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Abstract

Due to variations in imaging conditions, images
often exhibit discrepancies in color reproduction.
Furthermore, motion-induced blur can lead to edge
degradation, making color sensitivity and edge
blurriness two prevalent and challenging issues in
both natural image processing and medical im-
age analysis. To address these challenges, we
propose a model termed the Three-View Consis-
tency Momentum Contrastive with Sobel Opera-
tor (SVCMC). Specifically, we first design a three-
view momentum-update architecture that employs
a Sobel-augmented ResNet as the backbone. We
then introduce a novel contrastive loss, referred to
as the Three-View Consistency Momentum Con-
trastive Loss. Next, to mitigate the oscillations
and slow convergence commonly observed in con-
trastive learning, we construct a dynamic con-
trastive loss function that adapts in real time over
the training process. Finally, we validated the supe-
riority of our model on two medical image datasets
and one natural image dataset, where its classifica-
tion accuracy and convergence speed significantly
outperformed existing state-of-the-art contrastive
models.

1 Introduction

In natural image processing and medical image analysis,
color sensitivity is a common and challenging issue. For in-
stance, in tasks such as image classification [Krizhevsky et
al., 2012], object detection [Girshick er al., 2014], and med-
ical image analysis [Shen et al., 2017], variations in color
can significantly impact model performance, especially un-
der conditions of lighting changes, color distortions, or the
presence of noise. Additionally, in medical image analysis,
color variations are often less critical compared to texture
and shape, with the structure and boundaries of lesions serv-
ing as key diagnostic indicators [Litjens et al., 2017]. More-
over, medical imaging data may originate from different de-
vices, leading to color distortions and inter-device discrep-
ancies, which makes color robustness particularly important.
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To address this, researchers have proposed various methods
to enhance model robustness against color variations, such as
color histograms [Rabie er al., 2024], color jittering [Cubuk
et al., 2019], and Color-Aware Convolutions in deep learning
[Yao et al., 2025]. However, these methods often result in the
loss of some image details or introduce noise due to inaccu-
rate color representation, while also increasing computational
overhead.

Another common issue is edge blur, where the details of
object boundaries in images become unclear or distorted,
making the visual quality of the image appear blurry and less
sharp [Simonyan, 2014]. Edge information is crucial for ac-
curately understanding and processing images. This is partic-
ularly true in tasks like image classification, object detection,
and medical image analysis [Tianhao er al., 2024], where
edge information typically contains essential details about
object shapes, structures, and spatial relationships. Conse-
quently, edge blur can lead to errors in the model’s under-
standing of the image, thereby affecting task accuracy. Ad-
dressing edge blur is therefore critical for enhancing model
performance. Current solutions include deep deblurring net-
works (DeepDeblur) [Kupyn et al., 20181, CycleGAN [Zhu
et al., 2017], and super-resolution reconstruction [Dong et
al., 2014]. Although these methods are effective, they gener-
ally require substantial computational resources and labeled
data, and there is limited research on their application in self-
supervised learning.

To tackle the issues of color sensitivity and edge blur in im-
ages, this paper proposes a contrastive model with an adaptive
contrastive loss under three-view consistency constraints, in-
corporating the Sobel operator. This model demonstrates sig-
nificant advantages within a self-supervised learning frame-
work. Firstly, the Sobel operator extracts edge information
from images and integrates it into the deep network, en-
hancing the representation of image edges, improving the
model’s sensitivity to detailed features, and increasing color
robustness. Compared to existing methods, our approach
not only addresses color robustness but also mitigates edge
blur. Secondly, we introduce a three-view consistency mo-
mentum contrastive loss function, which enhances the consis-
tency of representations across different views through con-
sistency constraints, thereby improving the model’s robust-
ness to images from various angles. Momentum contrast ef-
fectively utilizes non-synchronous updated data through its
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unique dynamic dictionary and encoder update strategy, en-
hancing the learning capacity on large-scale datasets. Consid-
ering the common challenges in contrastive learning, such as
loss oscillation or slow convergence, we propose a Dynamic
Contrastive Loss. This loss function dynamically adjusts with
the training cycles, effectively reducing oscillations during
training and accelerating model convergence. The contribu-
tions of this paper are summarized as follows:

* .We propose a three-view consistency momentum con-
trastive loss function that addresses color sensitivity, en-
hancing the model’s robustness and generalization capa-
bilities.

* We integrate the Sobel operator into the ResNet main
model framework to resolve edge blur issues.

* We construct a three-view framework structure and em-
ploy momentum contrast to update view features, en-
riching feature extraction while enhancing stability.

* We develop a Dynamic Contrastive Loss for the training
process, accelerating convergence speed and mitigating
model oscillations.

2 Related Works

Edge blur and color sensitivity are key challenges in image
processing and medical image analysis, significantly affect-
ing model performance. Recent advances in edge extraction,
color robustness, and loss function optimization have greatly
improved model accuracy and stability. Techniques like dy-
namic loss, consistency loss, and momentum contrast have
further enhanced training efficiency and generalization. This
review highlights research on these challenges and methods.

In recent years, significant advancements have been made
in the fields of image processing and medical imaging to ef-
fectively address the challenges of edge blur. These improve-
ments have been achieved by enhancing edge extraction ca-
pabilities and ensuring clustering consistency, thus improv-
ing task performance. For example, CDANet [Yang et al.,
2024] adopts a dual-branch architecture that focuses on both
regional and edge features, effectively enhancing edge extrac-
tion in building semantic segmentation. In the field of can-
cer imaging, a deep learning-based edge detection algorithm
for cancer images [Li et al., 2020] has successfully achieved
high-precision edge detection through three-dimensional re-
construction and fine-grained feature segmentation. To fur-
ther improve the accuracy of edge information, researchers
have used tumor edge data as pseudo-labels for the fine-
grained BI-RADS classification of breast ultrasound images
[Xu et al., 2024]. These studies demonstrate the critical role
of edge enhancement and self-supervised learning strategies
in addressing edge blur issues, particularly in enhancing the
precision and robustness of image processing.

To address the challenges of color sensitivity, various inno-
vative solutions have also been proposed in the fields of color
processing and normalization in recent years. For example,
the n-color balancing method [Akazawa ef al., 2021] was in-
troduced to correct all colors. In the realm of color naming
computation, the ColorMLP approach [Yan et al., 2022] com-
bines the RGB color model with Graph Attention Networks

(GATs), learning universal color mappings and employing
Partial Color Jittering (PCJ) data augmentation. In the anal-
ysis of histopathological images, the Color-Adaptive Gen-
erative Adversarial Network (CAGAN) [Cong et al., 2022]
was proposed for stain normalization. These methods exhibit
strong application potential when dealing with complex data
and diverse tasks, particularly in the areas of color correction
and normalization, effectively mitigating challenges related
to color sensitivity.

Dynamic loss functions are widely used in deep learning
to adaptively adjust loss values during training, accelerat-
ing convergence and reducing oscillations. Early in training,
larger learning rates and smaller loss weights expedite learn-
ing, while gradually lowering the learning rate later stabilizes
training and avoids local minima or overfitting. For instance,
Dynamic Loss Threshold (DLT) [Yang et al., 2023] dis-
cards potentially incorrect labels by comparing sample losses
with dynamic thresholds, greatly improving performance on
noisy-label datasets. FarSeg++ [Zheng et al., 2020] progres-
sively focuses on hard samples while reducing easy-sample
gradients, balancing foreground and background segmenta-
tion. Dynamic loss also enhances backdoor attacks in image
compression [Yu et al., 2023b] by adaptively balancing loss
terms, illustrating its broad applicability in handling noisy la-
bels, balancing sample difficulty, and bolstering robustness.

In recent years, numerous scholars have explored consis-
tency methods([Jiang ef al., 2023], leading to the emergence of
many innovative approaches. For instance, a deformable reg-
istration method based on paired cyclic consistent neural rep-
resentations [Van Harten er al., 2023] has improved accuracy
and provided reliable uncertainty measurements. In semi-
supervised medical image segmentation, ASE-Net [Lei et al.,
2022] utilizes dynamic convolution and consistency training
to better align labeled and unlabeled data, thus enhancing
prediction quality and reducing overfitting. Additionally, the
Fuzzy Consensus Mean Teacher (AC-MT) model [Xu et al.,
2023] integrates fuzzy target selection to strengthen consis-
tency learning in information-rich areas, improving segmen-
tation outcomes. Path consistency [Lu et al., 2024] enhances
object matching in self-supervised learning through multiple
observation paths. Together, these methods highlight the piv-
otal role of consistency learning in boosting model robustness
and performance.

Momentum Contrast (MoCo) [He et al., 2020] has shown
considerable promise across various deep learning tasks, par-
ticularly in enhancing model stability, accelerating conver-
gence, and improving generalization. The HMMC frame-
work [Shen et al., 2023] further strengthens representation
generalization in text-video retrieval by integrating hierarchi-
cal matching with momentum contrast and increasing neg-
ative samples. Similarly, the USER [Zhang et al., 2024]
approach leverages unified semantic augmentation with mo-
mentum contrast to boost image-text retrieval. In medical
imaging, momentum contrast learning combined with proto-
type networks and few-shot learning significantly elevates di-
agnostic accuracy for COVID-19 [Chen et al., 2021al], while
the MoMA method [Le Vuong and Kwak, 2024] employs
knowledge distillation to enhance histopathological analysis.
The CLEAN algorithm[Yu et al., 2023a] utilizes a contrastive
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learning framework to assign enzyme commission (EC) num-
bers to enzymes.

3 Method

We first present the overall framework of the model, followed
by a detailed introduction of the main innovative components
within the model, including the Sobel operator, the three-
view consistency momentum contrast loss function, and the
Dynamic Contrastive Loss. The specific components of the
model are illustrated in Figure 1.

3.1 Sobel Operator

The Sobel operator is an edge detection method that can ex-
tract the edge information of an input image while ignor-
ing color features, thereby preventing the model from over-
relying on color. This approach helps the model focus more
on the structural information within the image rather than
simple color features.

The Sobel operator calculates the horizontal and vertical
gradients of an image using two convolution kernels, one in
the horizontal direction (Gx) and the other in the vertical di-
rection (Gy). The output of the Sobel layer is a combination
of the horizontal and vertical gradients. Equations (1) and
(2) respectively compute the magnitude and direction of the
gradients.

G2 + G2 (1)

Direction: Represents the orientation of the edge and is cal-
culated as the arctangent of the gradient.

0 = atan2(Gy, Gy) 2)

In DeepCluster, Sobel filters were employed to preprocess
the input in order to prevent the model from merely relying
on color information for clustering, instead encouraging the
use of more meaningful features such as edges and shapes.
Building on this approach, we incorporate Sobel layers into
the ResNet architecture to enhance its focus on structural in-
formation within pathology images. This integration helps
alleviate color sensitivity issues in pathology image classifi-
cation, thereby improving the model’s generalization capabil-
ity. Additionally, ResNetSobel supports the use of deep stem
layers, which are analogous to the deep stem layers in the
standard ResNet. Depending on the model configuration, the
input may first pass through the stem layer or directly utilize
the initial convolution, batch normalization, and ReLLU acti-
vation.

3.2 Three-view Consistency Momentum
Contrastive Loss

Consistency loss functions are widely applied in semi-
supervised and self-supervised learning. Inspired by the in-
foNCE consistency loss function, we extend it to a three-view
framework by employing three different data augmentations
(such as cropping, rotation, and color jittering) for contrastive
learning of samples. The goal is to encourage the model
to maintain consistent prediction results for the same input

data under different views or data transformations. This is
achieved by minimizing the differences in the model’s out-
puts for identical samples under varying conditions, thereby
enhancing the model’s robustness and generalization capa-
bilities. We refer to this as the three-view consistency con-
trastive loss function, as detailed in Equations (3-7).

Lvy,vg = —log exp(sim(f(v1), f(v2))/t )

Sl exp(sim(f(v1), f(zx))/t
PO 1010 WA VA
BT S explsim(f (), f (i) 1
Lus, vy = —lo exp(sim(f(vs), f(v1))/t 5
’ BN explsim (), e
Liotal = Lvi,v2 + Lvg,v3 + Lus, v1 (6)

In which ¢ is a temperature hyperparameter used to control
the scale of similarity.

We construct three distinct views f (v1), f(v2), f(v3) and
perform cross-contrastive comparisons among them. Specif-
ically, Lvq,v2 measures the similarity between viewl and
view2, while Lvy, vz and Lvz, v, are computed in a similar
manner. The contrastive loss encourages these similarities to
be as close as possible, thereby achieving feature alignment
by minimizing the distances between them. Finally, the three
loss components are weighted and summed to obtain the final
three-view consistency contrastive loss function.

We introduce a momentum contrast update mechanism to
update the second views (f(v1), f(v2), f(v3)), utilizing mo-
mentum updates to smooth the updating process and prevent
drastic fluctuations in model parameters, as shown in Equa-
tion (7).

f(vi,mc) = /Bf(vz) + (1 o 6)9 (7)
Specifically, i = 1, 2, 3, the default value 8 = 0.99.

In self-supervised learning, a momentum encoder is a tech-
nique used to enhance training stability and performance by
maintaining smooth updates of the model’s historical param-
eters. A higher momentum coefficient indicates slower up-
dates, resulting in greater retention of historical information.
The default value is set to 8 = 0.99, which means that the
encoder parameters are updated very minimally, allowing his-
torical information to dominate. Momentum updates enhance
stability during the optimization process by leveraging in-
formation from previous updates to adjust the current pa-
rameters. This enables the parameters to be “accelerated”
along the gradient direction to some extent, thereby facili-
tating faster model convergence. The three-view consistency
contrastive loss function, integrated with momentum updates,
can be expressed as Equation (8):

exp(sim(f(vi), f(vjme))/t
(v

Sy exp(sim(f(vi), f(xx))/t
Specifically,t = 1,2,3;7 = 2,3,1
Summing these terms results in the three-view consistency
momentum contrast loss function, as shown in Equation (9).

®)

Lv;, v me = —log

Liotal.me = L1, V2 me + L2, V3 me + L3, V1 me &)
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Figure 1: The proposed SVCMC learning framework

3.3 Dynamic Contrastive Loss

To accelerate model convergence and mitigate training oscil-
lations, we have developed a Dynamic Contrastive Loss. This
loss function dynamically adjusts the loss between each pair
of views based on the current training stage or model perfor-
mance. This approach enables the model to adaptively adjust
the weights of different view pairs during the training pro-
cess, thereby allowing the training to flexibly and efficiently
focus on the most important view information.

Dynamic contrastive loss refers to the dynamic adjustment
of the loss function’s weights or other parameters based on
the training progress or current feedback from the model. We
adjust the loss function weights corresponding to each view
pair according to their current training performance. With
the incorporation of dynamic loss, our total loss function is
expressed in Equation (10):

Ldtotal,mc = )\l(t)Lvh V2.me + )\2 (t)L'UQa U3_me

+ A3(t) Lvs, v1_me (10)

Specifically, A1 (t), A2(t), A3(t) is a dynamic weight func-
tion that varies over time (training steps).

If the loss value of a particular view pair is large, it in-
dicates that the model’s learning progress for this view is
slow, and it may be necessary to dynamically decrease its
loss weight. The specific adjustment method is detailed in
Equation (11).

1
- 1 + OéiLUZ‘, 'Uj,mc(t)
Where, i = 1,2,3,5 =2,3,1

Ai(t) an

The hyperparameter o = 0.1. As shown in Equation (11),
the variation of \;(¢) is determined by the loss. When the
loss value is high, indicating a large error concerning the true
value, we dynamically adjust it to reduce the loss.

Similarly, after incorporating it into the three-view consis-
tency contrastive loss function, as shown in Equation (12):

Ldtotal = Al(t)L’Ul, Vg + Ao (t)LUz, v3 + /\3(t)L’U3, V1
(12)

In the subsequent experimental section, we will sepa-
rately employ the two different loss functions, L%, and
L% otal.me, to conduct experimental validations.

4 Experiments

4.1 Datasets

To effectively validate the generalization and robustness of
our model, we conducted comprehensive evaluations using
three publicly available pathology image datasets: the multi-
scale BreaKHis dataset [Spanhol et al., 2015] and the large-
scale pathology dataset NCT-CRC-HE-100K [Kather et al.,
2018]. Additionally, we utilized the natural image dataset
Food-101 [Bossard et al., 2014] to assess the model’s per-
formance across different domains and tasks. By employing
these diverse datasets, we are able to thoroughly evaluate the
model’s adaptability and stability, ensuring its wide applica-
bility in real-world applications.

4.2 Parameter setting
To ensure a more accurate and unbiased evaluation of the
model’s performance, we standardized several parameter set-
tings, as shown in Table 1.
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Parameter Value
Momentum Coefficient 0.99
Epoch 200
Optimizer LARS
Batch Size 32/64

Learning Rate Decay Cosine Annealing

Table 1: Parameter setting

We used data augmentation techniques including Random-
ResizedCrop, ColorlJitter, and RandomFlip. RandomResized-
Crop first performs random cropping on the image and then
resizes it to the target dimensions of 224x224. This method
effectively increases data diversity, thereby enhancing the ro-
bustness of the model. ColorJitter randomly adjusts the im-
age’s brightness, contrast, hue, and saturation, generating im-
ages with varied visual effects. This helps the model adapt
to different lighting and color conditions, thereby improving
its generalizability. RandomFlip applies horizontal or ver-
tical flips to images with a certain probability, assisting the
model in handling scenarios where flipping does not affect
classification outcomes, thereby further enhancing its robust-
ness. Through these data augmentation methods, the model
is better able to adapt to complex environments, improving
performance and stability during the training process.

4.3 Comparative Experiments

Firstly, we conducted comparative experiments on the
BreaKHis pathology image dataset at various magnification
scales. The objective was to evaluate the model’s perfor-
mance across different magnification levels of the pathology
dataset and to investigate the model’s color robustness and
edge detection capabilities. The detailed experimental results
are shown in Table 2.

Method ACC  Pre F1
MoCo v1[He et al., 2020] 97.98 98.07 97.98
MoCo v2[Chen et al., 2020b] 87.80 88.74 87.60
MoCo v3[Chen et al., 2021b] 89.32 9047 89.37
SimCLR[Chen et al., 2020al] 97.47 97.74 97.52
SimSiam[Chen and He, 2021] 98.61 98.68 98.60
MPCS[Chhipa et al., 2023] 92.18 - -
Breast-NET[Saha et al., 2024] 90.34 91.00 90.00
SVCMC 99.37 9940 99.37

Table 2: Comparative experiments on the BreaKHis dataset

While self-supervised methods like MoCo and SimCLR
excel in breast cancer image classification, they mainly focus
on global features, potentially overlooking subtle edge and
color differences. In contrast, our model integrates the Sobel
operator and Dynamic Contrastive Loss, enhancing its abil-
ity to capture local features and improve generalization and
representation.

The underlying reason for this performance improvement
lies in the integration of the ResNet architecture with the So-
bel operator and the three-view consistency enhanced mo-
mentum contrast loss function. The Sobel operator enhances

the model’s sensitivity to edge information, the ResNet ar-
chitecture ensures the depth and diversity of feature extrac-
tion, and the momentum contrast loss function combined with
multi-view consistency enhancement further improves train-
ing stability, model robustness, and the effectiveness of self-
supervised learning. The combination of these innovative
methods enables our model to achieve outstanding perfor-
mance across multiple datasets.

Subsequently, we conducted experiments on a large pathol-
ogy image dataset to explore the model’s classification perfor-
mance on large-scale data. The specific experimental results
are presented in Table 3.

Method ACC  Pre F1
MoCo vl [He et al., 2020] 97.38 97.39 97.36
MoCo v2 [Chen et al., 2020b] 97.14 9752 97.18
MoCo v3 [Chen et al., 2021b] 96.57 97.13 96.62
SimCLR [Chen et al., 2020al] 98.44 98.46 9945
SimSiam [Chen and He, 2021] 9546 9991 97.46
HistoSSL-vit [Jin et al., 2022] 96.18 - -
Contrastive [Chu et al., 2023] 88.12 - -
iDeComp [Buczek et al., 2023] 9490 95.00 95.00
SAG-ViT [Shravan et al., 2024] 98.61 - -
SVCMC 9998 9998 99.98

Table 3: Comparative experiments on the NCT-CRC-HE-100K
dataset

From the perspective of capturing edge information and
color sensitivity, Mymodel improves the sensitivity to image
details, structure, and color variations by combining the So-
bel operator and color jittering. This allows the model to not
only accurately identify critical edge features on the NCT-
CRC-HE-100K dataset but also adapt to varying lighting and
color conditions, resulting in a 99.98% accuracy and the best
performance across other metrics. In comparison, while other
methods perform well on certain metrics, they do not enhance
edge information and color sensitivity as effectively as our
model, which leads to slightly inferior performance in han-
dling details and complex environments.

Finally, we conducted experiments on the large-scale
dataset Food-101 to explore the model’s performance in nat-
ural image classification, demonstrating its robustness and
generalization ability. The specific experimental results are
shown in Table 4.

Method ACC  Pre F1
MoCo vl [He et al., 2020] 97.38 97.39 97.36
MoCo v2 [Chen et al., 2020b] 97.14 9752 97.18
MoCo v3 [Chen et al., 2021b] 96.57 97.13 96.62
SimCLR [Chen et al., 2020a] 98.44 98.46 9945
SimSiam [Chen and He, 2021] 9546 9991 97.46
HistoSSL-vit [Jin et al., 2022] 96.18 - -
Contrastive [Chu et al., 2023] 88.12 - -
iDeComp [Buczek et al., 2023] 9490 95.00 95.00
SAG-ViT [Shravan et al., 2024] 98.61 - -
SVCMC 9998 9998 99.98

Table 4: Comparative experiments on the Food-101 dataset
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Our model not only outperforms other models in terms of
accuracy but also demonstrates equally outstanding perfor-
mance across other key metrics, including recall, precision,
and F1 score. This indicates that the model is highly effec-
tive in distinguishing between different categories, with ex-
tremely high sensitivity and specificity, resulting in very few
false positives and false negatives. At the same time, Sim-
Siam and other more recent models have also shown compet-
itive performance.

The experimental results demonstrate that our model suc-
cessfully addresses the common issues of edge blurring and
color sensitivity in medical image analysis through hierarchi-
cal feature enhancement, dynamic optimization mechanisms,
and the Sobel operator, while maintaining excellent perfor-
mance in natural scenes.

4.4 Ablation Experiments

To better validate the significant roles of the (Dynamic Con-
trastive Loss, DCL)and(Momentum Contrastive Loss, MCL)
within the model, we designed the ablation experiments
shown in Table 5.

Method ACC  Pre F1

SVCMC w/o DCL 9741 97.56 97.31
SVCMC w/o MCL 97.28 97.71 97.34
SVCMC w/o DCL and MCL  96.96 96.87 96.93
SVCMC 99.37 9940 99.37

Table 5: Ablation Experiments on the BreaKHis dataset

Based on the results of the ablation study, we can draw the
following analysis:

After removing the dynamic loss module, all metrics
slightly decline, with accuracy dropping by 1.96 percentage
points. The equal distribution of loss weights across all sam-
ples leads to insufficient optimization of challenging samples,
such as those with blurred edges, reducing overall detection
accuracy.

When the momentum contrastive module is removed, the
model performance drops slightly, with accuracy of 97.28%,
a decrease of 2.09 percentage points. Compared to the re-
moval of the dynamic loss module, the effect of removing the
momentum update module is more pronounced, particularly
with an improvement in precision (Pre) and F1 score. How-
ever, this improvement may come at the cost of stability.

When the SobelResNet module is removed, the model per-
formance drops significantly, with accuracy of 97.16%, a de-
crease of 2.21 percentage points. The SobelResNet module
plays a crucial role in edge feature extraction in images, and
the lack of suppression of color sensitivity leads to a notice-
able decline in performance.

4.5 Discussion on Backbone and Classifier

To further discuss the role of the backbone and classifier in
classification, we conducted experiments on three datasets
and provided a detailed discussion. The specific experimental
results are shown in Table 6 and Table 7.

The classification results show that SobelResNet outper-
forms ResNet, mainly due to the strong reliance of patholog-

Backbone Dataset ACC Pre F1

SobelResNet BreaKHis 99.37 9940 99.37
ResNet BreaKHis 95.89 96.43 96.16
SobelResNet NCT100K 99.98 99.98 99.98
ResNet NCT100K 98.70 98.72 98.71
SobelResNet  food-101 99.38 99.39 99.37
ResNet food-101 95.71 95.71 95.93

Table 6: Discussion on Backbone, NCT-CRC-HE-100K(NCT100k)

ical images on morphological structures, where staining in-
consistencies can affect performance. SobelResNet reduces
the dependency on color and emphasizes texture and struc-
tural features. Similarly, in natural images, factors like light-
ing variations can introduce noise. SobelResNet’s focus on
texture and structural features helps mitigate the effects of
color variations, making it more robust and adaptable for both
pathological and natural image classification tasks.

Classifier  Dataset ACC  Pre F1

Linear BreaKHis 96.21 96.55 96.19
Nonlinear BreaKHis 99.37 9940 99.37
Linear NCT100K 9940 99.39 99.38
Nonlinear NCTIO0OK 99.98 99.98 99.98
Linear food-101 99.36 99.34 99.35
Nonlinear food-101 99.38 99.39 99.37

Table 7: Discussion on Classifier, NCT-CRC-HE-100K(NCT100k)

For larger datasets, the difference between linear and non-
linear models is relatively minor, and we consider the vari-
ation to be within an acceptable error margin. However,
the significant disparity observed in the BreaKHis dataset
is likely due to the presence of images captured at different
magnifications. Nonlinear models can, to some extent, miti-
gate misclassifications caused by variations in magnification,
providing better robustness under such conditions.
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Figure 2: loss curve in the graph

4.6 Visualization

In Figure 2, loss2, which incorporates Dynamic Contrastive
Loss, exhibits a faster convergence rate: In the initial stages
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Figure 3: T-SNE Visualization

of iteration, loss2 demonstrates a quicker decline in loss com-
pared to loss1, which is highly beneficial for saving training
time and resources. Higher stability: Throughout the training
process, loss2 shows greater stability, which helps to prevent
performance degradation due to overfitting, particularly im-
portant in training with large-scale data sets. Lower final loss
values: The lower final loss values indicate that under the
same training conditions, loss2 may optimize model parame-
ters more effectively.

Confusion Matrix
0
2500

2000

1500

True Label

-1000

-500

0
0
0
0

- S (=) =

3 4 5 6 7 8
Predicted Label

Figure 4: Confusion Matrix

As shown in Figure 3, this study employs the T-SNE vi-
sualization method to analyze the classification performance
across 10 classes (Class 0-9), each represented by a differ-
ent color. Figure 3(A) exhibits clear inter-class separability,
where the data points of each class form distinct and well-
defined clusters. This indicates that data points from differ-

ent classes are likely to be highly distinguishable in the origi-
nal high-dimensional space, providing strong evidence of the
model’s discriminative power and classification capability in
the high-dimensional feature space. In panel (D), most of the
classes exhibit compact clusters, suggesting that data points
within the same class are highly similar in the original fea-
ture space. A few classes, such as the brown and orange
clusters, show some overlap or proximity, which may indi-
cate that these classes share certain similarities in the feature
space.

As shown in the confusion matrix in Figure 4, most of
the predictions are concentrated along the diagonal, exhibit-
ing a clear pattern of centralized distribution. The values on
the main diagonal are significantly higher than those in the
off-diagonal regions, intuitively reflecting the model’s high
classification accuracy across the majority of classes. Al-
though a few instances of inter-class misclassification are ob-
served, their overall number is limited, further indicating that
the model achieves good classification performance on this
dataset.

5 Conclusion

The SVCMC algorithm developed in this study incorporates
the Sobel operator and introduces a novel three-view con-
sistency momentum contrast loss function, along with Dy-
namic Contrastive Loss. This approach has been rigorously
tested across two pathological datasets and one natural im-
age dataset, where it has demonstrated significant strengths
in classification performance. The model excels in effectively
managing issues related to color sensitivity and edge blur in
images, showcasing its robustness and adaptability. Looking
ahead, plans are in place to extend this research to include
more comprehensive experiments on remote sensing imagery
and a variety of structured medical datasets, aiming to further
validate and enhance the algorithm’s applicability and perfor-
mance across diverse imaging contexts.
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