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Abstract

Goal Recognition (GR) is the problem of recogniz-
ing an agent’s objectives based on observed actions.
Recent data-driven approaches for GR alleviate the
need for costly, manually crafted domain models.
However, these approaches can only reason about
a pre-defined set of goals, and time-consuming
training is needed for new emerging goals. To
keep this model-learning automated while enabling
quick adaptation to new goals, this paper introduces
GRAML: Goal Recognition As Metric Learning.
GRAML frames GR as a deep metric learning
problem, using a Siamese network composed of re-
current units to learn an embedding space where
traces leading to the same goal are close, and those
leading to different goals are distant. This metric
is particularly effective for adapting to new goals,
even when only a single example trace is avail-
able per goal. Evaluated on a versatile set of en-
vironments, GRAML shows speed, flexibility, and
runtime improvements over the state-of-the-art GR
while maintaining accurate recognition.

1 Introduction

Goal Recognition (GR) involves deducing the objective of an
agent based on observed actions. It plays a crucial role in
various settings, including Human-Robot Interaction [Mas-
sardi et al., 2020; Shvo et al., 2022] and Multi-Agent Sys-
tems [Avrahami-Zilberbrand and Kaminka, 2005; Freedman
and Zilberstein, 2017; Su er al., 2023]. GR problem formula-
tions typically assume a fixed set of goals [Asai er al., 2022;
Mirsky et al., 2021; Ramirez and Geffner, 2009; Amado et
al., 2023; Ramirez and Geffner, 2011]. However, consider a
service robot recognizing which dish a person is making out
of a recipe book with a finite set of recipes. If the robot finds
that a recipe was added to the book, it will need to form a new
GR problem containing the new recipe and adjust its internal
state, a potentially costly process, as traditional GR methods
assume a pre-defined set of goals. Adapting to the new goal
and performing GR is part of a single problem named On-
line Dynamic Goal Recognition (ODGR). In ODGR, similar,
consequent GR problems share identical or similar domain
descriptions but vary in their set of goals [Shamir et al., 2024;

Elhadad and Mirsky, 2025]. The paper introduces a new
ODGR framework called Goal Recognition as Metric Learn-
ing (GRAML), which aims for a one-shot solution when a new
set of goals emerges, supporting both discrete and continuous
domains. In line with other learning-based GR approaches,
GRAML involves a distinct learning phase where the domain
theory is constructed and an inference phase where observa-
tions are given. In addition to these phases, GRAML ad-
dresses the potential shift in the set of potential goals between
GR problems. It does so by incorporating an adaptation
phase, during which the framework adjusts its internal state
to align with the newly emerged goals. GRAML tackles the
ODGR problem from a novel perspective. It learns a metric
for comparing observation sequences by training a Siamese
network with a Recurrent Neural Network (RNN) backbone,
similar to prior work on time-series similarity [Mueller and
Thyagarajan, 2016]. The network is trained to produce em-
beddings in which sequences leading to the same goal are
mapped closer together, while those corresponding to differ-
ent goals are mapped farther apart. When presented with new
goals, GRAML can embed sequences associated with those
goals, whether they are provided by a domain expert or self-
generated, without retraining. Then, upon receiving an input
sequence, its embedding is compared only to the embeddings
of sequences for the currently active goals, and the closest
goal is returned.

This work introduces several enhancements beyond exist-
ing GR: First, GRAML offers a novel and robust model-free,
self-supervised approach across continuous and discrete en-
vironments. It is aimed to improve recognition speed and ap-
plicability in complex domains, with little to no decrease in
accuracy. Second, the proposed framework addresses chal-
lenges unique to ODGR, including environments with chang-
ing goals and the recognition of suboptimal behavior, both as-
pects often overlooked by prior GR approaches. Second, the
proposed framework addresses the unique often-overlooked
challenge of dynamic goals in ODGR and the general chal-
lenge of recognizing suboptimal behavior in GR. Third, this
study presents a set of ODGR benchmark environments to
test its components. These environments were designed to
represent as realistic and applicative scenarios as possible by
generating suboptimal and diverse goal-directed observations
using a variety of agents.
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2 Preliminaries

We overview the definitions required for GR and provide
background on Metric Learning and LSTM networks.

2.1 Goal Recognition (GR)

A GR problem consists of an acfor and an observer, and it
is articulated through the perspective of the observer to infer
the goal of the actor. We use a common definition for goal
recognition [Ramirez and Geffner, 2009; Amado et al., 2023]:

Definition 1. A Goal Recognition problem is a tuple
(T, G, 0), such that T = (S, A) is a domain theory where
S is the state space and A the action space of the observed
actor, G is a set of goals, and O is a sequence of observations,
which are state-action tuples. The output of a GR problem is
a goal g € G that best explains O.

Notice this definition is broad to enable diverse solution ap-
proaches. While GR is often defined with G C .S, this work
makes no such assumption. Goals can belong to any com-
putable set, such as S, its power set, or labels. Additionally,
the actor is assumed to pursue a single goal, inferred from ob-
served state-action pair sequences, while some methods offer
flexibility by accommodating observations of either actions
or states alone and using metrics to assess multiple possible
goals probabilistically.

In this work, a Domain Theory 7" is modeled via an MDP:

Definition 2. A Markov Decision Process M is a tuple
(S, A, T,r,~,po), where S, A,y and py denote the state
space, action space, discount factor, and distribution of initial
states, respectively. T : S x A x S — [0, 1] is the transition
Sfunction, and r : S X A — R is the reward function.

In Reinforcement Learning (RL), the agent learns a
stochastic policy 7 : S x A — [0, 1], that is aimed at maxi-
mizing the expected discounted cumulative return
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This work focuses on infinite-horizon MDPs with a discount
factor 0 < =y < 1, where the state and action spaces can
be either discrete or continuous. The RL tasks considered in
this work are episodic, terminating upon task completion or
after a maximum number of steps is reached. Additionally,
this work utilizes Goal-conditioned RL (GCRL) [Liu et al.,
2022], an approach where an agent is trained towards multiple
possible goals in an episode. A GCRL agent learns a goal-
conditioned policy 7 : G x S x A — [0, 1], thus exhibiting
different behaviors for different goals.

Online Dynamic Goal Recognition Shamir et al. [2024]
decompose the GR process into iterated phases with distinct
inputs and outputs such that each phase can occur once or
more, thus shifting from a GR problem to an Online Dynamic
Goal Recognition (ODGR):

Definition 3. An  ODGR problem is a tuple
(T, (G*, {0} ic1.pn), where T = (S, A) is a domain
theory, G' is a set of goals, and {O}* represents a set of ob-
servations sequences, such that the j’th observation sequence
given after the arrival of Gi as part of {O}z is denoted as

O;- = (0;'-’1, 02-72 )= ((5}’1,(1;-’1), <s;72,a;72>, co)
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Figure 1: Depiction of ODGR intervals and the inputs at each (left)
and a rough approximation of the time spent on each phase by rep-
resentative GR frameworks (right).

For each i, the arrival of G**+! replaces G as the active
set of goals, where the goal sets may or may not overlap.
For all ¢, 5, an algorithm for solving ODGR is expected to
return a goal ¢ € G that best explains O; upon its ar-
rival. The final output is a set of sets of goals: 4G* =
{{g1, 93, -}, {97,935, -}, -, {97, g5, ...} } where g is the
most likely goal upon receiving O;

For each domain, several instances can be constructed at
different times according to the active set of potential goals
G" the actor may be pursuing. For each instance, a single
recognition problem is an observation trace that needs to be
explained. We can split an ODGR problem into several time
intervals, depending on the reception of each input type, T,
G, and O. Within an ODGR problem, one domain exists: as
many GR instances as the number of times the goals changed
and as many GR problems as the number of observations
given as a query to the framework. We name the time in-
tervals according to the reception of each input 7', G, O:

T Domain Learning Time is the duration from receiving the
domain theory 7" until concluding the domain-specific
processing and being prepared to receive G.

G Goals Adaptation Time is the duration from receiving G
until completing the inner-state changes and becoming
ready to perform inference.

O Inference Time is the time from getting an observation
sequence O until the algorithm outputs the goal.

An ODGR framework can receive a new piece of input be-
fore completing the processing of the previous one. These
definitions remain independent of the time steps assigned to
each input. However, for simplicity, in this work, we as-
sume that inputs must precede one another. Figure 1 (left)
illustrates the connection between the different phases in an
ODGR problem. Most of the computation time in symbolic
GR approaches occurs at inference time and often depends
on the number of goals |G| [Meneguzzi and Fraga Pereira,
2021]. Recent learning-based approaches require less time
during the inference phase by pre-processing the domain the-
ory. However, they either necessitate pre-processing the do-
main for every newly emerging goal [Amado e al., 2022] or
result in longer domain learning times [Chiari et al., 2023].
GRAML aims to reduce the goal adaptation time while main-
taining a short inference time at the expense of extended do-
main learning time. A comparison of these approaches is
shown in Figure 1 (right).
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Figure 2: Implementation of GRAML for the phases of an ODGR problem. Numbers in the top-left corner of each box indicate the section

discussing each component.

2.2 Metric Learning

The primary purpose of metric learning is to learn a new
metric where the distances between samples of the same
class are expected to be small, and distances between sam-
ples of different classes are expected to be larger. This work
aims to learn such a metric where sequences of observations
from distinct goal-oriented agents are distant from each other
but close if the sequences lead to the same goal. Similar-
ity metrics that do not use Deep Neural Networks have lim-
ited capabilities due to their inability to represent non-linear
structures, such as state-action observation sequences, and
thus they cannot be utilized for GRAML [Duan et al., 2018;
Duan et al., 2020; Zheng et al., 2019]. One common ap-
proach for representing such observation sequences for differ-
ent possible goals (a multivariate time series) is Long Short-
Term Memory (LSTM) for modeling time series similari-
ties [Mueller and Thyagarajan, 2016; Rakthanmanon ef al.,
2012]. In these models, the last hidden layer represents the
input sequence, and the L1 or L2 distance between the rep-
resentations is the global distance. It has been shown that
when using DNNs, a metric learned in a set of classes can
be generalized to new classes. This work builds upon these
generalization abilities when new goals are introduced.

3 Goal Recognition as Metric Learning

GRAML employs a metric-learning model trained on se-
quences that converge to prototype goals, forming a repre-
sentation where sequences from agents with distinct goals
are widely separated, while those aiming for the same goal
are closely clustered. Figure 2 outlines the three phases
of GRAML: In the domain learning phase (Section 3.1),
GRAML undergoes self-supervised training using agents
trained in the GR domain to generate labeled samples. In
the goal adaptation phase (Section 3.2), it receives or gener-
ates sequences for each newly introduced goal. Finally, in
the inference phase (Section 3.3), given a new trace which
forms a GR problem, GRAML embeds the goal-directed
traces to map each dynamic goal sequence into the embed-
ding space, capitalizing on the generalization abilities of the
metric model. Then it identifies the goal whose embedding
lies closest to that of the input trace.

We adopt two distinct strategies for GRAML: the base-
goals approach, referenced to as BG-GRAML and the goal-
conditioned RL approach, referenced to as GC-GRAML. As

the names imply, GC-GRAML utilizes a single GCRL agent
that learns a goal-conditioned policy during domain learning
and uses the same policy to generate traces in the goal adapta-
tion phase. In contrast, BG-GRAML involves training sepa-
rate goal-directed agents and using expert-generated samples
or planners in the goal adaptation phase. In the following
sections, we outline each framework phase and describe how
GRAML operates under both strategies.

3.1 Domain Learning Phase

In the domain learning phase, GRAML receives a domain
theory T' = (S, A) and performs a self-supervised training
process split into two: dataset generation and model training.

Dataset Generation

The dataset generation involves training agents on selected
goals in the environment, stochastically producing partial se-
quences from their policies, and labeling sequence pairs as 0
or 1 based on whether they share the same goal. ~

In BG-GRAML, we first select m base goals G =
(g*,...,g™) which are ideally chosen such that a metric
model trained on sequences directed toward them can gener-
alize well and distinguish sequences aimed at different goals
within the potential goal space. These goals are not a part of
the ODGR problem formulation but a distinct set chosen by
GRAML prior to receiving the first set of possible goals for
recognition, GY. We train individual goal-directed RL agents
for each g € G, obtaining a set of policies IT = (7!, ..., 7).
Then, observation sequences are generated by randomly pair-
ing agents trained towards goals g°, 3’ € G and have them
produce traces O;, O; that end at the assigned goal, creat-
ing a labeled sample (O;, O;,y). If i equals j, then y equals
1. Otherwise, y equals 0, since these traces lead to sepa-
rate goals. For more robust training, parts of the sequences
are randomly removed, creating both consecutive and non-
consecutive traces at varying lengths to associate all kinds of
traces that might be encountered in the inference phase with
the same goal. Section 4 details the generation of these input
variations as used in our empirical work.

GC-GRAML follows a similar process, but relies on a sin-
gle GCRL agent trained over the set G. Sample genera-
tion is likewise performed through this agent, using a single
goal-conditioned policy to produce the traces. Unlike in BG-
GRAML, the GCRL agent and the associated policy 7* are
retained for use during the goal adaptation phase.
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Model Training

Given an existing dataset of n labeled samples D =
{{0Y,0%,y)1, ..., (O',0?,y),, }, the model training involves
training a metric model M, structured as a Siamese network
and comprised of 2 LSTM branches with shared weights. The
input to each LSTM unit has a size of s + a, where s and a
represent the sizes of the state and action representations in 7',
respectively. For every sample (O, 02, y);, the model pro-
cesses O, O? through branches 1 and 2 to obtain 2 embed-
dings v',v? € R*. The model then calculates an exponen-
tial transformation on the Manhattan distance metric between
vl, V2, to produce a similarity score:

§ = similarity(v!, v2) = e~ Zim [P =0y

where brackets denote specific elements of the vector. The
closer the corresponding embedding elements are in value,
the closer the similarity score is to 1. The model is penalized
using the binary cross entropy loss function:

L= —(ylog(y) + (1 - y)log(1 — ) 2
3.2 Goal Adaptation Phase

The goal adaptation phase starts upon receiving the i-th set
of active goals, G' = {g1,...,g|gi|}. The main challenge
GRAML faces is obtaining a set of libraries of goal-directed
sequences O* = ({0',...,0°},,,...{0", ..., 0%}, ),
where s denotes the library size and is a hyperparameter that
can be tuned. If a domain expert provides O*, the adapta-
tion is immediate (disregarding the manual effort involved).
Otherwise, GRAML supports two alternative strategies: In
BG-GRAML, an off-the-shelf MDP planner such as Monte
Carlo Tree Search (MCTS), is used to produce O*, gener-
ating one or more goal-directed sequences for each g € G°.
In GC-GRAML, the goal-conditioned policy 7* generates the
sequences using stochastic action predictions to encourage di-
versity, relying on its generalization capacity.

3.3 Inference Phase

This phase starts with an active set of goals G', and a single

observation O = (0} ;,0% ,...). The objective of this phase

is to return the goal g € G* to which O% most likely leads.
Using the LSTM from the learning phase and the sequences
for the active set of goals, O*, the goal whose embedding is
closest to the embedding of the input sequence O is returned.

Using O*, GRAML produces embeddings libraries
({v!, v }grs o {0l 0%} ) corresponding to every
goal-directed library {O%,...,0°} € O* . These embed-
dings could potentially be generated during the goal adap-
tation phase to decrease online inference runtime. However,
our experiments showed improved accuracy when the full se-
quences O* were truncated to the length of O; before com-

puting embeddings. It then generates an embedding v for O?
and returns the goal whose sequence embeddings yield the
highest average similarity with v:

I :
=a ax — similarity (v? 3
g = argmax ; y(vg,v) 3

Where vg denotes embedding number j in the library of a
goal g. This averaging method improves recognition accu-
racy by accounting for different trajectories for the same goal.
However, it introduces a trade-off: as the value of s increases,
the runtime also increases. Constructing larger libraries is
likely to improve GRAML’s accuracy, but as demonstrated
in the empirical evaluation, the library generation time grows
linearly with s for both BG-GRAML and GC-GRAML.

4 Evaluation

We implemented GRAML using Python, employing PyTorch
for the LSTM-based metric learning components.' All exper-
iments were conducted on a commodity Intel i-7 pro.

Variables We vary our experiments across the following di-
mensions to test GRAML under different settings:

* Discrete or Continuous state/action environments. In
our experiments, we have two environments with dis-
crete state and action spaces (Minigrid-SimpleCrossing
and Minigrid LavaCrossing) and four environments
with continuous ones (Parking, PointMaze-Obstacle,
PointMaze-FourRooms and Panda-Gym Reach).

* Consecutive and non-consecutive partial observa-
tions. A consecutive sequence is a partial sequence of
observations from a starting state to the goal, where
the missing parts are from a certain observation until
the goal. A non-consecutive sequence is a partial se-
quence of observations from a starting state to the goal,
where the missing parts are randomly chosen from the
sequence. For each environment, we tested observation
sequences that are 30%, 50%, 70%, and 100% of the full
sequence, both consecutively and non-consecutively.

¢ Suboptimal Observations. At inference, a stochastic
policy generates sub-optimal observation sequences.

« Initial States. Initial steps are chosen randomly to en-
courage diverse plans.

For each ODGR problem generated, there is a single goal
adaptation phase followed by several inference phases where
each goal in the active set is considered the true goal with
every observability configuration. This process yields 5 (av-
erage number of active goals |G°|) x 8 (observability % and
consecutive/non-consecutive) = 40 unique inference phases.
Since there are five separate ODGR problems for every en-
vironment, there are five goal adaptation phases and 200 GR
problems for every one of the six environments.

Data Sets

Building on the GCRL survey and the benchmark environ-
ments suggested at ApexRL 2, we form a collection of GR
problems from several sets of environments that adhere to
the Gymnasium API 3, with detailed descriptions of each
in Appendix ??. We consider two custom Minigrid envi-
ronments from the minigrid package [Chevalier-Boisvert er
al., 2023], two custom PointMaze environments from the

"https://github.com/MatanShamir1/Grlib
Zhttps://github.com/apexrl/
*https://gymnasium.farama.org/
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Figure 3: The evaluation environments from top-left to bottom-
right: Minigrid-SimpleCrossing, Minigrid-LavaCrossing, Parking,
PointMaze-Obstacle, PointMaze-FourRooms and Panda-Gym.

Gymnasium-Robotics package [Fu et al., 2020], the Parking
environment from the highway-env package [Leurent, 2018],
and the Reach environment from PandaGym [Gallouédec et
al., 2021]. Figure 3 illustrates these environments.

Algorithms The primary evaluation focuses on the BG-
GRAML and GC-GRAML implementations. In the goal
adaptation phase of BG-GRAML, a custom implementation
of MCTS was used to generate plans in discrete environ-
ments. For continuous environments, expert-provided exam-
ples were used exclusively, with the RL policy used for gener-
ating these examples differing from the one used during input
generation in the inference phase.

We compare BG-GRAML and GC-GRAML to the
GRAQL [Amado er al., 2022] algorithm in discrete domains
and DRACO [Nageris et al., 2024] in continuous domains.
These baseline methods require training a dedicated goal-
conditioned agent for each candidate goal. The resulting
policies—while dependent on the underlying algorithm—are
generally assumed to be near-optimal. When the observed
behavior at inference time is close to optimal, these meth-
ods can achieve high accuracy, as they do not depend on the
generalization capacity of a learned metric model. However,
this advantage comes at the expense of significant computa-
tional overhead, which may render them impractical for real-
time or large-scale deployments. Another variation, named
GC-DRACO, learns a goal-conditioned policy once during
the learning phase. It is used in our experiments to com-
pare against GC-GRAML. Deep RL algorithms from Stable
Baselines3 [Raffin et al., 2021] are used to train agents in
continuous environments, while tabular Q-Learning, as orig-
inally applied in GRAQL, is used in discrete settings across
all phases of the framework. Experimental diversity is fur-
ther promoted by varying the properties of the environments
and using different RL algorithms across phases. The algo-
rithms used include PPO, SAC, and TD3, rotated to ensure
that sequence generation relies on distinct policies.

Next, we showcase how learned embeddings enable mea-
suring goal distances (Figure 4), continue with the trade-
off between BG-GRAML and GC-GRAML (Figure 5), and
then present GRAML performance under varying observabil-
ity (Table 1) and discuss runtime. Lastly, we examine how
recognition accuracy is affected by the size of the base goal
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Figure 4: Confusion matrices for plan similarity and recognition
confidence in the inference phase for GRAML across multiple tasks
in the PointMaze environment where the goals differ from the set of
base goals from the domain learning phase.

set G and the active goal set G* (Figure 6).

4.1 Embedding Similarity

Before evaluating the performance of GRAML for GR, we
verify that the learned model embeds sequences leading to
the same goal closer together. This is especially important
when execution can vary, and different distinct sequences can
lead to the same goal. Figure 4 shows that BG-GRAML is
able to create an embedding in which different sequences to
the same goal get closer embeddings. The right matrix shows
similarity scores between sequences, where each cell (i, 7)
indicates the element-wise numerical difference between the
input sequence reaching goal ¢ from the inference phase and
the sequence reaching goal j from the latest goal adaptation
phase. The left matrix follows the same structure but reflects
differences between the corresponding embeddings. For ex-
ample, despite the lack of similarity between the sequences
leading to the goal (8,8) in the goal adaptation phase (Figure
4 (right)), GRAML (Figure 4 (left)) learns an embedding in
which these sequences are close to one another.

4.2 GRAML Strategies

Next, we compare the accuracy of BG-GRAML and GC-
GRAML given sequences of changing observability when we
aim to adapt quickly to new goals while minimizing the de-
pendence on a domain expert. To do so, both BG-GRAML
and GC-GRAML are fed with a single sequence per goal in
(s = 1). Each single-goal agent was trained for 300,000
timesteps, and the goal-conditioned agent was trained for 1
million timesteps. GC-GRAML is trained using sequences
generated by a single goal-conditioned policy 7*, which was
trained on a wide range of goals in G. This allows the dataset
to include more diverse observation sequences, as the same
policy produces behavior across many different goals. In con-
trast, BG-GRAML relies on five separate goal-directed poli-
cies, each trained on a single goal, limiting the diversity of the
training data available to its LSTM. Since the domain learn-
ing time of GC-GRAML is not affected by the number of base
goals, G was set to 20, while BG-GRAML used only 5. As
shown in Figure 5, GC-GRAML benefits from this sequence
diversity and consistently generalizes better, recognizing un-
seen observation traces more effectively than BG-GRAML.
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Figure 5: BG-GRAML and GC-GRAML accuracy in Parking.

4.3 Inference Performance

Given a GR problem, the performance of GRAML is com-
pared with that of the selected GR as RL algorithms. In each
scenario presented in Section 4, a set of base goals G was cho-
sen, along with sets of 3-9 active goals G for the sole goal
adaptation phase in the experiment. Every g € G° was once
chosen as the true goal, yielding a set of 200 GR problems
per scenario on average, depending on the size of G°.

GR accuracy Table 1 summarizes the execution results in
terms of accuracy. Notice that due to the ambiguity of traces
(especially with consecutive observations and low observabil-
ity), even a perfect recognizer might not be able to reach per-
fect recognition. The performance of the GRAML variants
consistently demonstrated strong results, comparing to or sur-
passing the GR as RL versions in many scenarios despite its
decreased adaptation time. Notably, GRAML benefits from
increased observability levels compared to algorithms that
were trained directly on the current goal set G°.

GR runtime Recall that GRAML aims to optimize goal
adaptation and inference times. We compare the computation
time during goal adaptation in GRAML to the goal learning
in GRAQL and DRACO, as they need to learn these goals
for every GR instance. We compared all supported domains,
averaging results over 200 instances and selecting the best-
performing variant from each algorithm. Recall that G and
O denote goal adaptation and inference times, respectively.
Algorithms exceeding two hours for goal adaptation were
deemed to have timed out. In the Minigrid domain, GRAQL
timed out during G, with O averaging 0.04 seconds, while
BG-GRAML incurred G = 0 due to the absence of computa-
tions and achieved an average O of 0.03 seconds. In the Point-
Maze domain, DRACO timed out during G and had an aver-
age O of 2.56 seconds, whereas BG-GRAML incurred G = 0
and achieved an average O of 1.47 seconds. In the Park-
ing domain, GC-DRACO timed out during G and averaged
O = 2.49 seconds, while GC-GRAML required 36 seconds
for G and averaged O = 2.17 seconds. In the Panda domain,
GC-DRACO timed out during G and averaged O = 2.24 sec-
onds, while GC-GRAML required 87 seconds for G and 5.29
seconds for O. BG-GRAML achieves G = 0 by leveraging
expert sequences. For reference, in the Parking domain with
|G;| = 5, DRACO required ten hours for goal adaptation.
Additional times are the acquisition of the base goals se-
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Figure 6: Recognition accuracy in BG-GRAML increases with more
base goals and decreases with more newly introduced goals.

quences during the self-supervised learning and potential plan
time in the goals adaptation of BG-GRAML. Running BG-
GRAML with MCTS in discrete environments for planning
instead of receiving a sample from an expert yields a plan-
ning time of 75 seconds per goal on average. Considering the
time it takes to train agents towards every active goal as the
timeout, creating a library of sequences per goal in a problem
with five goals on average takes 18 minutes, about 4 times
faster than training agents for every goal in the active set.

4.4 Goal Set Size

Lastly, we report the influence of the goal set size (|G|) for
the learning phase of GRAML and the active goal set size
(|G;|) on the performance of BG-GRAML performance in
the Parking environment. Figure 6 (left) shows that increas-
ing the number of base goals leads to improved accuracy for
the algorithm during recognition. This improvement is due
to the wider variety of goal sequences to train on, as well as
the sheer number of diverse goals, which, in turn, leads to
higher generalization abilities. Figure 6 (right) shows an op-
posite trend as the number of active goals increases. This is
unsurprising; as more goals are introduced, the possible sim-
ilarity between sequences leading to them increases, making
the goals harder to disambiguate.

There are a couple of instances where, on average, lower
observability leads to better recognition than higher observ-
ability. We attribute this behavior to the random way the se-
quences were generated for each experiment (recall that the
policy used for this generation process is stochastic). Still,
the results show a mostly consistent behavior.

5 Related Work

This section provides an overview of recent work, emphasiz-
ing the strengths and weaknesses of each methodology under
different assumptions regarding input timing and the potential
changes in goals presented by ODGR problems. We split ex-
isting work into Model-Based GR (MBGR) and Model-Free
GR (MFGR) [Geffner, 2018]:

Model-Based GR (MBGR) In MBGR, the recognition
process entails utilizing a pre-defined and clearly stated
model that encompasses the characteristics of an environment
along with the actions that can be executed within that envi-
ronment [Meneguzzi and Fraga Pereira, 2021; Mirsky et al.,



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Consecutive

Non-consecutive

30% 50% 70%

30% 50% 70% 100%

BG-G GRAQL BG-G GRAQL BG-G GRAQL BG-G GRAQL BG-G GRAQL BG-G GRAQL BG-G GRAQL
Minigrid 0.35(0.18)  0.40(0.19)  0.44(0.20) 0.51(0.22) 0.55(0.19) 0.58(0.21) 0.63(0.24) 0.66(0.22) 0.77(0.17) 0.81(0.13) 0.83(0.17) 0.84(0.20) 0.82(0.18) 0.90(0.15)

BG-G DRACO BG-G DRACO BG-G DRACO BG-G DRACO BG-G DRACO BG-G DRACO BG-G DRACO
PointMaze  0.51(0.20)  0.50(0.23) 0.63(0.21) 0.71(0.20) 0.83(0.17) 0.82(0.18) 0.75(0.30) 0.81(0.21) 0.79(0.29) 0.84(0.20) 0.78(0.27) 0.84(0.16) 0.80(0.24) 0.84(0.16)

GC-G GC-D GC-G GC-D GC-G GC-D GC-G GC-D GC-G GC-D GC-G GC-D GC-G GC-D
Parking 0.43(0.26) 0.42(0.22) 0.45(0.24) 0.49(0.20) 0.76(0.20) 0.54(0.19) 0.84(0.16) 0.55(0.19) 0.88(0.19) 0.56(0.19) 0.88(0.17) 0.66(0.18) 0.89(0.16) 0.71(0.18)
Panda 0.45(0.23)  0.35(0.16)  0.74(0.17)  0.56(0.20) 0.82(0.16) 0.79(0.03) 0.83(0.20) 0.82(0.20) 0.91(0.15) 0.90(0.11)  0.92(0.13)  0.94(0.10)  0.92(0.14)  0.95(0.08)

Table 1: Accuracy for Different Domains, Sequence Lengths, and Algorithms, averaged over 200 instances (with std) for configurations
varying by observation type and observability %. Minigrid is further averaged on Minigrid-SimpleCrossing and Minigrid-LavaCrossing, and
PointMaze on PointMaze-Obstacle and PointMaze-FourRooms. BG-G is BG-GRAML, GC-G is GC-GRAML, and GC-D is GC-DRACO.

2021]. Traditional MBGR usually exploits planning and pars-
ing techniques [Baker et al., 2009; Geib and Goldman, 2009;
Ramirez and Geffner, 2009; Ramirez and Geffner, 2011].
Although the domain learning for these algorithms is non-
existent in terms of compute, it requires a domain expert to
manually construct these models.

Model-Free GR (MFGR) In MFGR, the recognizer lacks
access to the environment model that describes its prop-
erties and dynamics [Geffner, 2018]. Some approaches
learn the model first then apply MBGR [Asai et al., 2022;
Geib and Kantharaju, 2018; Su et al., 2023], while others per-
form end-to-end model-free GR without explicit model learn-
ing [Amado et al., 2022; Borrajo et al., 2020; Chiari e al.,
2023; Fang et al., 2023; Min et al., 2014]. These methods
differ in the representation of the environment and in the as-
sumptions about existence and timing of the training inputs.
GRAML belongs to MFGR but stands out by not requiring
solved task datasets and by addressing goal generalization,
which most methods overlook.

The approach most similar to GRAML in underlying
model is GR as RL [Amado et al., 2022], which also em-
ploys an MDP representation. It trains a separate policy for
each goal, resulting in high computational cost and inabil-
ity to directly handle ODGR. GRAQL, a discrete domain al-
gorithm derived from GR as RL, has been extended to con-
tinuous domains with deep RL by DRACO [Nageris et al.,
20241, but it inherits the limitations of GRAQL. A variant of
DRACO using GCRL offers fast adaptation to new goals but
still depends on the narrow notion of optimal behavior. Most
approaches mentioned rely on a single plan or policy, which
may misclassify observations that diverse plans would recog-
nize, with few exceptions addressing this implicitly [Chiari et
al., 2023] or explicitly [Sohrabi et al., 2016].

While most methods do not explicitly address ODGR,
Chiari et al. [Chiari et al., 2023] propose GRNet, a frame-
work that generalizes to any goal set without further learning,
providing a model-free solution for dynamic environments.
GRNet uses RNNs to process observation sequences and re-
quires a dedicated learning phase on a dataset of solved GR
problems with domain theory known beforehand, leading to
long domain learning times. Despite its promise, GRNet’s re-
liance on fluent enumeration remains critical, and extending
it to continuous domains requires further study. In contrast,
GRAML handles continuous domains by having the LSTM
output operate in embedding space rather than state space.

6 Conclusions and Future Work

This paper introduces GRAML, a new algorithm for GR and
ODGR using Metric Learning. GRAML was designed to
handle both discrete and continuous domains, prioritizing the
speed of adaptation to emerging goals and the promptness
of inference upon receiving a sequence of observations O.
Aiming at robust applicability, GRAML also targets accu-
rate recognition of suboptimal and highly-dissimilar obser-
vation sequences that lead to a certain goal. We achieve di-
versity across (1) input sequences to the same goals, used to
distinguish the acting agent and the observing agents’ under-
lying policies, and (2) inference phase and goal adaptation
phase sequences, used to generate more challenging and non-
trivial recognition of new goals for GRAML.

This paper further analyzes how different variables of an
environment, such as the domain characteristics, the variabil-
ity in sequence generation, and the observation sequence for-
mat, can influence learning and inference performance for
ODGR algorithms and GRAML in particular. These domain-
agnostic attributes are crucial when evaluating an ODGR
framework, and researchers are welcome to build upon this
methodology when evaluating new ODGR approaches.

We propose two GRAML variants. BG-GRAML may be
time-consuming due to reliance on expert samples or plan-
ners but does not depend on the generalization of a GCRL
agent. GC-GRAML, when feasible, requires no extra in-
formation during goal adaptation and benefits from a more
diverse training dataset. Its superior performance over BG-
GRAML is mainly due to handling more base goals during
training. Since GC-GRAML uses a general-purpose policy
instead of goal-specific ones, it is not expected to outperform
BG-GRAML when both use the same number of goals.

The selection of base goals for learning is critical but was
not addressed here. Without adequate coverage of the goal
space during domain learning, the model may fail to recog-
nize goals in underrepresented regions. Training a GCRL
agent on a wide range of goals proved effective, but more
sophisticated goal selection methods could improve coverage
and sample efficiency. Optimizations during goal adaptation,
such as outlier removal or clustering over the sequence li-
braries, could also be effective.

Future work could extend GRAML to sequences from mul-
tiple MDPs with varying dynamics, addressing a more gen-
eral GR paradigm where both goals and environment dynam-
ics may change.
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