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Abstract
Vision-centric semantic occupancy prediction
plays a crucial role in autonomous driving, which
requires accurate and reliable predictions from
low-cost sensors. Although having notably nar-
rowed the accuracy gap with LiDAR, there is still
few research effort to explore the reliability and
calibration in predicting semantic occupancy from
camera. In this paper, we conduct a comprehen-
sive evaluation of existing semantic occupancy
prediction models from a reliability perspective
for the first time. Despite the gradual alignment
of camera-based models with LiDAR in terms of
accuracy, a significant reliability gap still persists.
To address this concern, we propose RELIOCC,
a method designed to enhance the reliability of
camera-based occupancy networks. RELIOCC
provides a plug-and-play scheme for existing
models, which integrates hybrid uncertainty from
individual voxels with sampling-based noise and
relative voxels through mix-up learning. Besides,
an uncertainty-aware calibration strategy is devised
to further improve model reliability in offline
mode. Extensive experiments under various
settings demonstrate that RELIOCC significantly
enhances the reliability of learned model while
maintaining the accuracy for both geometric and
semantic predictions. Notably, our proposed
approach exhibits robustness to sensor failures and
out of domain noises during inference.

1 Introduction
The goal of semantic occupancy prediction is to obtain a
comprehensive voxel-based representation of the 3D scene
from either LiDAR point clouds [Roldao et al., 2020; Xia
et al., 2023] or camera images [Cao and de Charette, 2022;
Huang et al., 2023; Li et al., 2023], which is crucial for
perception systems in autonomous driving and robotic plat-
forms. Initially, LiDAR-based models [Roldao et al., 2020;

*Corresponding authors.

Cheng et al., 2021; Yan et al., 2021; Xia et al., 2023]
dominated the field due to their ability to provide accu-
rate geometric cues. Researchers nowadays prefer to learn
3D occupancy information from images owing to the low
cost and widespread availability of camera sensors. Recent
progress [Cao and de Charette, 2022; Huang et al., 2023;
Li et al., 2023; Yao et al., 2023; Mei et al., 2024] has sig-
nificantly narrowed the gap in accuracy between camera and
LiDAR-based approaches. However, their performance in
terms of reliability remains under-explored, which becomes
paramount in safety-critical scenarios.

Traditionally, the occupancy labeling relies on accumu-
lated LiDAR scans and their corresponding point-wise se-
mantic labels [Behley et al., 2019; Tian et al., 2024; Wang
et al., 2023; Wei et al., 2023]. With the development
of vision-centric approaches [Cao and de Charette, 2022;
Huang et al., 2023; Yao et al., 2023; Li et al., 2023;
Mei et al., 2024] using images, questions arise regarding the
reliability of predictions solely derived from cameras with-
out accurate depth information. Since the overall accuracy
of occupancy networks is relatively low, exploring the relia-
bility and uncertainty of their predictions can provide valu-
able reference information for downstream tasks in driving,
such as decision-making and planning [Zheng et al., 2024;
Hu et al., 2023; Albrecht et al., 2021].

With the above considerations, we conduct a thorough
evaluation of existing semantic occupancy prediction mod-
els based on a reliability standpoint. To achieve this, we in-
troduce the misclassification detection and calibration met-
rics from both geometric and semantic dimensions for eval-
uating model that utilize camera or LiDAR data. Our find-
ings reveal that camera-based models often lag behind their
LiDAR-based counterparts in terms of reliability despite im-
provements in accuracy.

To mitigate this disparity, RELIOCC is proposed to im-
prove the reliability in occupancy networks by a new hybrid
uncertainty learning scheme. Our approach optimizes uncer-
tainty by taking into consideration of perturbations in indi-
vidual voxels (absolute uncertainty) and the relative relation-
ships in mix-up voxels (relative uncertainty) during model
training. By integrating multiple sources of information for
uncertainty learning, our method enhances the reliability of
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camera-based models without sacrificing inference speed or
accuracy. Moreover, we provide an uncertainty-aware cali-
bration strategy to utilize the learned uncertainty in offline
mode, further enhancing model’s reliability. Through exten-
sive experiments across diverse configurations including on-
line and offline modes, our method achieves competitive per-
formance compared against the state-of-the-art models.

Our main contributions can be summarized as follows:

• A comprehensive evaluation is conducted on existing se-
mantic occupancy prediction models from a reliability
perspective, which provides a series of misclassification
detection and calibration metrics across both geometric
and semantic dimensions.

• We provide a systematic scheme for adapting the ex-
isting methods to achieve reliable and calibrated occu-
pancy networks. Furthermore, RELIOCC is proposed to
enhance the reliability of camera models. A novel hy-
brid uncertainty learning approach is presented to com-
bine the variance from individual and mix-up voxels.

• Extensive experiments on online uncertainty learning
and offline model calibration across diverse settings
demonstrate the effectiveness of our approach in bridg-
ing the reliability gap between camera and LiDAR-based
methods under general conditions, while showcasing ro-
bust performance in adverse scenarios such as sensor
failures and noisy observations.

2 Related Work
Semantic Occupancy Prediction. Semantic occupancy pre-
diction is also known as semantic scene completion and firstly
explored in indoor scenes [2017; 2022]. In outdoor sce-
narios, SemanticKITTI [2019] stands as the first large-scale
dataset, providing abundant data resources. Recently, sev-
eral other datasets [2022; 2023; 2023; 2024] have been con-
structed to explore this task owing to its importance. LiDAR-
based methods [2020; 2021; 2021; 2022; 2023] have domi-
nated this field in accuracy. MonoScene [2022] is the first
occupancy prediction method that utilizes single image as
input. Subsequent studies [2023; 2023; 2023; 2024; 2024;
2024] have effectively improved the performance of camera-
based models. However, there is a lack of research on
reliability of occupancy predictions, posing potential risks
to the safety of downstream tasks in driving [2021; 2023;
2024]. RELIOCC fills this gap by investigating the reliabil-
ity of occupancy networks by uncertainty learning.
Uncertainty Learning and Model Calibration. The un-
certainty in machine learning consists of aleatoric uncer-
tainty from data noises and epistemic uncertainty from model
parameters [2017; 2018]. Data uncertainty is widely ex-
plored in face field [2017; 2019; 2020; 2021]. Cai et al.
[2023] propose a probabilistic embedding model to estimates
the data uncertainty for point cloud. Model uncertainty
is usually obtained from the statistics of multiple predic-
tions through methods including model ensembling [2017],
bootstrapping [2001], and bagging [1996]. Model calibra-
tion is another line to improve reliability in model predic-
tion [2023], which provides a post-processing scheme applied

to the non-probabilistic output from a trained model. Model
calibration was initially studied in image classification [2017;
2019; 2021] and has since been widely applied to object
detection [2020; 2022] and semantic segmentation [2021;
2025]. Our method adopts uncertainty as a learning objec-
tive and can support both online uncertainty estimation and
offline model calibration simultaneously.

3 Preliminaries
3.1 Problem Formulation
Occupancy Prediction. Given inputs x from LiDAR or cam-
era sensors, occupancy networks Vθ(x) generate dense fea-
tures V ∈ Rd×L×W×H in a pre-defined volume, where L,
W , and H represent the length, width, and height, respec-
tively. d is the dimension of dense features. For any voxel
vi ∈ Rd within this volume, the prediction involves with two
components. One is a binary indicator that specifies whether
the voxel is occupied or not. The other is the semantic label
of the voxel if the voxel is occupied. Generally, such process
can be formulated by estimating the probability p(yi = y|vi)
for vi, where y ∈ {0, 1, ..., S}. Here, 0 denotes that the voxel
is unoccupied, and S is the total number of semantic classes.
Misclassification Detection. For a reliable classifier, we ex-
pect it to accurately reject those incorrect predictions with
low-confidence. Therefore, misclassification detection is
introduced to measure the gap between the actual trained
model and the ideal one, which can be evaluated by re-
jection curves [Fumera and Roli, 2002; Hendrycks et al.,
2021]. To avoid the tendency of higher precision mod-
els, we adopt the same strategy as [Malinin et al., 2019;
de Jorge et al., 2023] to normalize the area under the curve
and deducts a baseline score.
Calibration. As a long-standing problem in machine learn-
ing, the goal of model calibration is to ensure that predicted
confidence of a model aligns accurately with the actual like-
lihood of correctness [Niculescu-Mizil and Caruana, 2005;
Guo et al., 2017], thereby producing more reliable predic-
tions. Within the framework of multi-class classification,
a model is deemed perfectly calibrated if p(yi = y|ci =
c, vi) = c. Here, the model not only predicts a discrete la-
bel y but also generates a confidence score c ∈ [0, 1]. This
score c should ideally reflect the true probability that the pre-
dictions are correct.

3.2 Evaluation Metrics
Canonical Metrics. Following common practice [Song et
al., 2017; Behley et al., 2019], we employ the Intersection
over Union (IoU) metric to assess the accuracy of geometric
occupancy prediction that is typically treated as a binary clas-
sification task. Additionally, we utilize the mean Intersection
over Union (mIoU) across multiple categories to evaluate the
quality of semantic predictions. These two metrics are calcu-
lated using discrete predictions by applying argmax opera-
tion to the logits. Although IoU and mIoU effectively reflect
the performance of model in accuracy aspect, they do not as-
sess its reliability.

In this paper, we mainly evaluate the reliability of occu-
pancy prediction on misclassification detection and calibra-
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tion, which are assessed by following metrics.
Prediction Rejection Ratio (PRR). The Prediction Rejec-
tion Ratio (PRR) [Malinin et al., 2019] is defined through
rejection curves for misclassification detection. To construct
a rejection curve, we initially sort predictions based on a spe-
cific criterion, such as predicted confidence or oracle confi-
dence (where predictions are labeled 1 if correct and 0 other-
wise). Subsequently, a threshold is set and predictions below
this threshold are rejected, allowing us to calculate a rejec-
tion rate. As this threshold is incrementally adjusted, we ob-
tain a rejection curve to illustrate how the classification error
(depicted on the y-axis) decreases in tandem with the rejec-
tion rate (represented on the x-axis). The PRR metric is then
quantitatively defined as follows

PRR =
AUCrandom −AUCuncertainty

AUCrandom −AUCoracle
, (1)

where AUC represents the Area Under the Curve. Here,
AUCrandom = 0.5 corresponds to the AUC for randomly
generated confidences. A perfectly reliable model would
achieve PRR = 1. For occupancy networks, we report both
PRRgeo for geometric predictions and PRRsem for semantic
predictions, respectively.
Expected Calibration Error (ECE). Expected Calibration
Error (ECE) [Naeini et al., 2015; Guo et al., 2017] assesses
the calibration of probabilistic predictions made by machine
learning models. It measures the difference between pre-
dicted probabilities and observed frequencies across various
confidence levels. Intuitively,

eECE = Eĉi [ | p(ŷi = yi | ĉi = c)− c | ] . (2)

A perfectly calibrated model yields eECE = 0. Eq. (2) is a
continuous integration over c ∈ [0, 1]. Practically, we ap-
proximate this integration by discretizing c into M small bins.
Denoting the set of samples falling into the m-th bin as Bm,
the expectation can be calculated as

ECE =
M∑

m=1

|Bm|
N

| acc(Bm)− conf(Bm) | , (3)

where acc(·) denotes the mean accuracy, and conf(·) is mean
confidence of Bm. N is the number of samples. We set the
number of bins M = 15 by default. As with PRR, we report
both ECEgeo and ECEsem for geometric and semantic predic-
tions, respectively.

4 Adaptation with Existing Methods for
Occupancy Networks

Reliable predictions are paramount in occupancy networks,
especially in critical applications such as autonomous driv-
ing and robotics where safety is a strict requirement. Despite
their importance, methods for enhancing the reliability and
calibration of occupancy networks are still under-explored in
the existing literature. To address this gap, we begin by re-
viewing existing uncertainty learning and calibration meth-
ods, which are mostly developed for traditional tasks. Then,
we adapt them for the recent occupancy prediction networks.

We categorize these methods into two paradigms. One is
training uncertainty predictor cσ|ϕ based on the dense fea-
tures V concurrently with Vθ from scratch, which is termed
online uncertainty learning. Another is training scaling fac-
tor cf |ϕ on top of a fixed Vθ, which is termed offline model
calibration. In the experimental section (see §6.2 and §6.3),
we provide extensive evaluations on these methods to com-
pare their effectiveness in boosting the reliability.

4.1 Online Uncertainty Learning
Uncertainty estimation is a long-standing problem in the
context of Bayesian deep learning [Tishby and Solla, 1989;
Denker and LeCun, 1990; Gal and Ghahramani, 2016].
Prior arts can be classified into ones concerning epistemic
(model) uncertainty [Lakshminarayanan et al., 2017; Jungo
and Reyes, 2019] and ones concerning aleatoric (data) un-
certainty [Kendall and Gal, 2017; Hüllermeier and Waege-
man, 2021]. Although explicit uncertainty estimates are ob-
tainable, we do not directly evaluate these estimates in online
mode. Instead, since the uncertainty is learned concurrently
with the model’s predictions from scratch, we use them as a
regularization term to help the model become more reliable.

For each voxel feature vi, we compute a logit vector zi ∈
RS+1 using a linear layer, where S represents the number of
semantic classes.
Heteroscedastic Aleatoric Uncertainty (HAU) [Kendall
and Gal, 2017] is a data-dependent uncertainty learning
method. We employ the classification form, which modifies
upon a deterministic model by placing a Gaussian over the
logit: ẑi|ϕ ∼ N (zi, (σ

ϕ
i )

2)1. The sampled logit vector ẑi
is then passed through a softmax operator and cross entropy
loss is computed. Here, σϕ

i is the predicted uncertainty pa-
rameterized by ϕ. Optimization of ϕ can be done with back-
propagation using the re-parameterization trick [Kingma and
Welling, 2013]: ẑi = zi + σϕ

i ϵ, ϵ ∈ N (0, I). Note that the
uncertainty predictions vary for different voxel i.
Data Uncertainty Learning (DUL) [Chang et al., 2020]
shares a similar spirit with HAU with two distinctions. In-
stead of using the logit ẑi, DUL models the feature v̂i as a
Gaussian distribution by v̂i = vi + σW

i ϵ. Moreover, DUL
introduces a regularization term in the loss function that min-
imizes the Kullback–Leibler (KL) divergence between the
predicted Gaussian and a standard Gaussian.
MC Dropout (MCD) [Jungo and Reyes, 2019] is proposed
to explore the epistemic (model) uncertainty. Differently
from the above methods, MCD does not require additional
parameters to learn uncertainty. Instead, it incorporates mul-
tiple dropout layers into the original network during training.
For inference, the occupancy prediction of each voxel is ob-
tained by ẑi =

1
K

∑K
k=1 zk,i, where zk,i is the model output

at the k-th test. The normalized entropy of K predictions is
adopted as the model uncertainty. To fully explore the uncer-
tainty within the model, we set K = 40 in our experiments.

For above online uncertainty learning methods, the cali-
brated confidence is set as the softmax output of the sampled

1We omit predicting the mean µϕ(zi) and use zi for simplicity.
Empirical results are similar.
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Figure 1: (a) Overview of proposed RELIOCC. Besides the original objective of an occupancy network, we introduce an uncertainty estimation
branch and supervise it with absolute and relative uncertainty learning losses. (b) Absolute uncertainty learning. Deterministic logits are
replaced with ones sampled from predicted distributions. (c) Relative uncertainty learning. We leverage the relative relationships between
uncertainty pairs to further enhance uncertainty learning.

logit and then determined by taking the maximum probability
across all classes: ci = maxs S(ẑi)(s), where S denotes the
softmax function.

4.2 Offline Model Calibration
Offline calibration methods build on pre-trained Vθ and need
to learn a scaling function, which typically employ the fol-
lowing formulation

ci ≡ cf |ϕ(zi) = max
s

fϕ(zi)
(s) , (4)

where fϕ is the scaling function applied to zi parameterized
by the learnable parameters ϕ. In the absence of explicit un-
certainty estimation, uncertainty σi is set to 1− ci.
Temperature Scaling (TempS) [Guo et al., 2017] employs a
scalar parameter T , termed as temperature, to scale the log-
its zi, by fϕ(zi) = S(zi

T ). T is data-independent, which is
shared across all classes.
Dirichlet Scaling (DiriS) [Kull et al., 2019] assumes that
the model’s output follows a Dirichlet distribution. Based on
this assumption, they propose the Dirichlet scaling, fϕ(zi) =
S(W · log(S(zi))+b). Here, learnable parameters ϕ include
weight W ∈ R(S+1)×(S+1) and bias b ∈ RS+1.
Meta-Calibration (MetaC) [Ma and Blaschko, 2021] pro-
poses to employ the entropy of model prediction −ci log(ci)
to select different calibrators. Specifically, an identical
fϕ(zi) = S(zi

T ) as in TempS is used when −ci log(ci) is
smaller than the predefined threshold η. Otherwise, the cal-
ibration function fϕ(zi) is set to the constant value 1

S+1 .
MetaC introduces new randomness into predictions, which
lead to variations in accuracy, making it less practical for
safety-critical tasks such as occupancy prediction.
Depth-Aware Scaling (DeptS) [Ma and Blaschko, 2021] is
an improved variant upon MetaC, which is specially designed
for LiDAR segmentation. Depth di of each point or voxel is
encoded into the calibration function fϕ by a linear mapping
αi = k1 · di + k2, where k1 and k2 are learnable param-
eters. When prediction entropy −ci log(ci) is greater than
the threshold η, fϕ(zi) = S( zi

α·T1
). Otherwise, fϕ(zi) =

S( zi

α·T2
) Both T1 and T2 are temperature parameters, where

T1 is initially set higher than T2.

5 RELIOCC

Method Overview. Inspired by investigation on prior arts,
we propose RELIOCC, a plug-and-play method tailored for
the 3D semantic occupancy prediction task. RELIOCC has
two main improvements over existing methods. Firstly, be-
yond traditional uncertainty learning, we propose to utilize
the relative relationships between voxel pairs of uncertainty
estimates in order to further refine the uncertainty estimation
process. Secondly, we present a unified framework that inte-
grates the methodologies of uncertainty learning with scaling-
based calibration, which demonstrates that their synergy of-
fers substantial benefits. As shown in Figure 1(a), we predict
a scalar uncertainty σi from a voxel feature vi using an MLP,
which receives supervision from both the individual and rel-
ative voxels.
Absolute Uncertainty. By absolute here we mean the uncer-
tainty σi is only determined by the individual vi itself while
ignoring relative relations between a pair of vi and vj . We
adopt a similar formulation as in HAU [Kendall and Gal,
2017]. Specifically, We randomly sample the logit ẑi based
on the predicted uncertainty σi by ẑi = zi+σiϵ, ϵ ∈ N (0, I)
as illustrated in Figure 1(b). We denote this absolute uncer-
tainty loss as Lau, which is computed with the re-sampled
logit ẑi and its corresponding ground truth.
Relative Uncertainty. A potential drawback of absolute un-
certainty is that the optimization of σi tends to plateau once it
reaches a small scale. To address this issue, we introduce the
concept of relative uncertainty learning for occupancy pre-
diction. The fundamental principle of relative uncertainty
learning involves enforcing comparisons between uncertainty
pairs vi and vj . This approach ensures that optimization does
not plateau, even when σi and σj are small.

Concretely, we shuffle voxel features in V , paired the shuf-
fled features with the original ones and obtain random pairs
(vi,vj) at each iteration. Inspired by the mix-up [Zhang et
al., 2018] learning principle, we blend the paired voxel fea-
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Semantics GeometryMethod Modality mIoU (%)↑ PRRsem(%)↑ ECEsem(%)↓ IoU(%)↑ PRRgeo(%)↑ ECEgeo(%)↓
SSCNet [CVPR17] [Song et al., 2017] LiDAR 16.41 46.77 1.61 50.75 42.92 0.97
LMSCNet [3DV20] [2020] LiDAR 17.27 48.89 0.79 54.91 48.01 0.67
JS3C-Net [AAAI21] [Song et al., 2017] LiDAR 22.77 41.09 2.94 53.08 37.04 1.64
SSC-RS [IROS23] [Mei et al., 2023] LiDAR 24.75 45.04 0.87 58.62 44.29 0.72
SCPNet∗ [CVPR23] [Xia et al., 2023] LiDAR 35.06 38.35 2.52 49.06 - -
MonoScene [CVPR22] [2022] Camera 11.30 41.95 6.65 36.79 38.39 5.95
TPVFormer [CVPR23] [Huang et al., 2023] Camera 11.30 38.83 7.10 35.62 32.10 6.32
NDCScene [ICCV23] [Yao et al., 2023] Camera 12.70 43.29 7.24 37.24 40.17 6.45
VoxFormer [CVPR23] [Li et al., 2023] Camera 13.17 42.97 5.90 43.96 36.56 5.02
SGN [TIP24] [Mei et al., 2024] Camera 15.52 44.72 5.69 45.45 39.78 4.85

Table 1: The accuracy and reliability evaluation of state-of-the-art semantic occupancy prediction models on the validation set of
SemanticKITTI. ∗ indicates that the output of SCPNet is a sparse representation and does not contain confidence score for empty voxels,
making it infeasible to evaluate the corresponding geometric metrics in reliability.

tures with v̂ = λvi+(1−λ)vj . Correspondingly v̂ is trained
with a blend of the label pairs using cross-entropy loss. The
blended label y = yi + yj , where yi, yj are one-hot label
encodings2. We employ the predicted uncertainty for the
weighting: λ = σi

σi+σj
∈ [0, 1]. We denote the loss computed

with blended label and mixed output from the shared com-
pletion head as the relative uncertainty loss Lru, as shown in
Figure 1(c).

An intuitive understanding emerges when considering that
relative uncertainty adaptively modulates the learning dynam-
ics between the feature pair (vi,vj). Specifically, if the
model exhibits greater confidence in the prediction associ-
ated with vi, it suffices for the mixup feature to incorpo-
rate a smaller portion of vi while still achieving a reduced
loss Lru. In contrast, a lower confidence in vj necessitates a
greater inclusion of vj within the mixup to diminish the loss.
Consequently, this process enables the model to effectively
differentiate between the uncertainties σi and σj , typically
resulting in a smaller σi and a larger σj . Importantly, this
differentiation does not hinge on the absolute magnitudes of
σi,j . Rather, it is the relative relationship between them that
is central to the learning process. In driving scenarios, there
are rich relative relationships between voxels, including dis-
tance, occupancy, surface and interior properties. This focus
on relative differences ensures that the model’s adjustments
are robust to the absolute scales of the uncertainties.
Uncertainty-Aware Calibration. Using the above uncer-
tainty estimation objectives, RELIOCC is capable of learning
uncertainty with existing occupancy models in an online set-
ting. We introduce a scaling-based calibration objective to
make it also compatible with the offline one. A variant form
of TempS [Guo et al., 2017] is adopted, and the uncertainty-
aware temperature Tσ is a linear transform of σi:

Tσ = k1 · σi + k2, fϕ(zi) = S
(
W · zi + b

Tσ

)
, (5)

where k1 and k2 are learnable parameters, and b is the bias.
W is initialized as the identity matrix and only the elements
on the diagonal are optimized. The calibration loss is denoted
as Lcalib.
Training and Inference. RELIOCC supports both online un-
certainty learning and offline model calibration settings. In

2Different from the original mix-up [Zhang et al., 2018] paper,
we omit weighting the labels with λ for stable training.

the online setting, the uncertainty predictor is trained concur-
rently with the occupancy network from scratch. The total
loss function comprises Locc, Lau, and Lru. Here, Locc rep-
resents the primary loss for the occupancy network. During
inference, the model operates consistently with the original
network design. In the offline setting, the occupancy network
is well trained and frozen, eliminating the need for Locc and
introducing the calibration loss Lcalib instead. The inference
process incurs a minimal increase in computational overhead
due to the addition of the calibrator.

6 Experiments
6.1 Benchmark Results
Datasets and Evaluation. SemanticKITTI [Behley et al.,
2019] is the first large-scale outdoor dataset for semantic oc-
cupancy prediction containing 64-beam LiDAR scans and
front camera images as inputs [Geiger et al., 2012]. The
dataset comprises 22 sequences, where 00-10 (excluding 08)
are used as the training set, 08 is the validation set, and 11-21
are the test set. Since the ground truth for the test set is not
publicly available, we cannot measure our newly introduced
metrics on it. Therefore, we primarily evaluate the existing
methods on the validation set (val.). As described in §3.2,
mIoU and IoU are used to measure the model’s accuracy in
semantic and geometric completion, respectively. For mis-
classification detection and calibration metrics including PRR
and ECE, we also report the corresponding results from both
geometric and semantic perspectives.
Re-evaluated Methods. We reproduce and evaluate exist-
ing publicly available methods on the SemanticKITTI bench-
mark, including five LiDAR-based models [Song et al., 2017;
Roldao et al., 2020; Yan et al., 2021; Mei et al., 2023;
Xia et al., 2023] and five camera-based models [Cao and
de Charette, 2022; Huang et al., 2023; Li et al., 2023;
Yao et al., 2023; Mei et al., 2024]. All results are obtained
using the official implementation and the configurations are
kept consistent for inference. As shown in Tab. 1, we find
that although the accuracy of camera-based methods has been
continuously improved and gradually approaches the baseline
accuracy of LiDAR methods, their reliability metrics, partic-
ularly the ECE, have not shown corresponding improvements.
In cases of lower accuracy compared to LiDAR, the camera-
based models’ reliability is also quite poor, which undoubt-
edly poses significant safety risks for autonomous driving.
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Semantics GeometryMethod mIoU (%)↑ PRRsem(%)↑ ECEsem(%)↓ IoU(%)↑ PRRgeo(%)↑ ECEgeo(%)↓
VoxFormer Framework

VoxFormer [CVPR23] [Li et al., 2023] 13.17 42.97 5.90 43.96 36.56 5.02
VoxFormer+HAU [NIPS17] [Kendall and Gal, 2017] 13.43 45.38 5.26 43.57 40.72 4.47
VoxFormer+DUL [CVPR20] [Chang et al., 2020] 13.29 43.57 6.09 44.10 38.66 5.17
VoxFormer+MCD [MICCAI19] [Jungo and Reyes, 2019] 13.28 42.21 5.83 43.90 37.43 4.99
VoxFormer+RELIOCC (Ours) 13.43 47.75 2.84 43.28 44.58 2.57

SGN Framework
SGN [TIP24] [Mei et al., 2024] 15.52 44.72 5.69 45.45 39.78 4.85
SGN+HAU [NIPS17] [Kendall and Gal, 2017] 15.50 46.51 5.08 45.07 44.24 4.34
SGN+DUL [CVPR20] [Chang et al., 2020] 15.81 44.00 5.78 45.75 39.56 4.95
SGN+MCD [MICCAI19] [Jungo and Reyes, 2019] 15.62 44.70 6.02 45.50 40.34 5.11
SGN+RELIOCC (Ours) 15.65 50.72 3.75 45.78 49.61 3.07

Table 2: Quantitative results of online uncertainty learning (§6.2) on SemanticKITTI (validation set).

Semantics GeometryMethod mIoU(%)↑ PRRsem(%)↑ ECEsem(%)↓ IoU(%)↑ PRRgeo(%)↑ ECEgeo(%)↓
VoxFormer Framework

VoxFormer [CVPR23] [Li et al., 2023] 13.17 42.97 5.90 43.96 36.56 5.02
VoxFormer+TempS [ICML17] [Guo et al., 2017] 13.17 43.63 2.61 43.96 33.59 2.28
VoxFormer+DiriS [NeurIPS19] [Kull et al., 2019] 13.17 48.12 2.38 43.96 42.78 2.42
VoxFormer+MetaC [ICML21] [Ma and Blaschko, 2021] 11.86 43.06 4.11 34.73 34.80 3.67
VoxFormer+DeptS [arXiv24] [Kong et al., 2025] 13.17 41.29 2.27 43.96 30.31 1.63
VoxFormer+RELIOCC (Ours) 13.17 48.17 2.05 43.96 44.34 2.57

SGN Framework
SGN [TIP24] [Mei et al., 2024] 15.52 44.72 5.69 45.45 39.78 4.85
SGN+TempS [ICML17] [Guo et al., 2017] 15.52 46.90 2.68 45.45 37.25 2.35
SGN+DiriS [NeurIPS19] [Kull et al., 2019] 15.52 48.20 2.61 45.45 43.04 2.51
SGN+MetaC [ICML21] [Ma and Blaschko, 2021] 14.71 46.38 4.06 40.37 37.97 3.65
SGN+DeptS [WACV25] [Kong et al., 2025] 15.52 45.45 2.14 45.45 34.99 1.42
SGN+RELIOCC (Ours) 15.52 47.40 2.09 45.45 43.80 2.43

Table 3: Quantitative results of offline model calibration (§6.3) on SemanticKITTI (validation set).

6.2 Online Uncertainty Learning
Base Architectures and Competing Methods. Considering
the potential applications of camera-based methods and their
current limitations, we adopt the state-of-the-art vision-based
methods including VoxFormer [Li et al., 2023] and SGN [Mei
et al., 2024] as our base architectures to conduct relevant ex-
periments. We report the results of some existing methods on
the two baseline frameworks for comparison, including HAU,
DUL, and MCD (see §4.1).
Implementation Details. We follow the original training set-
ting and add additional uncertainty learning parameters with-
out altering the network structure. The inputs consist of the
current image from the left camera and previous 4 frames.
The image size is copped into 1220× 370. VoxFormer [Li et
al., 2023] and SGN [Mei et al., 2024] with online uncertainty
estimation are trained for 20 epochs and 40 epochs, respec-
tively. The loss coefficients (α, β) for Lau and Lru are set to
(4.0, 6.0) for both frameworks.
Evaluation Results. In Tab. 2, we provide the comparison
among the methods with the same framework for fairness.
Compared to data uncertainty-based HAU and DUL, as well
as model uncertainty-based MCD, our method shows signifi-
cant improvements in the new evaluation metrics for reliabil-
ity. The calibration errors (ECE) in both semantic and geo-
metric aspects are significantly reduced compared to the ex-
isting uncertainty estimation methods. The improvement in
PRR also indicates a notable enhancement in model reliabil-
ity. Our method maintains stability in terms of the original ac-
curacy (mIoU and IoU) across the two different frameworks

RELIOCC (Ours)SGN
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Figure 2: Visual results of the error map and uncertainty map from
the prediction by SGN and RELIOCC. In the uncertainty map, a
closer proximity to yellow indicates a higher level of uncertainty.

and even surpasses LiDAR-based methods in PRR. Further-
more, we visualize the error map with corresponding uncer-
tainty map of SGN and our approach. The uncertainty for
vanilla SGN is obtained by subtracting the confidence from
1. As shown in Figure 2, when the network’s predictions ex-
hibit large areas of error, SGN’s uncertainty map still shows
low uncertainty, indicating high confidence in prediction. In
contrast, our proposed RELIOCC displays high uncertainty in
most of the error regions, providing more reliable information
for downstream tasks.

6.3 Offline Model Calibration
In this section, VoxFormer and SGN are also adopted as
baseline frameworks. We primarily compare our method
with scaling-based model calibration approaches including
TempS, DiriS, MetaC, and DeptS (see §4.2).
Implementation Details. We select the best-performing
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Figure 3: The comparison of accuracy and reliability performance between SGN and RELIOCC under four out-of-domain conditions.

Absolute Unc. Relative Unc. PRRsem↑ ECEsem↓ PRRgeo↑ ECEgeo↓
42.97 5.90 36.56 5.02

✓ 45.47 5.41 41.54 4.62
✓ 46.58 4.02 42.65 4.31

✓ ✓ 47.75 2.84 44.58 2.57

Table 4: Ablation of our online uncertainty learning.

model checkpoints on the validation set from the pre-trained
VoxFormer and SGN as the targets for calibration. During
the calibration process, the parameters of the original net-
work are frozen, and only the parameters ϕ in the calibra-
tion function fϕ and uncertainty learning layers are trainable.
For both frameworks, these methods are trained on 8 GPUs
for 20 epochs with a learning rate as 0.001 and AdamW op-
timizer [Zhao et al., 2022]. The batch size is set to 1 per
GPU. For our method, the loss weights (α, β, γ) for uncer-
tainty learning (Lau, Lru) and model calibration (Lcalib) are
set to 1.5, 1.0, and 4.0, respectively.
Evaluation Results. As illustrated in Tab. 3, all calibration
methods demonstrate improvements compared to the base-
lines, particularly in calibration error (ECE). MetaC [Ma and
Blaschko, 2021] loses the characteristic of maintaining ac-
curacy in calibration due to the introduction of new random
classifications. Our approach with uncertainty-aware design
achieves competitive performance on both ECE and PRRmet-
rics without depth information even compared with the state-
of-the-art DeptS [Kong et al., 2025].

6.4 Diagnostic Experiments
Ablation of Online Uncertainty Learning. We provide ab-
lation experiments on the effect of absolute uncertainty and
relative uncertainty during the whole model training. The ex-
periments are conducted with VoxFormer [Li et al., 2023] on
the validation set of SemanticKITTI. As shown in Tab. 4, the
first row presents the baseline results. The inclusion of indi-
vidual absolute uncertainty and relative one both contribute
to the improvement of the model’s reliability, albeit with a
modest enhancement. When our proposed hybrid uncertainty
learning module is incorporated, the PRR and ECE metrics of
model’s prediction achieve the best results.
Ablation of Offline Model Calibration. Further ablations
are also conducted in offline mode. With the pre-trained Vox-
Former, we found that employing standard scaling strategies

Scaling Calib. Relative Unc. Absolute Unc. PRRsem↑ECEsem↓ PRRgeo↑ECEgeo↓
42.97 5.90 36.56 5.02

✓ 43.63 2.61 33.59 2.28
✓ ✓ 45.13 1.75 39.66 2.19
✓ ✓ ✓ 48.17 2.05 44.34 2.57

Table 5: Ablation of our offline model calibration.

such as TempS can achieve good calibration results as illus-
trated in second row of Tab. 5. However, it impacts the im-
provement of misclassification detection metrics (PRR) and
even leads to a decline in geometry. Our introduced rela-
tive uncertainty learning can further improve calibration per-
formance and enhance misclassification detection. More-
over, the combination of absolute and relative uncertainties
achieves the best performance in misclassification detection,
although it is marginally less effective in calibration due to
the distinct focus of the PRR and ECE metrics.
Robustness Analysis. Figure 3 presents the robustness anal-
ysis results of RELIOCC compared to the baseline model
SGN [Mei et al., 2024]. We simulate four potential out-of-
domain scenarios during the inference, including sensor fail-
ures (frames drop), strong sunlight, foggy and rainy condi-
tions, to evaluate the model’s robustness [Dong et al., 2023].
Each adverse scenario provides weak(w) and strong(s) modes
of perturbation. As the noise increases in various conditions,
our method not only maintains stability in reliability metrics
but also demonstrates more improvement in accuracy com-
pared to the baseline.

7 Conclusion
In this paper, we address the issue of assessing reliability in
semantic occupancy prediction for the first time. The reliabil-
ity is evaluated from two aspects including misclassification
detection and calibration. Extensive evaluation on existing
LiDAR and camera-based methods is provided. Besides, we
propose a new scheme RELIOCC that integrates hybrid un-
certainty from the individual and relative voxels into existing
occupancy networks without affecting accuracy or inference
speed. Both online and offline modes are designed to illus-
trate the generalization capability of our learned uncertainty.
Extensive experiments are conducted under various settings,
demonstrating RELIOCC is effective in improving the relia-
bility and robustness of semantic occupancy models.
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