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Abstract
The recently proposed Novel Category Discovery
(NCD) adapt paradigm of transductive learning
hinders its application in more real-world scenar-
ios. In fact, few labeled data in part of new cat-
egories can well alleviate this burden, which co-
incides with the ease that people can label few of
new category data. Therefore, this paper presents
a new setting in which a trained agent is able to
flexibly switch between the tasks of identifying ex-
amples of known (labelled) classes and clustering
novel (completely unlabeled) classes as the number
of query examples increases by leveraging knowl-
edge learned from only a few (handful) support ex-
amples. Drawing inspiration from the discovery of
novel categories using prior-based clustering algo-
rithms, we introduce a novel framework that fur-
ther relaxes its assumptions to the real-world open
set level by unifying the concept of model adapt-
ability in few-shot learning. We refer to this setting
as Few-Shot Novel Category Discovery (FSNCD)
and propose Semi-supervised Hierarchical Cluster-
ing (SHC) and Uncertainty-aware K-means Clus-
tering (UKC) to examine the model’s reasoning ca-
pabilities. Extensive experiments and detailed anal-
ysis on five commonly used datasets demonstrate
that our methods can achieve leading performance
levels across different task settings and scenarios.
Code is available at: https://github.com/Ashengl/
FSNCD.

1 Introduction
Most deep learning methods [He et al., 2016; He et al., 2022;
Dosovitskiy et al., 2021] aim to excel in supervised learn-
ing, where models assign labels to test samples using knowl-
edge from training. However, this approach poorly reflects
real-world scenarios, where unlabelled data may include
both known and novel classes. Few-shot Learning (FSL)
[Finn et al., 2017; Sung et al., 2018; Fei-Fei et al., 2006;
Vinyals et al., 2016; Li et al., 2023] addresses this by mim-
icking human ability to learn from limited examples. Despite

∗Corresponding Author.

its potential, FSL has a critical drawback: if not all categories
are annotated, it forces classification of unseen classes into
existing ones, contradicting open-world reasoning.

The advent of Novel Category Discovery (NCD) [Rizve et
al., 2022] and Generalized Category Discovery (GCD) [Vaze
et al., 2022a] lifts the learning agent to a new level, where the
novel examples are allowed to be grouped into a few clus-
ters based on their inherent characteristics. Notwithstand-
ing, the key of these two tasks will degenerate into solving
a cross-domain clustering problem if unlabelled data are not
presented. A recent research, On-the-fly Category Discovery
(OCD) [Du et al., 2023] was proposed to mitigate the lim-
itation of transductive learning involved in NCD and GCD
by determining novel classes according to the values derived
from decoupling features into symbolic features and absolute
features. However, the over-relaxed constraints imposed on
the hash encoding for novel classes lead to a phenomenon in
which a higher number of clusters formed than initial expec-
tation.

To enhance the adaptability of learning agent to real-world
scenarios, we adapt the assumptions and training strategies in
NCD. Similar to FSL, we ensure no overlap between training
and test label spaces, and the test set’s query label space ex-
tends beyond the support set to include novel categories. Un-
like semi-supervised strategies in NCD [Rizve et al., 2022]
and GCD [Vaze et al., 2022a], we adopt episodic meta-
learning to better evaluate the model’s adaptability to new
tasks.

We call this new problem Few-Shot Novel Category Dis-
covery (FSNCD), and it is intersected conception at the FSL
[Fei-Fei et al., 2006] and NCD [Rizve et al., 2022], empow-
ering a learning agent with the capability to be inductively
adaptive to the discovery of both novel classes and clusters.
The key setting of this problem is illustrated in Fig. 1, and it
builds upon the existing setting of NCD [Rizve et al., 2022]
which was introduced to cluster novel classes by hints of both
labelled and unlabelled data. This scenario assumes that a
learning agent can both extract features from labeled data
and learn patterns from unlabeled data. Our proposed set-
ting challenges this by restricting access to unlabeled data,
focusing instead on enhancing the model’s adaptability and
plasticity to improve generalization.

FSNCD leverages a DINO [Caron et al., 2021] pre-trained
ViT-B [Dosovitskiy et al., 2021] model, differing from tra-
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Figure 1: Comparison of Different Task Settings. Solid lines represent labeled data, dashed lines represent unlabeled data, with different
colors indicating different categories. Unlabeled data in test phase are samples to be classified. Inductive learning and transductive learning
are annotated as “Train/Test” and “Train+Test”. Please note that during the generalization testing phase in inductive learning, FSL and
FSNCD are based on a small amount of labeled data.

ditional few-shot learning by tackling novel category discov-
ery, which involves clustering novel classes rather than sim-
ple detection. We introduce a hierarchical clustering method
with a stopping criterion based on inter-class distances of vis-
ible classes, addressing bias from excessive novel categories
through balanced sparsity. Additionally, an improved K-
means algorithm incorporates uncertainty clustering to han-
dle distributions. Unlike existing methods reliant on prior
category counts, our approach restructures K-means and hi-
erarchical clustering to flexibly estimate category numbers in
few-shot settings, facilitating the discovery of new categories.

To sum up, our contributions are as follows:

• We propose a new task setting named Few-Shot Novel
Category Discovery (FSNCD). It unifies few-shot learn-
ing and Novel Category Discovery, realising a selectiv-
ity between tasks of identifying examples from labelled
classes in a real-time inference manner and clustering
novel classes as the query examples increase.

• We introduce two clustering algorithms as base-
line methods: Semi-supervised Hierarchical Cluster-
ing (SHC) and Uncertainty-aware K-means Clustering
(UKC). Both approaches take into account the specific
features required to address the complexities of open-set
recognition, extending beyond conventional data clus-
tering techniques.

• We conducted experiments on five datasets, analyzing
and elucidating the viability of the proposed new setting.

2 Related Work
2.1 Semi-Supervised Learning
In traditional supervised learning, we need a large amount
of labeled data to train the model [Chapelle et al., 2009;
Yang et al., 2023]. To address the problem of insufficient
labeled samples, semi-supervised learning is proposed to uti-
lize labeled and unlabeled data to improve model perfor-
mance with limited labeled data [Grandvalet and Bengio,
2004; Zhou, 2008; Jiang et al., 2024; Yang et al., 2024].
The most intuitive approach is perhaps Pseudo-Labels self-
training [Lee and others, 2013], where a model trained on
labeled data generates categorical pseudo-labels for the unla-
beled examples. SSL techniques often utilize unlabeled data

in various ways, such as employing strategies like consis-
tency regularization [Tarvainen and Valpola, 2017], gener-
ative model based methods [Madani et al., 2018], or graph
based method [Zhu et al., 2023].

2.2 Novel Category Discovery

Novel Category Discovery (NCD) addresses limited labeled
data by leveraging unlabeled samples for automatic clas-
sification. Pioneered by DTC [Rizve et al., 2022], the
field has expanded with methods like AutoNovel [Han et
al., 2020], which combines self-supervised pretraining with
pseudo-label generation via ranking. Recent extensions in-
clude Novel Category Discovery in semantic segmentation
[Zhao et al., 2022], incremental learning frameworks [Liu
and Tuytelaars, 2023; Roy et al., 2022], and Generalized Cat-
egory Discovery (GCD) [Vaze et al., 2022a] that jointly iden-
tifies known/novel categories. SimGCD [Wen et al., 2023]
enhances GCD with parametric classification, while OCD
[Du et al., 2023] introduces real-time hash coding for efficient
novel class detection. These advances demonstrate NCD’s
growing versatility in handling diverse real-world scenarios.

2.3 Few-Shot Learning

Few-shot learning (FSL) is a method used to address the issue
of limited sample size [Fei-Fei et al., 2006; Finn et al., 2017;
Snell et al., 2017; Xu et al., 2024; Zhong et al., 2023].
It aims to learn an effective classification model from a
few labeled training examples. There are two main types
of FSL methods: meta-learning-based [Finn et al., 2017;
Ravi and Larochelle, 2016; Tian and Xie, 2023] and metric-
learning-based approaches [Snell et al., 2017; Koch et al.,
2015]. Additionally, some methods employ a Non-episodic-
based strategy [Chen et al., 2019; Dhillon et al., 2020], i.e.,
fine-tuning a pre-trained model at test time. Although current
methods for Few-shot Open-set Recognition [Liu et al., 2020;
Jeong et al., 2021] are capable of detecting out-of-distribution
samples, they lack the ability to cluster or classify these out-
of-distribution samples.
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Method Training Test Transferring Manner Support Query

SSL YL ∪ YL† YL Inductive - -
NCD YL ∪ YU† - Transductive - -
GCD YL ∪ YU† ∪ YL† - Transductive - -
FSL YL YU Inductive YS YS

FSNCD YL YU Inductive YS YS ∪ YN

Table 1: Comparison between different tasks. †denotes providing
images during the training phase without accompanying labels.

3 Few-Shot Novel Category Discovery
3.1 Problem Definition
NCD: The training data for NCD is provided in two dis-
tinct sets, including a labelled set DL = {(xl

i, y
l
i)}Ni=1 and an

unlabeled set DU = {xu
i }Mi=1, where an instance is denoted

as xl
i or xu

i depending on which set the data is derived from,
yli ∈ YL = {1, . . . , CL} is the corresponding class label of
DL and YU is the label space of DU. The goal is to train a
model on both DL and DU, and then aggregate DU into CU

clusters that are associated with YU = {1, . . . , CU} where
YL ∩YU = ∅. GCD further relaxes the assumptions of NCD,
with an emphasis on identifying both labelled data and novel
categories, where the label space of DU changes to YL ∪ YU

instead of YU.

FSL: In FSL, a dataset D is usually partitioned into two
sets, the training set containing base classes DBase and the
test set containing novel classes DNovel. It creates N training
tasks T = {T1, . . . , TN} to assemble a finite set of train-
ing episodes where each training task Tn consists of different
classes, represented by Tn =< S,Q >, where S and Q de-
note examples chosen from the support set and query set, re-
spectively. During testing, the model receives new tasks with
the novel classes which have no overlap with those encoun-
tered during training.

FSNCD: We approach Few-Shot Novel Category Discov-
ery as a scenario where the dataset is organized under the
setting defined in FSL with training set containing base
classes DBase and the test set containing novel classes DNovel.
However, an episode in FSNCD contains a query set Q =
{(xq, yq)} ∈ X×YQ, and a support set S = {(xs

l , y
s
l )}NK

l=1 ∈
X × YS of K image-label pairs for each N classes, referring
to an N -way K-shot setting. However, the label space in FS-
NCD is defined as YQ = YS ∪ YN rather than YQ = YS as
defined in standard FSL. The primary objective for the learn-
ing agent therefore is to identify examples of categories in YS

while discovering unknown categories in YN.
The characteristics of the proposed setting are summarised

in Table 1 and Fig. 1. SSL is an inductive approach lever-
aging both labeled and unlabeled data within the same la-
bel space for test set classification. GCD relaxes the closed-
set assumption, allowing the label space of unlabeled data
to encompass that of labeled data, following a transductive
paradigm. Transitioning from NCD and GCD to FSL intro-
duces FSNCD, which combines few-shot classification with
the discovery of novel categories. A key distinction between
FSNCD and traditional FSL is that in the testing phase of FS-
NCD, certain samples may not match any of the support cat-

egories. Unlike Few-Shot Open Set Recognition (FSOSR),
which only detects outliers, FSNCD requires models to de-
tect and accurately cluster these outliers. Additionally, in
contrast to open-world recognition, categories appearing in
testing phase of FSNCD are not seen during training, though
a limited number of samples are provided during testing.

3.2 Training of FSNCD
The training procedure for a learning agent in FSNCD is di-
vided into two consecutive phases: representation learning
and classifier construction. For the former phase, the learn-
ing model is dedicated to training a feature extractor F and
a projection head ϕ, ϕ ◦ F : X → Z , with Z signifying the
embedding space generated from input images X via ϕ ◦ F .
The latter phase is responsible for constructing a classifier ca-
pable of recognizing query examples and discovering novel
categories. An overview of our approach is demonstrated in
Fig. 2. A detailed explanation of each phase will be presented
in the sequel below.
Phase 1: Representation Learning Given that the training
process only involves the use of labelled data, the supervised
contrastive learning loss [Khosla et al., 2020] is employed
to learn more distinctive features for samples belonging to
the same category and different categories within each batch.
This mitigates the impact of using standard cross-entropy loss
for prototype matching which is classification-prone rather
than concentrating on the more critical clustering task, and
avoids the occurrence of the visible-class bias described in
ProtoNet [Snell et al., 2017]. Specifically, given an input im-
age x, it uses the feature extractor F (x), together with a mul-
tilayer perceptron (MLP) projection ϕ to extract the feature
embeddings z, denoted as z = ϕ (F (x)). Formally,

LSL =
∑
i∈E

− 1

|N (i)|
∑

q∈N (i)

log
exp(zi · zq/τ)∑

n I[n̸=i] exp(zi · zn/τ)

 ,

(1)
where N (i) signifies the images belonging to the same cate-
gory as the input image xi in an episode, where I is an indi-
cator function evaluating to 1 iff n ̸= i.
Phase 2: Classifier Construction Using the previously
learned representations, the next task is to construct classi-
fiers with the ability to classify query samples into known
classes or group a set of examples into new categories. Due to
our aim to propose solutions addressing more realistic prob-
lems, the varying number of novel categories and the uncer-
tain number of samples per novel category make it hard to
construct a fixed-parameterized classifier. Thus, two clus-
tering algorithms, Semi-supervised Hierarchical Clustering
(SHC) and Uncertainty-aware K-means Clustering (UKC),
are specifically designed for FSNCD scenarios, enhancing
data grouping in open-set scenarios by aligning more closely
with their inherent properties.
Semi-Supervised Hierarchical Clustering. Hierarchical
clustering is one of the most commonly used approaches for
grouping data, distinguished by its ability to determine the
number of clusters with no need to pre-specify the number of
clusters. Grouped clusters that are visually represented in a
hierarchical tree called a dendrogram whose structural char-
acteristics are the key to achieving optimal clustering. How-
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Figure 2: Illustration of our proposed baselines. In the representation learning stage, each episode takes both support and query samples into
a min-batch selected from DL and trains a feature extractor by using the supervised contrastive learning approach. In the second stage, we
test on DU , and for each episode, we utilize the proposed clustering method to classify samples belonging to YS and cluster new categories.

ever, it is always a challenge in practice to determine the best
criteria to end the accumulation or division during clustering.

To tackle this issue, we tend to make the most of the in-
formation represented by features extracted from the support
set which are capable of explicitly characterizing discrepan-
cies between multiple class prototypes. The idea behind this
is that hierarchical clustering should cease as chosen proto-
types that originate from different classes are merged. Con-
cretely, we introduce an agglomerative hierarchical clustering
approach, inspired by the Unweighted Pair Group Method
with Arithmetic Mean (UPGMA) where the closest clusters
are combined into a higher-level cluster at each step. For each
step, the distance between any two clusters Ci and Cj is cal-
culated by averaging the distance between elements within
the cluster, expressed by,

dCi,Cj =
1

|Ci| · |Cj |
∑
x∈Ci

∑
y∈Cj

d(x, y), (2)

where d(∗, ∗) denotes the distance function. In each iteration,
the two clusters with the shortest distance are merged, and the
clustering between all clusters is updated by,

d(Ci∪Cj),Ck
=

|Ci| · dCi,Ck
+ |Cj | · dCj ,Ck

|Ci|+ |Cj |
. (3)

The proposed clustering aims at merging the most similar
classes according to the adopted cosine metric and triggers
iteration termination until two different class prototypes are
grouped. Furthermore, clustering is conditioned on the num-
ber of query samples, i.e., it will be considered a potential
cluster P only if the amount of included samples exceeds a
certain value, in which case the remaining clusters are desig-
nated as R. Moreover, in case there are support prototypes
that are not assigned to any cluster, they will be incorporated
into the potential class P at the end. With the available class
prototypes of the potential classes, the remaining samples will
be classified, demonstrating a flexible method of classifying
or clustering query samples, called semi-supervised hierar-
chical clustering.

Uncertainty-Aware K-means Clustering. K-means clus-
tering is an effective method to iteratively partition a certain
number of data observations into K clusters, but the need for
the pre-specified number of clusters always hinders its gener-
alization to scenarios full of uncertainty. The adoption of K-
means on synthetic experimental datasets is based on a prior
on how human perception of the K values, which is unreal-
istic when dealing with real-world tasks where such values
are difficult to determine. In addition to the heavy reliance
on prior knowledge, the performance of standard K-means
clustering strongly depends on the choice of the initialized
cluster centroids, which is another uncertainty that needs to
be addressed. K-means++ [Arthur and Vassilvitskii, 2007]
presents a stepwise selection of cluster centers, primarily mo-
tivated by the idea that samples farther away from other clus-
ter centers are more likely to be selected as the next cluster
center. However, the initial number of categories is still an
indispensable prior information.

We introduce a new strategy that builds on the assumption
that when clustering is performed in the proposed FSNCD
setting, both support and query examples lie in a uniform,
high-dimensional feature space, and the uncertainty estimates
of this space facilitate the choice of the number of centroids
implied by novel categories. Specifically, we consider that
the features of prototypes and query examples are located in
a shared space, denoted by z, and represent standard K-means
as K-means (·, ·, ·), then the corresponding potential cluster
P can be achieved by,

P = K-means (z, n, c) , (4)

where n is number of categories initialized with |YS |, c
denotes the centroids and is initialized randomly. As the
iteration k increases, the average quantity is calculated
based on the previous clustering results, denoted as m =

1
|Pk|

∑|Pk|
i=1

∣∣P k
i

∣∣. The estimation of the number of categories
is then transformed into an acceptance criterion for a particu-
lar class in P k

i that surpasses the average quantity m, denoted
as α. We then need to split all potential classes where each
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class is assigned a category count by,

nPk
i
=

 δ(P k
i ) δ(P k

i ) ≥ 2
2 δ(P k

i ) < 2 & µ(P k
i ) ≥ αm

1 δ(P k
i ) < 2 & µ(P k

i ) < αm
,

(5)
where δ(·) denotes the way to estimate the number of sup-
ported prototypes in a specific cluster, and µ(·) denotes the
calculation of the number of query samples in Pi. Through re-
grouping the samples of each class into nPk

i
clusters, it yields

the centroid ck = [ck1 , ..., c
k
n
Pk

], where nPk =
∑|Pk|

i=1 nPk
i

signifies each split in P k that serves as the initialization points
for the next iteration denoted as,

P k
i = K-means(z, nPk , ck). (6)

The above iteration will terminate when the conditions
max δ(Pi) = 1 and maxµ(P ) < αm are satisfied simulta-
neously, which also guarantees convergence under the previ-
ously mentioned assumption. Moreover, choosing an appro-
priate acceptance threshold for this clustering approach facil-
itates the optimal proficiency to discover novel categories. It
is worth noting that when α → +∞, this method will degen-
erate to continuously split the potential classes by δ(Pi) ≥ 2,
which will undoubtedly lead to biases towards classes of ex-
isting support sets.

3.3 Scalable Clustering
Compared to the UKC which is an evolution from standard
K-means clustering, the proposed SHC exhibits relatively
high computational complexity and memory usage due to its
need to calculate and store distances between all pairs of data
points, which grows exponentially with the size of the large-
scale dataset, rendering it both computationally demanding
and memory-intensive.

To mitigate the impact of the aforementioned issues, we
employ a two-step strategy. In the first step, we randomly
sample a smaller subset from the entire dataset, which is as-
sumed to be representative since its distribution is consistent
with that of the overall data distribution. The subsequent use
of hierarchical clustering on this representative subset yields
a set of potential clusters that can be viewed as initial proto-
types. In the next step, these established prototypes serve as
reference points for classifying the remaining data. Specifi-
cally, each data point will be merge to the tree which proto-
type is closest to it in the shared feature space. This strategy
enables hierarchical clustering to be applied at scale, but its
performance is influenced by the randomness of sampling and
the quality of the initial clustering.

4 Experiments
4.1 Experimental Setup
Datasets. We evaluate our methods on two well-known
large-scale datasets: CIFAR-100 [Krizhevsky et al., 2009]
and ImageNet-100 [Krizhevsky et al., 2012], as well as two
fine-grained datasets, including CUB-200 [Reed et al., 2016]
and Stanford Cars [Krause et al., 2013]. Each dataset is
split into two sets: labeled data is used to train the model,

C100 I-100 CUB Cars Aircraft

Training |YBase| 50 50 100 98 50
|DBase| 25k 65k 3k 6.5k 4.4k

Test |YNovel| 50 50 100 98 50
|DNovel| 25k 65k 3k 8.1k 4.4k

Table 2: Statistical comparison of data partitions (i.e., training
and test) across C-100 (CIFAR-100), I-100 (ImageNet-100), CUB
(CUB-200), Cars (StanfordCars) and Aircraft (FGVC-Aircraft).

and unlabeled data is used for testing. SSB (Semantic Shift
Benchmark) [Vaze et al., 2022b] provides a detailed eval-
uation dataset that includes precise “semantic change axes”
and provides classifications for DU and DL in a semantically
coherent manner. Statistics on the partitioning of adopted
datasets are presented in Table 2.

Settings. We mainly report results obtained with two differ-
ent settings: 5-way 5-shot (5w5s) and 5-way 1-shot (5w1s).
For better comparison, we set the number of new classes to 5
for both configurations (5n), denoted as nnew, with each class
containing 15 images as the query set. Moreover, we initial-
ize a real-time inference evaluation scenarios, which are in
line with the objectives enabling the agent to freely switch
between categorizing known and clustering novel classes. It
is worth noting that for the real-time inference scenario, only
one image from an individual class is allowed in the query set
per episode.

A vision transformer [Dosovitskiy et al., 2021] (ViT-B-16)
pre-trained on ImageNet [Krizhevsky et al., 2012] with DINO
[Caron et al., 2021] is used for the feature extraction. Specifi-
cally, the outputs of [CLS] token are treated as feature repre-
sentation which is different from the use of a projection head
that has the potential to introduce more biases. The initial
learning rate is set to 0.01.

Evaluation Protocol. We assess the performance of the
proposed new setting by measuring the accuracies of three
folders, they are visible, new classes and overall precision.
Concretely, it uses ŶAll, ŶOld and ŶNew = ŶAll \ ŶOld to
represent the predictions of examples from all, support set
and new classes, respectively. Then, the metric for assessing
new classes, commonly employed in the GCD approach, has
been adapted to suit the FSNCD context. Formally,

ACCNew = max
p∈P(ŶNew)

(
1

MNew

MNew∑
i=1

I(yi = p(ŷi))

)
,

(7)
where MNew = |ŶNew|, and P(ŶNew) defines how the pre-
dicted labels for test samples are matched to the true labels.
This matching is achieved by using the Hungarian algorithm
which identifies the permutation that minimizes the mismatch
between predicted and true labels.

Instead of directly comparing all predictions to the ground
truth like GCD, we adopt a different approach. More specifi-
cally, we filter out samples from the same class as the support
prototypes and then measure the matches between the pre-
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CIFAR-100 ImageNet-100 CUB-200 StanfordCars FGVC-Aircraft

Methods All Old New All Old New All Old New All Old New All Old New
5w

ay
-5

sh
ot

ProtoNet [Snell et al., 2017] 48.1 96.2 - 47.7 95.4 - 48.5 97.0 - 42.9 85.8 - 43.9 87.7 -
RankStat [Han et al., 2020] 43.6 64.2 23.0 41.1 59.1 23.1 49.8 73.5 26.1 39.4 57.8 21.1 43.5 65.6 21.3
SimGCD [Wen et al., 2023] 34.6 33.5 35.7 31.1 30.9 31.3 25.1 24.9 25.4 17.1 16.2 18.0 19.2 17.6 20.8
OCD [Du et al., 2023] 45.9 46.1 45.6 13.5 0.1 26.9 44.9 42.5 47.2 37.3 34.5 40.1 44.9 45.7 44.1
GCD [Vaze et al., 2022a] 63.8 92.7 34.7 62.9 91.9 33.9 68.7 95.0 42.5 48.2 78.6 17.8 50.0 80.5 19.5

FSNCD (SHC) 73.2 90.7 55.8 74.1 91.5 56.7 73.6 94.5 52.6 50.3 64.7 35.9 51.0 71.2 30.8
FSNCD (UKC) 84.3 90.9 77.8 84.4 87.5 81.4 85.8 92.5 79.1 48.8 57.2 40.3 49.5 57.3 41.8

5w
ay

-1
sh

ot

ProtoNet [Snell et al., 2017] 43.9 87.8 - 42.6 85.2 - 45.3 90.7 - 33.0 66.0 - 35.5 71.0 -
RankStat [Han et al., 2020] 35.2 46.5 23.8 33.8 43.9 23.6 42.7 59.8 25.7 29.3 37.6 21.0 32.9 43.5 22.3
SimGCD [Wen et al., 2023] 34.3 32.5 36.1 31.2 29.5 32.9 25.2 23.3 27.1 17.3 15.7 18.8 18.5 16.5 20.4
OCD [Du et al., 2023] 41.1 34.8 47.5 12.3 0.1 24.5 40.4 34.4 46.5 34.3 28.8 39.8 41.0 38.3 43.8
GCD [Vaze et al., 2022a] 63.4 77.3 49.6 65.0 77.6 52.5 66.7 83.1 50.3 41.2 50.1 32.3 44.2 55.1 33.3

FSNCD (SHC) 67.5 80.1 54.8 69.9 82.1 57.7 72.3 87.1 57.5 42.4 48.2 36.7 45.9 52.8 38.9
FSNCD (UKC) 75.9 78.9 72.9 76.6 76.5 76.6 84.2 88.6 79.9 38.9 41.5 36.3 41.8 46.5 37.1

Table 3: Main results of 15 query images for each class. The best result, is highlighted in bold.

CIFAR-100 ImageNet-100 CUB-200 StanfordCars FGVC-Aircraft

Methods All Old New All Old New All Old New All Old New All Old New

R
ea

l-
tim

e ProtoNet [Snell et al., 2017] 48.1 96.2 - 47.7 95.4 - 48.5 97.0 - 42.9 85.8 - 43.9 87.7 -
RankStat [Han et al., 2020] 59.7 63.6 55.8 59.1 60.1 58.0 61.9 73.7 50.1 53.6 58.9 48.3 54.4 64.3 44.5
OCD [Du et al., 2023] 66.2 45.2 87.1 53.1 0.1 87.6 67.3 41.5 93.0 60.1 34.2 86.0 59.2 33.2 85.2

FSNCD (SHC) 75.7 63.1 88.2 82.3 73.0 91.7 74.9 63.7 86.1 57.1 17.7 96.4 56.0 15.7 96.2
FSNCD (UKC) 78.3 70.0 86.6 83.3 79.9 86.7 78.1 74.8 81.4 61.2 29.6 92.8 61.0 30.4 91.6

Table 4: Main result of real-time inference tasks. The best result, excluding ProtoNet, is highlighted in bold.

dicted labels and prototypes by

ACCOld =
1

M

M∑
i=1

I(yi = pold(ŷi)), (8)

where pold represents the one-to-one mapping from the label
space of support prototypes YOld to ŶOld.

FSNCD Baselines. We present the following key bench-
mark methods as the strongest baselines for comparison with
the proposed FSNCD. All methods employed ViT-B-16 pre-
trained on ImageNet with DINO.

(1) ProtoNet [Snell et al., 2017] aims to classify samples
into prototypes based on maximum cosine similarity, in con-
trast, our FSNCD identifies known classes while also consid-
ering how to discover novel classes.

(2) OCD [Du et al., 2023] attempts to enhance the gener-
alizability of GCD by using hash codes derived from disen-
tangled features, while our FSNCD exploits a more general
feature space to solve analogous generalization problems.

(3) AutoNovel [Han et al., 2020] uses feature ranking to
determine whether a given sample belongs to positive pair,
while we further extend its indexing ideas to the support pro-
totypes. We use the two closest prototypes as category labels.

(4) SimGCD [Wen et al., 2023] attempts to utilize para-
metric classifier to solve GCD problem. Each episode of FS-
NCD can be regarded as a GCD problem with an extremely
scarce sample size. We use the weights from Phase 1 and
fine-tune using SimGCD to discover novel categories.

(4) GCD [Vaze et al., 2022a] proposes to estimate the num-
ber of novel categories with accuracy on labeled samples, and
discover categories with semi-supervised K-means. We treat
each episode as a GCD task, performing estimation and clus-
tering to discover novel categories.

4.2 Main Results
Table 3 compares method performance across five datasets.
We evaluate ”old class” accuracy (support set samples) and
”new class” accuracy (novel query set categories). ProtoNet
fails to recognize new classes due to its forced classifica-
tion into support set categories. Among clustering-based
methods, GCD employs semi-supervised K-means for cate-
gory estimation but struggles with coarse-grained datasets.
Our method eliminates category number pre-estimation and
achieves state-of-the-art performance, showing 9% (SHC)
and 13% (UKC) average old-class accuracy drops versus Pro-
toNet, yet delivering 5% (SHC) and 10% (UKC) overall ac-
curacy gains over GCD.

OCD exhibits consistent performance across tasks due to
its overly strict hash code categorization (12-bit codes allow
up to 212 classes) and underutilization of support feature dis-
tributions. While increasing support samples improves hash
code precision as noted in [Du et al., 2023], its ultra-fine cat-
egory division remains fundamentally limited.

RankStat achieves optimal performance when encoding the
top two ranks but limits the number of categories to 20, show-
ing strong retention of classification capability for old classes
as expected. Its strict partitioning of feature space into 20
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CIFAR-100 ImageNet-100

Methods All Old New All Old New
L

ar
ge

sc
al

e ProtoNet [Snell et al., 2017] 49.0 95.1 - 47.7 95.4 -
RankStat [Han et al., 2020] 57.8 61.3 54.4 52.5 50.4 54.6
OCD [Du et al., 2023] 41.5 39.3 43.7 25.2 22.7 27.6

FSNCD (SHC) 71.4 89.7 53.1 76.4 94.6 58.2
FSNCD (UKC) 89.3 92.2 86.3 97.5 98.1 96.8

Table 5: Main result of large-scale dataset annotation tasks. The best
result, excluding ProtoNet, is highlighted in bold.

regions based on support samples slightly reduces labeling
effectiveness for new classes.

We further conducted tests for real-time inference. As
shown in Table 4, OCD easily identifies a sample as a new
class, but it also tends to misclassify a substantial number of
old classes as new. Although OCD achieves high accuracy in
new class discovery, its utility is limited, indicating an exces-
sive inclination toward categorizing instances as new classes.
FSNCD with the SHC method achieves a more balanced per-
formance in real-time inference, while FSNCD with the UKC
exhibits lower capability in discovering new classes during
real-time inference but still maintains excellent performance
on old classes.

As shown in Table 5, OCD struggles with large-scale
dataset annotation due to its dispersed category distribution,
resembling On-the-fly Category Discovery in accuracy. In
contrast, UKC leverages sufficient samples to better cap-
ture data distributions, achieving superior performance across
multiple metrics. Notably, discrepancies between Table 3
and Table 5 are attributed to differing query sample sizes.
Specifically, using centroids from small batches to classify
large datasets enhances performance, aligning Cosine-trained
models with Euclidean clustering. Additionally, in traditional
GCD tasks, we found that the strategy of clustering and clas-
sification can significantly imporve performance. In extreme
cases with limited query samples, it becomes challenging to
determine whether a sample belongs to a new category, which
is an inherent challenge in FSNCD.

4.3 Ablation Studies
To validate the model’s performance across various scenarios,
we compared its performance under different settings. For
more details on related parameter studies, please refer to the
supplementary materials.
Quantity of Query. Due to the discovery of novel cate-
gories relying on clustering results, the model may be more
sensitive to the distribution of data. Simultaneously, to ensure
real-time reasoning capability, we investigated the impact of
query quantity on model metrics. Initially, we set the task as
5w5s5n.

Fig. 3 illustrates the accuracy variation with the number
of query samples in each class using the 5w5s configuration.
The accuracy of UKC change curve indicates that as the num-
ber of query samples in each class increases, the data distri-
bution tends to be more reasonable, leading to a continuous
improvement. Conversely, due to the weak dependence of hi-
erarchical clustering on data distribution, the accuracy of the
SHC based method is more stable.

0 10 20 30
Number of Query for Each Class

75
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90
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cu
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cy

Accuracy of All class on the Img-100

img-Kmeans
img-SHC

0 10 20 30
Number of Query for Each Class
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Figure 3: Ablation studies for quantity of query using the 5w5s con-
figuration. (a) The accuracy for Imagenet-100 on All classes. (b)
The accuracy for CUB-200 All classes.

CUB-200 ImageNet-100

Method All Old New All Old New

(1) SHC 52.4 91.9 42.5 57.9 93.9 48.9
UKC 61.2 86.5 54.9 73.6 91.1 69.3

(2) SHC 59.3 86.5 45.7 72.1 88.7 63.8
UKC 69.4 75.3 66.5 83.4 87.0 81.6

(3) SHC 48.8 84.1 40.0 63.0 88.2 56.7
UKC 50.0 55.8 48.6 79.4 80.4 79.1

Table 6: Ablation study of different task. (1). 5-way 5-shot 20-new,
(2). 10-way 5-shot 20-new, (3). 10-way 5-shot 40-new and both
above tasks all use 15 query images of each category.

Effects of Different Settings. In response to distinct task
configurations, we conducted further examinations on the
outcomes associated with three specific task settings: (1) 5-
way 5-shot 20-new, (2) 10-way 5-shot 20-new, and (3) 10-
way 5-shot 40-new, and take 15 query images for each cate-
gory. The results are shown in Table 6. Given that UKC is
contingent on the underlying data distribution, the results ob-
tained from UKC exhibit a comparatively stable trend. Our
approach demonstrates improvements across all three evalu-
ation metrics as the number of supported sample categories
increases. Notably, even with the introduction of additional
novel classes, our method consistently maintains a commend-
able level of accuracy on pre-existing classes. This robust
performance underscores the efficacy of our method in han-
dling diverse task settings and accommodating the challenges
posed by both an increased number of supported categories
and the introduction of new ones.

5 Conclusion
In this paper, we summarize the shortcomings of current
Novel Category Discovery (NCD) tasks and Few-Shot Learn-
ing (FSL) tasks, considering FSL tasks that are closer to real-
world scenarios, where new classes may appear in the query
set. To address the aforementioned issues, we propose Few-
shot Novel Category Discovery (FSNCD). In the inference
stage, we introduce Semi-supervised Hierarchical Clustering
(SHC) and Uncertainty-aware K-means Clustering (UKC)
through supervised contrastive learning to represent learning
in each episode and leverage them to classify old and cluster
new classes accurately. We conduct comprehensive experi-
ments on five datasets, validating the model’s performance in
general settings and its performance in extreme scenarios.
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