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Abstract
In neural architecture search (NAS), the relativistic
predictor has recently emerged as an attractive tech-
nique to solve ranking issue for performance eval-
uation by predicting the relativistic ranking of ar-
chitecture pair rather than the absolute performance
of an architecture. However, it suffers from a sig-
nificant cold-start issue, requiring a large amount
of evaluated architectures to train an effective pre-
dictor on new datasets. In this paper, we propose
a transferable relativistic predictor (TRP). Specifi-
cally, we construct a proxy dataset using the trans-
ferable cheaper-to-obtain performance estimation
to softly label the rank between architectural pairs.
The soft label with a smooth and easy-to-optimize
loss function facilitates the learning of expres-
sive and generalizable representations on the proxy
dataset. Furthermore, we construct Chebyshev in-
terpolation for correlation curve to adaptively de-
termine the number of evaluated architectures re-
quired on each dataset. Extensive experimental re-
sults in different search spaces show the superior
performance of TRP compared with state-of-the-art
predictors. TRP requires only 54 and 73 evaluated
architectures for a warm start on the CIFAR-10 and
CIFAR-100 under the DARTS search space.

1 Introduction
Neural architecture search (NAS) [Elsken et al., 2019] has
successfully emerged in automatically constructing network
architectures for various tasks, including image classification
[Huang et al., 2024], objective detection [Wang et al., 2020]
and semantic segmentation [Zhang et al., 2021a]. Typical
NAS frameworks find the best architecture in a vast search
space based on a predefined performance metric (e.g., ac-
curacy [Shen et al., 2023]), where training and evaluating
candidate architectures requires substantial computational re-
sources, limiting NAS applications in real-world scenarios
[Huang et al., 2024]. To alleviate this issue, various methods
are developed to reduce the overheads of architecture evalua-
tions, such as predictor [Wen et al., 2020], parameter sharing

∗Corresponding author.

[Shen et al., 2023], and zero-shot metric [Mellor et al., 2021].
Many predictor-based NAS methods sample a set of eval-

uated architectures to train an accuracy predictor[Ma et al.,
2024], aiming to learn the mapping relationship between ar-
chitecture encodings and their corresponding absolute perfor-
mance [Wen et al., 2020]. However, these predictors often
face ranking issue caused by prediction biases, i.e., architec-
tures with similar performance may be inaccurately ranked
during the architecture search process, leading to suboptimal
performance [Huang et al., 2022].

Recently, relativistic predictor focuses on comparing the
relativistic performance of paired architectures rather than
predicting their absolute performances, effectively mitigating
the ranking issue [Huang et al., 2022; Xu et al., 2021]. How-
ever, such predictors still face cold-start issue: When applied
to new datasets, the effective relativistic predictor needs to be
trained from scratch by a large number of evaluated architec-
tures for constructing the relativistic dataset, which remains
a computationally expensive process [Zhao et al., 2023].

Typical relativistic predictors use accuracy to label ar-
chitectural superior-inferior relationship. This paper ex-
ploits transferable relativistic label from the cheaper-to-
obtain performance estimation (i.e., zero-shot metric), which
can roughly label the relativistic superiority or inferiority be-
tween architecture pairs on a proxy dataset for pretraining rel-
ativistic predictor. Learning to fit transferable relativistic la-
bel may encourage predictor to extract better ranking ability
in advance, thereby facilitating a warm start on new datasets.
In other words, a pretrained predictor with good ranking abil-
ity requires only a small number of evaluated architectures to
achieve excellent predictive results on the new datasets. A
straightforward approach is to pretrain the predictor by utiliz-
ing relativistic label of a single zero-shot metric on the proxy
dataset and then finetune it on a small number of evaluated
architectures from the new dataset. Table 1 presents prelimi-
nary experiments, yielding following observations.

1) Transferable relativistic label can significantly enhance
ranking performance. For example, using NWOT [Mellor et
al., 2021] increases Kendall’s Tau by 0.3811 and 0.5062 on
Ninapro and SCIFAR100, respectively.

2) Inappropriate use of transferable relativistic label may
degrade ranking performance. For instance, using JACOV
[Mellor et al., 2021] decreases Kendall’s Tau by 0.01 and
0.0053 on ImageNet16-120 and Ninapro, respectively.
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Zero-shot
Pretrained Correlation/Finetuning Correlation

CIFAR10 CIFAR100 ImageNet16-120 Ninapro SVHN SCIFAR100
NWOT 0.2558/0.5459 ↑ 0.4901/0.5002 ↑ 0.6331/0.6421 ↑ 0.3851/0.7627 ↑ 0.5555/0.5434 ↓ 0.2711/0.7773 ↑

SYNFLOW 0.5536/0.5665 ↑ 0.5959/0.6096 ↑ 0.3935/0.3951 ↑ 0.3554/0.6740 ↑ 0.1866/0.3890 ↑ 0.6445/0.6383 ↓
SNIP 0.3026/0.5059 ↑ 0.4379/0.4436 ↑ 0.2759/0.6189 ↑ 0.3757/0.7955 ↑ 0.3563/0.3878 ↑ 0.3329/0.5935 ↑

JACOV 0.3981/0.4012 ↑ 0.5527/0.6394 ↑ 0.7248/0.7148 ↓ 0.4688/0.4635 ↓ 0.3092/0.3797 ↑ 0.3886/0.5682 ↑

Table 1: Pretrained and finetuning ranking correlations obtained by utilizing different typical types of relativistic label. Specifically, the
relativistic label of CIFAR10 is used as the proxy dataset for pretraining the predictor. The pretrained model is subsequently evaluated not
only on CIFAR10 itself but also on other target datasets (i.e., CIFAR100, ImageNet16-120, Ninapro, SVHN, and SCIFAR100) to assess
its cross-dataset performance before finetuning. After finetuning on each target dataset, the correlations are re-evaluated to measure the
performance improvement. All correlations use Kendall’s Tau metric, where the first and second values of each data mean Kendall’s Tau for
the pretrained model and Kendall’s Tau for the finetuned model, respectively.

3) Different datasets exhibit varied preferences for trans-
ferable relativistic label. For example, SYNFLOW [Tanaka
et al., 2020] reduces Kendall’s Tau on SCIFAR100 but en-
hances predictions on other datasets.

4) Relativistic label is generally positively transferable
across most datasets. For instance, NWOT, SYNFLOW,
SNIP [Lee et al., 2018], and JACOV show positive transfer-
ability in 5, 5, 6, and 4 datasets, respectively.

Preliminary experiments demonstrate that transferable rel-
ativistic label improves ranking ability with limited evaluated
architectures. This indicates that transferable relativistic label
can effectively mitigate the cold-start issue. However, such
a naive approach, which highly relies on selection of which
single zero-shot metric, fails to fully exploit complementary
knowledge from different zero-shot metrics. Therefore, inte-
grating multiple metrics can better mitigate cold-start issue.

Accordingly, this paper proposes a transferable relativis-
tic predictor (TRP). The proposed predictor comprises two
steps. During the pretraining stage, we employ the proposed
loss function, characterized by its smoothness and ease of
optimization, to improve ranking ability on the relativistic
dataset, which is softly labeled using multiple zero-shot met-
rics. During the finetuning stage, we approximate the rank-
ing correlation function of TRP using Chebyshev interpola-
tion. A point where the marginal benefit is less than a cer-
tain threshold value indicates the number of evaluated archi-
tectures required to finetune TRP on the target dataset. This
method can adaptively determine the number of evaluated ar-
chitectures. The contributions can be summarized as follows.

1) We propose a transferable relativistic predictor (TRP),
which can effectively mitigate the cold-start issue by full use
of the transferable relativistic label from multiple zero-shot
metrics.

2) We provide theoretical analyses of the designed loss
function from Bayes consistency and risk minimization,
demonstrating its advantages in obtaining better ranking rep-
resentation.

3) We run extensive experiments. Specifically, the num-
ber of evaluated architectures needed by TRP is fewer than
that of most existing predictors. TRP can achieve good
results in NAS-Bench-201, TransferNAS-Bench101-Micro,
TransferNAS-Bench101-Macro, and DARTS search spaces.

2 Related Works
Zero-shot metrics. These metrics eliminate the need for ar-
chitecture training and can quickly quantify the performance

of architectures by the theoretical-based and empirical-based
methods [Chen et al., 2024]. Typically, such metrics require
less than one second for architectural evaluation [Chen et al.,
2021a]. In addition, numerous studies [Krishnakumar et al.,
2022; Chen et al., 2024; Li et al., 2024] have observed that
some training-free metrics (e.g., NWOT [Mellor et al., 2021]
and FLOPS [Ning et al., 2021]) obtain better ranking correla-
tions on different datasets with the same search space. How-
ever, there is no zero-shot metric that achieves good ranking
quality in all search spaces, and the optimal zero-shot metric
varies from search space [Ning et al., 2021].
Predictor-based NAS. The accuracy predictor has achieved
remarkable success in performance evaluation, but expen-
sive evaluated architectures still limit the development. Early
works have attempted to fully exploit the limited evalu-
ated architectures to improve accuracy predictor performance
from the perspective of operation hierarchy [Chen et al.,
2021c], spatial topology information [Lu et al., 2021a], and
information flow [Ning et al., 2020], respectively. In ad-
dition, some works convert learning methods from super-
vised learning to semi-supervised learning [Luo et al., 2020;
Liu et al., 2021] and self-supervised learning [Ji et al., 2024;
Wei et al., 2021; Zheng et al., 2024], alleviating the need for
evaluated architectures. However, the accuracy predictor with
poor ranking correlation between ground-truth performance
and the predicted performance can mislead the search algo-
rithm leading to the selection of a low-ranking architecture.

To tackle this, the relativistic predictor is designed to learn
the relativistic ranking of architectures rather than their ab-
solute performances [Huang et al., 2022; Hu et al., 2021;
Guo et al., 2024; Chen et al., 2021b]. Among these,
NARQ2T [Guo et al., 2024] acquires knowledge of the per-
formance distributions within the search space, facilitating
the generalization of its ranking ability across datasets. Arch-
Graph [Huang et al., 2022] generalizes task embedding to
predict relativistic relation between architecture pairs. Al-
though NARQ2T and Arch-Graph achieve cross-dataset gen-
eralization, they still demand substantial evaluated architec-
tures during training. In addition, these works use the hinge
function, which is non-smooth and difficult to optimize/learn
the relativistic relationship between architecture pairs, lead-
ing to poor ranking ability.
Zero-shot metrics in predictor-based NAS. Recent studies
have attempted to exploit zero-shot metrics for achieving bet-
ter search efficiency. For example, the work [White et al.,
2021b] finds that certain zero-shot metrics can improve the
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(a) Building Soft Label Proxy Dataset (b) Pretraining Stage on Proxy Dataset
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Figure 1: The overall framework of the proposed TRP method consists of three stages: (a) Building Soft Label Proxy Dataset: Large-scale
architecture pairs are assigned soft labels derived from relativistic label across multiple zero-shot metrics. (b) Pretraining Stage on Proxy
Dataset: A carefully designed loss function, combining smoothness and ease of optimization with a contrastive learning approach, is used to
extract architecture pair representations. (c) Finetuing Stage on Target Dataset. An interpolation strategy determines the required quantity
of evaluated architectures for finetuning the predictor.

predictive power of the accuracy predictor. ProxyBO [Shen et
al., 2023] proposes to combine the architecture ranking given
by the accuracy predictor and zero-shot metrics in the search
process. AceNAS [Zhang et al., 2021b] pretrains the accu-
racy predictor based no FLOPS and #PARAMS. DELE [Zhao
et al., 2023] dynamically integrates zero-shot metrics for pre-
training accuracy predictor. However, such predictors are still
subject to the ranking issue.

3 Methodology
As shown in Figure 1, the overall framework of the pro-
posed TRP method contains three parts, i.e., building soft
label proxy dataset, pretraining stage on proxy dataset, and
finetuing stage on target dataset.

3.1 Building Soft Label Proxy Dataset
Given a search space, two architectures Ai and Aj are ran-
domly sampled to construct an instance In for proxy dataset
DP . The encodings Ei and Ej corresponding to Ai and Aj

are concatenated to form the input feature xn. Considering
the imprecision of zero-shot metrics (especially when the val-
ues of the metrics for the two architectures are close [Mellor
et al., 2021]), soft label yn and confidence score cn are used
to measure relativistic knowledge from K zero-shot metrics
at a fine-grained level. yn is a two-dimensional vector, where
the first dimension y1n denotes the probability that Ai is sig-
nificantly better than Aj , and the second dimension y2n de-
notes the probability that Aj is significantly better than Ai.
We first judge whether Ai or Aj is significantly superior or
inferior than the other based on Eq. (1).

ρ =
|MAi −MAj |

max(MAi
,MAj

)
, (1)

where MAi
and MAj

are the metric values of architectures
Ai and Aj , respectively. The selection of ρ is decided by
experiment instead of a statistical significance test. If ρ is
greater than threshold, there is a significant superior-inferior

relationship between Ai and Aj . Conversely, there is no sig-
nificant superior-inferior relationship. Ni, Nj , and Nij in-
dicate the number of metrics where Ai is significantly better
than Aj , Aj is significantly better than Ai, and neither is sig-
nificantly better, respectively. Based on this, y1n and y2n are
equal toNi/K andNj/K, respectively. For confidence score
cij , the smaller Nij indicates that the annotation is more reli-
able. Thus, cn is equal to 1 - (Nij/K). Repeating the above
process N times, we can obtain the proxy dataset DP . Due
to the architecture pair with transferable relativistic label, the
pretrained predictor on DP can obtain better representations.

3.2 Pretraining Stage on Proxy Dataset
For architectural pair representation, the normal ranking loss
can be defined as Eq. (2) [Xu et al., 2021; Guo et al., 2024].

Lrank =
N∑

n=1

ψ(f(xn)) ∗ sign(y1n − y2n)
)
, (2)

where ψ (.) is a hinge function with a hyperparameter α,
which is usually set to 1 to control the margin (see Eq. (3)).
Unfortunately, the hinge function is non-smooth and thus is
difficult to optimize for better ranking ability.

ψ(f(xn)) = max
(
0, α+ f1(xn)− f0(xn)

)
, (3)

where f1(xn) and f0(xn) are the predicted values of xn, re-
spectively. Given proxy dataset DP , we develop a smooth
approximation of Eq. (2) via the log-sum-exp function,

Lsrank = log

(
1 +

N∑
n=1

cn∗

exp
(
(f1(xn)− f0(xn) ∗ sign(y1n − y2n)

))
.

(4)

Lsrank form is, asymptotically, an upper bound of the fol-
lowing hinge loss form,
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Lasym
srank =

N∑
n=1

cn ∗ ψ⋆ ((xn)) ∗ sign(y1n − y2n), (5)

where

ψ⋆
(
(f(xn)) = cn ∗max

(
0, α⋆ + f1(xn)− f0(xn)

)
, (6)

which allows the predictor to have adaptive margins α⋆ per
architecture pair. It is differentiable and smooth everywhere,
which makes it easier to optimize for obtaining better ranking
ability. We give theoretical analysis of Lsrank in Section 4.

To enhance the architecture pair representations, we em-
ploy contrastive learning [Xiao et al., 2024] to maximize sim-
ilarity among positive data while ensuring dissimilarity for
negative samples, thereby aligning architecture pair represen-
tations for semantically similar data. Our approach treats dif-
ferent instances with the same soft label as positive data and
instances with the different soft label as negative data. We
calculate the representation similarity of two instances xi and
xj , where the embeddings are obtained with an encoder z (.):

s(xi, xj) =
z(xi) ∗ z(xj)

∥z(xi)∥ ∗ ∥z(xj)∥
. (7)

The contrastive learning requires similar data to yield a
larger s (.). The contrastive loss is as follows:

Lcont = −
N∑

n=1

log
exp (s(xn, k+)/τ)

s(xn, k+)/τ +
∑N

i=1 exp (s(xn, k−)/τ)
,

(8)
where τ is a temperature hyperparameter. k+ and k− denote
positive and negative data, respectively. The final loss func-
tion is the combination of Eqs. 4 and 8.

Lpre = Lsrank + λ1Lcont, (9)
where λ1 is a hyperparameter to control the importance be-
tween two different loss functions. Therefore, the proposed
loss function has a twofold effect. The first is to maximize
the capture of relativistic knowledge in soft labels through a
smooth and easy-to-optimize loss function (i.e., Lsrank). The
second is the acquisition of more discriminative ranking rep-
resentations through contrastive loss (i.e., Lcont).

3.3 Finetuing Stage on Target Dataset
After pretraining stage, finetuning is required to transfer the
pretrained predictor to the target task. However, how to
choose the appropriate number of evaluated architectures still
requires trial and error. To solve the issue, we design an
interpolation-based method to select the number of evalu-
ated architectures adaptively. Specifically, we first sample a
small number of evaluated architectures (Ns) from the target
dataset. Interpolated data points are denoted as DI = (mi,
ri), where ri refers to Kendall’s Tau correlation for Ns eval-
uated architectures after finetuning via mi samples. Based
on DI , we fit a curve of the relationship between the number
of evaluated architectures and Kendall’s Tau correlation by

Chebyshev interpolation polynomial (i.e., Eq. (10)) [Rivlin,
2020].

P (m) =

Ns∑
i=0

ri

Ns∏
j=0
j ̸=i

m−mj

mi −mj
. (10)

The marginal benefit is the first order derivative of Eq. (10)
as follows:

P ′(m) =

Ns∑
i=0

ri
d

dm

Ns∏
j=0
j ̸=i

m−mj

mi −mj

 . (11)

The optimal number of evaluated architectures is NA =
min {m ∈ N |P ′(x) ≤ ω}. The relativistic dataset DT with
size 2NA(NA-1) is constructed to finetune the predictor. Un-
like DP , labels in DT are based on ground-truth perfor-
mances of architecture pairs. If Ai is better than Aj , y1n and
y2n are 1 and 0, respectively. Otherwise, y1n and y2n are 0 and 1.
Furthermore, DT is without confidence score. The following
loss function is used in finetuing stage,

Lfine = L∗
srank + λ2Lcont, (12)

where λ2 is to control the importance between two different
loss functions. L∗

srank is version of Eq. (4) without confi-
dence score cn.

4 Theoretical Analysis
We prove the benefit of Eq. (4) from the point of view of
Bayes consistency and risk minimization. Bayes consistency
is a critical attribute of loss function for achieving the right
objective [Saberian and Vasconcelos, 2011]. The output of
the predictor is a two-dimensional vector [fF (x), fL(x)],
where fF (x) and fL(x) are the superiority and inferiority
scores in architectural pairs, respectively. Based on Bayes
prediction rule, we can obtain the followings:

f∗(x) = argmax
y∈Y

P (Y = y | x), (13)

where Y ∈ {F , L} is the label space. F and L denote the
labels in architectural pairs in which the former is superior to
the latter and the latter is better than the former, respectively.
The outputs to the predictor need to be satisfied:

fF (x)− fL(x) = log
P (Y = F | x)
P (Y = L | x)

. (14)

Due to ∆f(xn) = f1(xn) − f0(xn), when
sign(y1n − y2n) = 1, exp((f1(xn) − f0(xn) ∗ sign(y1n − y2n))
= exp (∆f(xn)). When sign(y1n − y2n) = 0,
exp((f1(xn) − f0(xn) ∗ sign(y1n − y2n)) = exp (−∆f(xn)).
Thus, Eq. (4) = log

(
1 +

∑N
n=1 cn ∗ exp (±∆f(xn))

)
≈∑N

n=1 cn ∗ exp
(
− 1

2∆f(xn)
)
.

Considering the loss of a single architecture pair, since cn
as a real number cannot affect the subsequent proof, Lsrank

in Eq. (4) loss is analytically equivalent to the following loss
without the logarithmic,
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ℓsrank(f(x), Y ) = exp

(
−1

2
∆f(x)

)
, (15)

where ∆f(x) = fF (x) − fL(x). When ∆f(x) ≫ 0, i.e.,
fF (x) ≫ fL(x), it indicates that score of F is significantly
higher than L, and loss approaches zero. The loss function
drives predictor training, making ∆f(x) increasingly larger,
aligning predictor’s predictions with Bayes consistency.

Proof. Consider f(x) that minimizes the risk, The total risk
function of the predictor is defined as:

R(f) = E(x,Y )∼D [ℓsrank(f(x), Y )] . (16)

The conditional risk function is defined as:

R(f | x) = EY∼P (Y |x) [ℓsrank(f(x), Y )] . (17)

Substituting the loss function, we have:

R(f | x) = P (Y = F | x) exp
(
−1

2
∆f(x)

)
+P (Y = L | x) exp

(
1

2
∆f(x)

)
.

(18)

The first and second order derivatives of Eq. (18) are

∂R(f | x)
∂∆f(x)

= −1

2
P (Y = F | x) exp

(
−1

2
∆f(x)

)
+
1

2
P (Y = L | x) exp

(
1

2
∆f(x)

) (19)

∂2R(f | x)
∂∆f(x)2

=
1

4
P (Y = F | x) exp

(
−1

2
∆f(x)

)
+
1

4
P (Y = L | x) exp

(
1

2
∆f(x)

) (20)

Since P (Y = F | x) and P (Y = L | x) are non-negative,
and the exponential function is always greater than zero, the
second-order derivative is always positive, indicating that the
risk function is convex and exists a global minimum solu-
tion. Making the first order derivative equal to 0 obtains the
minimum value of the risk function ∆f(x) = log P (Y=F |x)

P (Y=L|x)
consistent with the predictor’s output. f∗(x) implements the
Bayes prediction rule in Eq. (13). Thus, we can say that us-
ing Eq. (4) achieves the right objective and extracts better
architecture pair representations for predictor.

5 Experiments and Results
The experiments contain ranking capability, search results,
and ablation studies. We run experiments on three closed do-
main search spaces and one open domain search space.

Method
CIFAR-10 CIFAR-100 ImageNet16-120

Query τ Query τ Query τ
CAP † 50 0.5733 50 0.5663 50 0.5697

DCLP † 50 0.6090 50 0.5899 50 0.5828
DELE † 45 0.6447 45 0.6427 45 0.6328

Arch-Graph † 150 0.6724 150 0.6674 150 0.6533
ReNAS † 90 0.6529 90 0.6411 90 0.6458

TRP (Ours) 30 0.8324 34 0.8267 41 0.8286

Table 2: Ranking results on NAS-Bench-201. Kendall’s Tau (τ ) of
10 independent runs is calculated. †: implemented by ourselves us-
ing open source code. The best and second best are color coded.

5.1 Results on NAS Benchmarks
The experiments are conducted on NAS-Bench-201 and
TransNAS-Bench-101 benchmarks. Kendall’s Tau is used to
evaluate the predictor’s ranking capability, while a query met-
ric represents the amount of evaluated architectures required
by the predictor. TRP focuses on the relative relationship be-
tween two architectures, and an additional bubble sort is nec-
essary to determine the predicted ranking for a set of architec-
tures, where TRP is used to decide whether to swap the rank-
ings of two architectures. The closer Kendall’s Tau value is to
1, the higher the agreement between actual accuracy ranking
and predicted ranking, indicating the better ranking capabil-
ity of TRP. For the query metric, we adopt experimental re-
sults from the original literature. If the predictor has not been
tested on a NAS benchmark, default settings from the source
code are applied. In NAS-Bench-201, the proxy dataset is
constructed using zero-shot metrics on CIFAR-10 for pre-
training, followed by finetuning on CIFAR-10, CIFAR-100,
and ImageNet16-120. For TransNAS-Bench-101, zero-shot
metrics from the objective classification task are used to con-
struct the proxy dataset, and finetuning is performed on all
datasets. The number of queries is adaptively determined us-
ing the proposed interpolation method.

The ranking results on NAS-Bench-201 are recorded in Ta-
ble 2. Compared with existing pretraining-finetuning accu-
racy predictors (i.e., CAP, DCLP, and DELE) and relativis-
tic predictors (Arch-Graph and ReNAS), TRP achieves the
best Kendall’s Tau on the three datasets with the fewest num-
ber of evaluated architectures (CIFAR-10: 30, CIFAR-100:
34 and ImageNet16-120: 41). Notably, with only 30 evalu-
ated architectures (1/3 of Arch-Graph), Kendall’s Tau of TRP
achieves 0.1805 improvement on the CIFAR-10. Moreover,
we report the ranking results on TransNAS-Bench-101 in Ta-
ble 3. It can be observed that TRP obtains state-of-the-art
performance when compared with other competitors regard-
less of the datasets. Moreover, it is noteworthy that TRP sur-
passes the second-best predictors (i.e., DELE and ReNAS) by
at least 0.22 Kendall’s Tau on all tasks in the macro and mi-
cro search spaces. Compared to Arch-Graph (50), which is
also tested on TransNAS-Bench-101, we are at least 10 the
evaluated architectures fewer than Arch-Graph is, but obtain
an improvement of at least 0.25 Kendall’s Tau.

Such good results imply that the pretraining stage can fully
utilize the transferable relativistic label from zero-shot met-
rics via the designed soft label and loss function. The pre-
trained predictor can learn meaningful architecture pair rep-
resentations for the architectural pairs even before the fine-
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Search
Space Method Cls. Obj. Cls. Scene Auto. Normal Sem. Seg. Room. Jigsaw

Query τ Query τ Query τ Query τ Query τ Query τ Query τ

Micro

CAP† 50 0.5648 50 0.5557 50 0.557 50 0.5619 50 0.5582 50 0.5524 50 0.5596
DCLP† 50 0.6075 50 0.5977 50 0.6089 50 0.6105 50 0.6081 50 0.5902 50 0.6083
DELE† 45 0.6306 45 0.6339 45 0.6369 45 0.6304 45 0.6261 45 0.6275 45 0.6327

Arch-Graph† 50 0.6063 50 0.5918 50 0.6021 50 0.6069 50 0.5906 50 0.6084 50 0.6023
ReNAS† 90 0.6378 90 0.6277 90 0.6297 90 0.6377 90 0.6319 90 0.6233 90 0.6269

TRP (Ours) 31 0.8584 28 0.8620 33 0.8771 34 0.8695 29 0.8697 40 0.8709 38 0.8513

Macro

CAP† 50 0.5545 50 0.5594 50 0.5553 50 0.5586 50 0.5583 50 0.5572 50 0.5672
DCLP† 50 0.6011 50 0.5963 50 0.6034 50 0.5920 50 0.5978 50 0.6101 50 0.5995
DELE† 45 0.6295 45 0.6238 45 0.6357 45 0.6379 45 0.6246 45 0.6327 45 0.6418

Arch-Graph† 50 0.6004 50 0.6040 50 0.5942 50 0.5989 50 0.6029 50 0.6009 50 0.6073
ReNAS† 90 0.6251 90 0.6281 90 0.6342 90 0.6250 90 0.6392 90 0.6324 90 0.6325

TRP (Ours) 33 0.8551 36 0.8503 34 0.8715 37 0.8527 33 0.8667 39 0.8515 37 0.8609

Table 3: Ranking results on TransNAS-Bench-101. The Kendall’s Tau (τ ) of 10 independent runs is calculated. †: implemented by ourselves
using open source code. The best and second-best are color coded.

Method CIFAR-10 CIFAR-100 ImageNet16-120 Search Cost
Val. Acc (%) ↑ Test.Acc (%) ↑ Val. Acc (%) ↑ Test.Acc (%) ↑ Val. Acc (%) ↑ Test.Acc (%) ↑ (Seconds) ↓

ResNet [2016] 90.83 93.97 70.42 70.86 44.53 43.63 –
ENAS [2018] 37.51 ± 3.19 53.89 ± 0.58 13.37 ± 2.35 13.96 ± 2.33 15.06 ± 1.95 14.84 ± 2.10 13314.51

DARTS [2018b] 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00 10889.87
Arch2Vec-BO [2020] 91.41 ± 0.22 94.18 ± 0.24 73.35 ± 0.32 73.37 ± 0.30 46.34 ± 0.18 46.27 ± 0.37 12000

RMI-NAS [2022] 91.44 ± 0.09 94.28 ± 0.10 73.38 ± 0.14 73.36 ± 0.19 46.37 ± 0.00 46.34 ± 0.00 1258.21
CAP [2024] 91.54 ± 0.10 94.34 ± 0.06 73.41 ± 0.17 73.41 ± 0.22 46.47 ± 0.07 46.44 ± 0.36 15.65

ReNAS [2021] 90.90 ± 0.31 93.99 ± 0.25 71.96 ± 0.99 72.12 ± 0.79 45.85 ± 0.47 45.97 ± 0.49 86.31
LCMNAS [2023] 91.22 ± 0.17 94.05 ± 0.07 71.96 ± 0.96 72.01 ± 0.82 45.55 ± 0.78 45.61 ± 0.08 11521

BOHB [2018] 90.82 ± 0.53 93.61 ± 0.52 70.74 ± 1.29 70.85 ± 1.28 44.26 ± 1.36 44.42 ± 1.49 12000
Jacob cov [2021] 89.69 ± 0.73 92.96 ± 0.80 69.87 ± 1.22 70.03 ± 1.16 43.99 ± 2.05 44.43 ± 2.07 –

SETN [2019a] 82.25 ± 5.17 86.19 ± 4.63 56.86 ± 7.59 56.87 ± 7.77 32.54 ± 3.63 31.90 ± 4.07 31009.81
ParZC [2024] 91.55 ± 0.02 94.36 ± 0.25 73.49 ± 0.02 73.31 ± 0.02 46.37 ± 0.04 46.34 ± 0.01 68.95

GDAS [2019b] 90.00 ± 0.21 93.51 ± 0.13 71.14 ± 0.27 70.61 ± 0.26 41.70 ± 1.26 41.84 ± 0.90 28926
TRP 91.57 ± 0.01 94.36 ± 0.15 73.49 ± 0.01 73.44 ± 0.02 46.49 ± 0.05 46.48 ± 0.27 14.97

Optimal 91.61 94.37 73.49 73.51 46.73 47.31 –

Table 4: Comparison with the SOTA methods on NAS-Bench-201. The best and second-best are color coded.

tuning stage. Thus, only a few evaluated architectures are
enough for a warm start of the predictor on new datasets.

5.2 Searching on Closed Domain Search Spaces
On NAS-Bench-201, the total number of queried architec-
tures is determined by an interpolation-based method (see Ta-
ble 2). We follow the settings in [Dong and Yang, 2020] to
search for architectures. Specifically, the predictor evaluates
all architectures in the search space. The best performance of
the first 50 evaluated architectures is reported as the search
result (see Table 4). Compared with competitors, TRP com-
pletes the evaluation of all architectures using only 15 sec-
onds. In addition, we achieve the best average accuracy on
different datasets. Especially, the number of queried architec-
tures is substantially fewer than the accuracy predictor (e.g.,
CAP) and relativistic predictor (e.g., ReNAS). For fair com-
parison on TransNAS-Bench-101, we follow the settings in
[Huang et al., 2022] and the search results are shown in Ta-
ble 5. On macro and micro search spaces, TRP achieves the
best search results on all datasets. Compared to Arch-Graph
(query = 50), TRP achieves good results by querying a small
number of architectures (query range: 29-40).

These extraordinary results can be attributed to the suf-
ficient transferable relativistic label from zero-shot metrics
that the predictor learns in advance through the designed soft
label and loss function. Moreover, TRP is finetuned on a

small number of evaluated architectures, and obtains excel-
lent state-of-the-art performances on different datasets across
multiple search spaces, further verifying the positive effects
of using transferable relativistic label. These promising ex-
perimental results demonstrate that the transferable relativis-
tic label facilitates reducing the number of evaluated architec-
tures and mitigating cold-start issue on new datasets.

5.3 Searching on Open Domain Search Space
We construct the proxy dataset using the zero-shot metrics on
CIFAR-10 for the pretraining predictor, which is finetuned by
CIFAR-10 and CIFAR-100. Following [White et al., 2021a],
we randomly select a certain number of architectures in the
DARTS search space and then train them from scratch to con-
struct the evaluated architectures for the pretraining predictor,
where the number of selected architectures is determined by
the proposed adaptive approach. For each selected architec-
ture, the epoch number is set to 50 with a batch size 64. As for
the search method, we sample 10k architectures at random in
the DARTS search space and evaluate them using our trained
predictor. After that, we select the architectures with top-5
predicted performance as the search results and re-train them
with common DARTS strategies. The experimental results on
CIFAR-10 and CIFAR-100 are shown in Table 6.

Compared to predictor-based NAS approaches, the archi-
tectures obtained by TRP achieve minimal loss and #Param
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Search
Space Algorithm Cls. Obj. Cls. Scene Auto. Normal Sem. Seg. Room. Jigsaw

Acc. (%) ↑ Acc. (%) ↑ SSIM (10−3) ↑ SSIM (10−3) ↑ mIoU (%) ↑ L2 loss (10−3) ↓ Acc. (%) ↑

Micro

RS [2012] 45.16 54.41 55.94 56.85 25.21 61.48 94.47
REA [2019] 45.39 54.62 56.96 57.22 25.52 61.72 88.95
PPO [2017] 45.19 54.37 55.83 56.9 25.24 66.98 88.95

BONAS-t [2020] 45.38 54.57 56.18 57.24 25.24 60.93 –
Arch-Graph-zero [2022] 45.64 54.8 56.61 57.9 25.73 60.21 –

Arch-Graph[2022] 45.81 54.9 56.58 58.27 25.69 60.08 –
weakNAS [2021] 45.66 54.72 56.91 57.21 25.90 60.37 94.63
CATCH [2020] 45.27 54.38 56.13 56.99 25.38 60.7 –

TRP (Ours) 45.92 54.77 56.99 58.62 25.90 60.01 94.77
Optimal 46.32 54.94 57.72 59.62 26.27 59.38 95.37

Macro

RS [2012] 46.85 56.5 70.06 60.7 28.37 59.35 96.78
REA [2019] 47.09 56.57 69.98 60.88 28.87 58.73 96.88

BONAS [2020] 46.85 56.47 74.45 61.62 28.82 59.39 96.76
weakNAS [2021] 47.4 56.88 72.54 62.37 29.18 57.86 96.86
CATCH [2020] 47.29 56.49 70.36 60.85 28.71 59.37 –

BONAS-t [2020] 47.06 56.86 71.41 61.44 28.76 58.35 –
Arch-Graph-zero [2022] 47.42 56.78 75.51 63.39 29.17 58.15 –

Arch-Graph [2022] 47.44 56.98 75.9 64.35 29.19 57.75 –
TRP (Ours) 47.52 56.99 75.95 64.35 29.20 57.55 96.97

Optimal 47.96 57.48 76.88 64.35 29.66 56.28 97.02

Table 5: Comparison with the SOTA methods on TransNAS-Bench-101. The best and second-best are color coded.

Dataset Algorithm #Param
(MB) ↓ Error

(%) ↓
Search Cost

(GPU Days)↓ Query ↓

C10

CATE [2021a] 3.5 2.56 3.3 150
NPENAS-NP [2022] 3.5 2.44 1.8 100

TNASP [2021b] 3.7 2.52 0.3 1000
NAR-Former [2023] 3.8 2.48 0.24 100

DELE [2023] 4.1 2.3 – 300
DCLP-RL [2024] – 2.48 0.17 –

CAP [2024] 3.3 2.42 3.3 100
PINAT [2023] 3.6 2.42 0.3 1000
CATES [2020] 4.1 2.58 – 800

Arch2vec-BO [2020] 3.6 2.48 100 400
BONAS-D [2020] 3.3 2.43 10 4800

TRP (Ours) 3.2 2.40 1.4 54

C100
PNAS [2018a] 3.2 17.63 225 1160
NAO [2018] 10.6 15.67 200 1000
DELE [2023] 4.1 16.07 – 300
TRP (Ours) 3.2 14.94 1.7 73

Table 6: Comparison with the SOTA methods on DARTS search
space. The best and second-best are color coded.

on both datasets. Regarding search cost, we outperform most
predictors on CIFAR-10, second only to TNASP and PINAT.
In terms of loss, the architecture obtained by TRP is less than
TNASP and PINAT by 0.12 and 0.02, respectively. Regard-
ing the number of queried architectures, on CIFAR-10 and
CIFAR-100, TRP is only 1/4 of DELE. Using such a small
number of queried architectures and obtaining good search
results reaffirms the advantages of the proposed predictor for
mitigating cold-start issue. More detailed experimental set-
tings are reported in the supplementary materials.

5.4 Ablation Study
We conduct ablation studies for the loss function, includ-
ing hyperparameters (λ1 and λ2), hinge/log-sum-exp, and
with/without contrastive loss. Based on Figures 2 (a) and
(b), λ1 and λ2 for pretraining and finetuning stages should be
taken as 7 and 6, respectively, achieving good Kendall’s Tau.
Figure 2 (c) proves that the log-sum-exp learns a better repre-
sentation compared to the hinge loss, facilitating the improve-
ment of the ranking ability of the predictor. The contrastive
loss can capture better architecture pair representations (see

(a) λ1 (b) λ2

(c) Hinge vs. log-sum-exp (d) W/O contrastive loss

Figure 2: Results of Ablation study for loss function.

Figure 2 (d)). More experiments (e.g., ① soft label/hard la-
bel, ② with/without pretraining, and ③ finetuning meth-
ods) can be found in the supplementary materials.

6 Conclusions
This paper proposes a transferable relativistic predictor to al-
leviate cold-start issue. The pretraining stage enhances archi-
tecture pair representation with a specialized loss function,
and the finetuning stage employs interpolation to determine
the amount of evaluated architectures adaptively. Experi-
ments across four search spaces demonstrate that TRP out-
performs peer predictor-based NAS methods. We further will
explore more information fusion technology to boost in-depth
research into the transferable relativistic label.
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