performance and reduces regret. The lower
bound in the centralized setting further shows that our algo-
rithm is near-optimal. Practical simulations have also vali-
dated the superiority of our algorithm.

A promising direction for future work is to relax the sub-
Gaussian delay assumption. As discussed in Remark 1, our
framework can potentially be extended to handle heavy-tailed
or unknown delay distributions using a quantile-based es-
timation approach. Another direction is to study player-
dependent delays in MP-MAB, as delays in cognitive net-
works often depend on user-specific factors such as location
and device capability.


https://zenodo.org/records/1293283
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