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Abstract
Lifelong Person Re-identification (LReID) is es-
sential in dynamic camera networks, which con-
tinually adapts to new environments while pre-
serving previously acquired knowledge. Exist-
ing LReID techniques often preserve samples from
past datasets to maintain old knowledge, poten-
tially leading to privacy risks. While prototype-
based methods offer privacy advantages, current
approaches primarily focus on adjusting classifiers
for image classification tasks, neglecting repre-
sentation biases between old and new identities
in person re-identification. This study introduces
a novel Prototype-guided Knowledge Propagation
(PKP) method, which mitigates discrepancies in
similar identity images between old and new tasks
by guiding prototype construction through triplet
loss constraints. Additionally, to address dispar-
ities between prototypes and the updated feature
extractor, an Adaptive Parameter Evolution (APE)
strategy is proposed. APE optimizes the integra-
tion of the old and new models by assessing the
importance of the new tasks, dynamically select-
ing the most pertinent parameters for updates ac-
cording to their contribution to the current task.
Extensive experiments on the LReID benchmark
demonstrate that our approach surpasses state-of-
the-art prototype-based LReID methods in terms
of mAP and rank-1 accuracy. Code is available at
https://github.com/joyner-7/IJCAI2025-PKA.

1 Introduction
Person re-identification (ReID) is a fundamental task in com-
puter vision that aims to match the same person across dif-
ferent locations and times [Ye et al., 2021; Leng et al., 2019;
Ye et al., 2024]. Traditional ReID methods have achieved
outstanding results by leveraging deep learning models and
large-scale static datasets, where all training data are avail-
able simultaneously [Li et al., 2024; Dai et al., 2018; Zhang
et al., 2016; Ye et al., 2018]. However, in real-world sce-
narios, such as surveillance systems that generate continuous

∗Corresponding authors.

streaming data, these models face significant challenges due
to the inability to handle incremental and dynamic data ef-
fectively [Ge et al., 2022; Wu and Gong, 2021]. This lim-
itation has motivated the emergence of Lifelong Person Re-
identification (LReID), which aims to enable ReID models to
acquire new knowledge from streaming data while retaining
previously learned knowledge.

The primary challenge in LReID lies in addressing catas-
trophic forgetting, a phenomenon common in lifelong learn-
ing tasks. This issue is particularly pronounced in LReID
due to the unique characteristics of the task. First, as a
fine-grained classification problem, the intra-person varia-
tions caused by temporal, environmental, and camera view
changes are often significant[Ye et al., 2023]. Second, subtle
inter-person differences can lead to severe distribution over-
laps, making it difficult to preserve discriminative knowledge
for each individual. These factors exacerbate the forgetting
of previously learned knowledge when learning new data.

To tackle catastrophic forgetting, most existing LReID
methods employ additional memory to store exemplar data
from previous tasks, which can be reused during training
with new datasets [Ge et al., 2022; Wu and Gong, 2021;
Yu et al., 2023a]. However, such memory-based approaches
raise privacy concerns and introduce additional computa-
tional overhead [Wu et al., 2025]. These limitations are
particularly acute given the private nature of pedestrian im-
ages. Some methods replaced sample-based approaches in
Class-Incremental Learning with prototype-based methods to
solve privacy and memory issues [Xu et al., 2024a]. How-
ever, these methods struggle to adapt to the training process
of LReID, which is designed as a retrieval task and places
greater emphasis on the embedding capability of the fea-
ture extractor. This requires constructing a more discrimina-
tive feature space that is effective for both seen and unseen
domains. Therefore, prototype-based methods commonly
used in CIL face difficulties in achieving satisfactory perfor-
mance in LReID. After completing each training task, exist-
ing LReID methods merge the old model with the new one to
ensure compatibility between stored prototypes and the up-
dated feature extractor. However, the static merging strategy
ignores the unique characteristics of each task. This approach
struggles to balance old knowledge retention and new knowl-
edge learning during training.

In this paper, we propose a novel non-exemplar-based
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method for LReID, which provides an effective solution to
privacy and memory constraints commonly faced in LReID
tasks. When a new task is introduced, the model compares
the new features to the existing prototypes. If the new features
are similar to the old prototypes, the model pushes them apart,
ensuring a clear distinction between old and new knowledge.
By creating a clear separation, this approach not only safe-
guards previously learned knowledge but also sharpens the
differentiation between old and new identity features, thus
enabling better propagation of knowledge within the model
over the entire training period and maintaining powerful em-
bedding representation capability. In addition, we introduce
an Adaptive Parameter Evolution (APE) strategy. APE eval-
uates the parameters in the model to assess which ones have
a greater impact on the current training task and selectively
updates them. And it dynamically evaluates the impact of
new tasks, and based on this evaluation, it updates the model
fusion method to better align with the requirements of the cur-
rent task. This approach ensures robust alignment between all
prototypes and the feature extractor while maintaining a high
level of compatibility between previously acquired and newly
learned knowledge throughout the training process.

Our contributions are summarized as follows:

• We propose a non-exemplar-based LReID method that
constructs prototypes to mitigate catastrophic forgetting
while addressing privacy and memory concerns.

• We introduce an Adaptive Parameter Evolution (APE)
strategy that dynamically integrates old and new knowl-
edge by assessing task variations and selectively updat-
ing parameters, enhancing the adaptability of the model.

• Our method achieves superior performance on bench-
mark datasets, demonstrating its effectiveness and set-
ting a new standard for LReID tasks.

2 Related Work
2.1 Lifelong Person Re-identification
Lifelong person re-identification (LReID) is an emerging area
that seeks to enable ReID models to learn continuously from
non-stationary data streams, a more realistic scenario than the
traditional static batch learning setup [Pu et al., 2021]. The
core challenge in LReID is mitigating catastrophic forgetting,
which refers to the tendency of neural networks to rapidly for-
get previously learned knowledge when trained on new tasks.
This phenomenon is particularly pronounced in LReID due
to the fine-grained nature of the task and the variability of
person appearances over time and across different environ-
ments. Current research in LReID can be broadly categorized
into two main branches: rehearsal-based mthods and knowl-
edge distillation-based methods. Rehearsal-based approaches
mitigate forgetting by storing exemplar images from previous
tasks and replaying these during the training process of new
tasks [Ge et al., 2022; Huang et al., 2022; Yu et al., 2023b;
Wu and Gong, 2021]. While effective, this approach raises
practical concerns, such as privacy issues related to storing
human images, and scalability problems due to the growing
memory requirements. Knowledge distillation-based meth-
ods preserve past knowledge by enforcing consistency be-

tween the outputs of old and new models [Huang et al., 2023;
Pu et al., 2022; Pu et al., 2023]. While these methods
have shown promise in terms of anti-forgetting capability, the
strict consistency constraints may hinder the plasticity of the
model, limiting its ability to effectively learn new and poten-
tially different data distributions [Xu et al., 2024a]. Our work
aims to address the challenges of both branches by explor-
ing a non-exemplar based approach that utilizes prototypes to
represent previously learned knowledge, thereby mitigating
forgetting while avoiding data storage issues.

2.2 Prototype-based Class Incremental Learning
In the field of Class Incremental Learning (CIL), many
prototype-based methods have been proposed, which are dis-
tinguished by their ability to avoid storing historical sam-
ples, significantly reducing storage overhead and mitigating
potential privacy concerns. Prototypes are typically derived
by averaging or aggregating the features of instances be-
longing to the same class, and have demonstrated their ef-
fectiveness in tasks such as few-shot learning and cluster-
ing. In CIL, prototypes are widely employed to represent
past knowledge, where prototypes are mostly used for clas-
sifier calibration [Zhu et al., 2021; Goswami et al., 2024] or
knowledge distillation at the output level [Zhu et al., 2022;
Shi and Ye, 2024]. While some attempts have been made to
adapt prototype-based methods for LReID [Xu et al., 2024a],
these approaches remain inadequate as they often fail to
fully address the unique requirements of LReID, such as the
need for fine-grained feature discrimination and robust fea-
ture transfer across incremental tasks. Directly applying CIL
methods often leads to suboptimal performance, as they over-
look the critical need for effective and robust feature-based
knowledge transfer that preserves the fine-grained discrimi-
native capabilities essential for accurate and reliable perfor-
mance in complex and dynamic retrieval scenarios.

3 Method
3.1 Problem Formulation
We address the challenge of Non-Exemplar Lifelong Person
Re-identification. Formally, we are given a stream of se-
quential training datasets D = {D1, D2, . . . , DT }, where
T represents the total number of tasks. Each dataset Dt =
{(xt

i, y
t
i)}

Nt
i=1 contains Nt samples with corresponding iden-

tity labels. During the training phase for the t-th task, access
to previous datasets {D1, . . . , Dt−1} is restricted due to pri-
vacy considerations. To mitigate the problem of catastrophic
forgetting, we construct a prototype set Pt = {pi}Nt

i=1 for the
t-th task. Each prototype in Pt represents a unique identity,
and it is constructed by averaging the features of the corre-
sponding identity.

3.2 Overview
Our proposed method, Prototype-guided Knowledge Prop-
agation with Adaptive Learning (PKA), addresses Lifelong
Person Re-identification (LReID) through two key compo-
nents: Prototype-guided Knowledge Propagation (PKP) and
Adaptive Parameter Evolution (APE). At each training stage
t with dataset Dt, The sampled prototypes, enhanced with
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(a)Overall Model(at training step t)
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(b)Prototype-Guided Knowledge Propagation(PKP)
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Figure 1: Overview of the proposed model Architecture. Solid arrows indicate the gradient-based updates, and dashed arrows represent no
gradient updates. Prototype-guided Knowledge Propagation (PKP) module uses a modified triplet loss Lpkp and a standard triplet loss Ltri to
propagate knowledge while ensuring discriminability. Different colors in the figure represent features or prototypes associated with different
identities.

added noise, are passed through the PKP module. This pro-
cess encourages them to diverge from the current task fea-
tures, enabling the extraction of more discriminative feature
embeddings while effectively leveraging prior knowledge, as
illustrated in Fig. 1.

The APE module dynamically manages model parameters,
assessing the relevance of Dt and selecting parameters based
on their impact on the current task. It then fuses the new
model’s parameters (θt) with those of the previous model
(θt−1), as shown by the dashed arrows in Fig. 1. This en-
sures adaptive evolution of model parameters while retaining
past knowledge, resulting in a new model θfused for the next
training stage t+ 1.

3.3 Prototype-guided Knowledge Propagation
To mitigate catastrophic forgetting in lifelong person re-
identification (LReID), we propose a novel prototype-based
non-exemplar learning paradigm. our approach introduces
a novel perspective by leveraging prototypes to guide both
knowledge propagation and feature learning for new tasks, as
illustrated in Fig. 2. we generate more discriminative embed-
dings, which in turn improves retrieval performance for the
LReID model.

Existing methods that often employ triplet loss directly on
input features of new tasks for feature discrimination. Our
method aims to leverage prototypes to push apart identities
from previous tasks and new tasks within the embedding
space, creating a clear distinction. This facilitates the gen-
eration of more refined embeddings. To achieve this, we de-
fine a prototype set P = {p1, . . . , pM}. During training for
a new task, we randomly sample a subset Ps from it, where
Ps contains prototypes of size half the batch size. To en-
hance the generalization and robustness of these prototypes,
we add Gaussian noise, resulting in augmented prototypes P̃s.
Specifically, for each prototype pl ∈ Ps, we add Gaussian
noise ϵ:

p̃l = pl + βϵ, ϵ ∼ N (0, σ2I). (1)

Here p̃l represents the augmented prototype, ϵ is drawn from
a Gaussian distribution with zero mean and covariance matrix
σ2I , and β is a hyperparameter controlling the magnitude of
the noise. The prototypes enhanced with noise can cover a
broader feature space during training, preventing the proto-
types from becoming too concentrated. This enables a more
comprehensive separation of the features distributed around
them in the new task, thereby improving clustering among
distinct classes and optimizing the representation capability
of the embedding space.

We utilize a modified triplet loss to encourage separation
between features from the new task and augmented proto-
types. The standard triplet loss, as defined in [Sun and Mu,
2022; Yu et al., 2023a; Schroff et al., 2015], serves as our
foundation:

Ltri = max(0, ∥a− p∥22 + α− ∥a− n∥22). (2)

Here a represents the anchor feature, p represents the positive
feature, and n represents the negative feature, all drawn from
the features of the new task. Triplet loss aims to reduce the
distance between same-identity embeddings and increase the
distance between embeddings of different identities, thereby
enhancing the model’s ability to distinguish between them
and improving retrieval performance.

Our method incorporates two loss terms. The first term
focuses on pushing the features of the new task away from
the augmented prototypes to guarantee the discrimination be-
tween old and new tasks. To achieve this, the triplet loss is
modified by removing the positive sample. The following
loss term is used, which aims to maximize the distance be-
tween the anchor a (new task feature) and the negative sample
n (augmented prototype):

Lpkp =
1

N1

N1∑
i=1

max(0, γ − ∥a− n∥22). (3)

Here γ is a margin to enforces a minimum distance between
the new task features and the augmented prototypes, and N1
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(c)Adaptive Parameter Evolution(APE)
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Figure 2: The Adaptive Parameter Evolution (APE) strategy employs gradient-informed parameter selection and dynamic model parameter
fusion. We employ gradient-informed selection (left) to update high-influence parameters and performs dynamic model fusion (right) with
weight α. The resulting model is then used for the next task.

represents the number of triplets sampled from the augmented
prototypes. This loss function is denoted as Lpkp. The second
term ensures the discrimination between different identities
within the new task. We use the following standard triplet
loss function:

Ltri =
1

N2

N2∑
j=1

max
(
0, ∥ztj − ztp∥22 + α− ∥ztj − ztn∥22

)
.

(4)
Here ztk represents the feature of the k-th sample in the new
task, and ztp and ztn are the positive and negative samples,
respectively, within the new task. N2 is the number of triplets
sampled from the new task.

3.4 Adaptive Parameter Evolution Strategy
To further facilitate effective knowledge propagation in life-
long person re-identification, we introduce the Adaptive Pa-
rameter Evolution (APE) strategy. a dynamic mechanism that
orchestrates the evolution of model parameters in response to
the ongoing learning process. APE is characterized by two
synergistic components: gradient-informed parameter selec-
tion and dynamic model parameter fusion. These are de-
signed to maintain the alignment between previously learned
prototypes and the retrained feature extractor, while balanc-
ing the retention of old knowledge and the acquisition of new
knowledge throughout the training process.

We posit that not all parameters are equally relevant to a
given learning task, and that a more judicious parameter up-
date strategy is needed [Zhang et al., 2024]. To this end, we
compute the gradient of the loss function L with respect to
each model parameter θi, denoted by ∇θiL. These gradients
quantify the sensitivity of the loss to each parameter, provid-
ing a measure of the parameter’s relevance to the task. The
absolute value of the gradient is then computed as |∇θiL|.
Instead of naively updating all parameters, we introduce a
threshold τ . We selectively update a parameter only if its

gradient magnitude is greater than the threshold τ , otherwise,
the parameter is preserved. This process can be expressed as:

θi ←
{
θi − η∇θiL, if |∇θiL| > τ

θi, if |∇θiL| ≤ τ
, (5)

where η is the learning rate and τ is a predefined gradient
magnitude threshold. This approach not only enhances the
efficiency of the training process by focusing on the param-
eters that are most influential for the current task, but also
mitigates the risk of overfitting by preserving the parameters
that are less sensitive to the current task.

After gradient descent training, dynamic model parame-
ter fusion is performed, which emphasizes maintaining the
compatibility between new and old knowledge. Rather than
applying a static fusion strategy [Xu et al., 2024a], APE dy-
namically adjusts the fusion weight according to the relative
influence of the current task [Xiao et al., 2023], which is es-
timated by the size of its training dataset. This allows us to
overcome the shortcomings of previous methods which are
less sensitive to variation between different tasks. After train-
ing a new task t, θtnew and θt−1

old represent the parameters of
the new and old models, respectively. The fused model pa-
rameters θtfused are determined as:

θtfused = αtθ
t
new + (1− αt)θ

t−1
old . (6)

The fusion weight αt is dynamically determined based on the
relative impact of the current task’s dataset. We recognize
that datasets with larger sizes typically offer a more compre-
hensive representation of the task, hence they should exert a
greater influence on the model parameters. This influence is
quantified using the dataset size, therefore, αt is defined as:

αt =
Nt∑t
i=1 Ni

, (7)

where Nt denotes the number of samples in the training
dataset for task t.
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Method Non-
Exemplar

Market1501 CUHK-SYSU DukeMTMC MSMT17 CUHK03 Seen-Avg Unseen-Avg
mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1

CIL

Joint-Train [Xu et al., 2024a] 75.3 90.1 84.5 86.0 66.9 81.6 31.6 57.1 58.5 61.4 63.4 75.2 55.2 48.2
LwF [Li and Hoiem, 2017] 56.3 77.1 72.9 75.1 29.6 46.5 6.0 16.6 36.1 37.5 40.2 50.6 47.2 42.6
SPD [Tung and Mori, 2019] 35.6 61.2 61.7 64.0 27.5 47.1 5.2 15.5 42.2 44.3 34.4 46.4 40.4 36.6
PRAKA* [Shi and Ye, 2023] ✓ 37.4 61.3 69.3 71.8 35.4 55.0 10.7 27.2 54.0 55.6 41.3 54.2 47.7 41.6

PRD* [Asadi et al., 2023] 7.3 18.0 33.5 35.6 3.7 7.6 0.8 2.4 33.8 33.8 15.8 19.5 23.0 17.7

LReID

CRL [Xu et al., 2024b] 58.0 78.2 72.5 75.1 28.3 45.2 6.0 15.8 37.4 39.8 40.5 50.8 47.8 43.5
AKA [Pu et al., 2021] 51.2 72.0 47.5 45.1 18.7 33.1 16.4 37.6 27.7 27.6 32.3 43.1 44.3 40.4
AKA† [Pu et al., 2021] 58.1 77.4 72.5 74.8 28.7 45.2 6.1 16.2 38.7 40.4 40.8 50.8 47.6 42.6

PatchKD [Sun and Mu, 2022] 68.5 85.7 75.6 78.6 33.8 50.4 6.5 17.0 34.1 36.8 43.7 53.7 49.1 45.4
MEGE [Pu et al., 2023] 39.0 61.6 73.3 76.6 16.9 30.3 4.6 13.4 36.4 37.1 34.0 43.8 47.7 44.0
DKP [Xu et al., 2024a] ✓ 60.3 80.6 83.6 85.4 51.6 68.4 19.7 41.8 43.6 44.2 51.8 64.1 59.2 51.6

PKA(Ours) ✓ 57.7 80.2 85.0 86.9 59.4 75.6 31.0 56.1 44.1 44.6 55.4 68.7 62.3 55.3

Table 1: Training Order-1: Market-1501 → CUHK-SYSU → DukeMTMC-ReID → MSMT17-V2 → CUHK03. * denotes the results are
reproduced by the released official code. † denotes the results reported by [Sun and Mu, 2022]. The best and second-best results are marked
in bold and underlined.

Method Non-
Exemplar

DukeMTMC MSMT17 Market1501 CUHK-SYSU CUHK03 Seen-Avg Unseen-Avg
mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1

CIL

Joint-Train[Xu et al., 2024a] 66.9 81.6 31.6 57.1 75.3 90.1 84.5 86.0 58.5 61.4 63.4 75.2 55.2 48.2
LwF[Li and Hoiem, 2017] 42.7 61.7 5.1 14.3 34.4 58.6 69.9 73.0 34.1 34.1 37.2 48.4 44.0 40.1
SPD[Tung and Mori, 2019] 28.5 48.5 3.7 11.5 32.3 57.4 62.1 65.0 43.0 45.2 33.9 45.5 39.8 36.3

PRAKA* [Shi and Ye, 2023] ✓ 31.2 48.7 6.6 19.1 47.8 69.8 70.4 73.0 54.9 56.6 42.2 53.4 48.4 41.1
PRD*[Asadi et al., 2023] 3.6 8.2 0.6 1.8 8.9 22.3 34.6 36.1 35.4 35.3 16.6 20.7 20.7 15.0

LReID

CRL[Xu et al., 2024b] 43.5 63.1 4.8 13.7 35.0 59.8 70.0 72.8 34.5 36.8 37.6 49.2 45.3 41.4
AKA [Pu et al., 2021] 32.5 49.7 - - - - - - - - 40.8 37.2 - -
AKA†[Pu et al., 2021] 42.2 60.1 5.4 15.1 37.2 59.8 71.2 73.9 36.9 37.9 38.6 49.4 46.0 41.7

PatchKD[Sun and Mu, 2022] 58.3 74.1 6.4 17.4 43.2 67.4 74.5 76.9 33.7 34.8 43.2 54.1 48.6 44.1
MEGE[Pu et al., 2023] 21.6 35.5 3.0 9.3 25.0 49.8 69.9 73.1 34.7 35.1 30.8 40.6 44.3 41.1
DKP[Xu et al., 2024a] ✓ 53.4 70.5 14.3 33.3 60.6 81.0 83.0 84.9 45.0 46.1 51.3 63.2 59.0 51.6

PKA(Ours) ✓ 54.2 70.6 24.3 48.0 68.6 85.3 85.0 86.8 43.8 46.9 55.2 67.5 60.3 52.8

Table 2: Training Order-2: DukeMTMC-reID → MSMT17-V2→ Market-1501 → CUHK-SYSU → CUHK03. *denotes the results are
reproduced by the released official code. † denotes the results reported by [Sun and Mu, 2022]. The best and second-best results are marked
in bold and underlined.

By coupling gradient-informed parameter selection with
dynamic parameter fusion, APE provides an adaptive and ro-
bust mechanism for lifelong learning, enabling the previous
prototype set to maintain strong embedding representation
capability in the new feature space, resulting in improved re-
trieval performance across all datasets.

3.5 Overall Loss Function
To optimize our model, we employ a composite loss function
with three distinct components: a cross-entropy loss (Lce),
a triplet loss on the combined features of new samples and
augmented prototypes (Lpkp), and a standard triplet loss on
new task features (Ltri). The cross-entropy loss is defined as:

Lce = −
1

N

N∑
i=1

C∑
c=1

yic log(ŷic), (8)

where N is the number of samples, C is the number of
classes, yic is the true label (0 or 1), and ŷic is the predicted
probability for class c of sample i. The overall loss function
is defined as:

L = Lce + α(Lpkp + Ltri). (9)

Here α is a variable weight controlling the influence of the
two triplet loss components, ensuring a balance between pre-
serving old knowledge and acquiring new information. This

weight α is shared between the two different triplet losses.
This combined loss function allows our model to learn dis-
criminative feature representations that are robust to the chal-
lenges of lifelong learning in person re-identification tasks.

4 Experiments

4.1 Experimental Settings

Datasets. To evaluate the effectiveness of our proposed
method, we conduct extensive experiments on five bench-
mark lifelong person ReID datasets:Market-1501 [Zheng et
al., 2015], CUHKSYSU [Xiao et al., 2017], DukeMTMC-
ReID [Ristani et al., 2016], MSMT17-V2 [Wei et al., 2018],
and CUHK03 [Li et al., 2014]. To simulate a lifelong person
ReID scenario in real-world settings, we evaluate our method
using two training orders as specified in, namely: Order-
1: Market-1501 → CUHK-SYSU → DukeMTMC-ReID
→ MSMT17-V2 → CUHK03, and Order-2: DukeMTMC-
ReID → MSMT17-V2 → Market-1501 → CUHK-SYSU
→ CUHK03. To further evaluate the generalization ca-
pacity of our models, we tested them on seven additional
datasets (CUHK01 [Li et al., 2013], CUHK02 [Li and Wang,
2013], VIPeR [Gray and Tao, 2008], PRID [Hirzer et al.,
2011], i-LIDS [Branch, 2006], GRID [Loy et al., 2010], and
SenseReID [Zhao et al., 2017]) as unseen domains.
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Evaluation Metrics. The mean Average Precision (mAP)
and rank@1 accuracy (R@1) are used to evaluate the model
performance on individual datasets. In addition, the average
mAP and the average R@1 in all seen and unseen domains are
calculated to assess and compare the overall lifelong learning
and generalization capabilities of the models, respectively.

4.2 Comparison with State-of-the-arts Methods
To comprehensively evaluate our method, we compare it
against various state-of-the-art(SOTA) non-exemplar LReID
approaches, including DKP [Xu et al., 2024b], AKA [Pu et
al., 2021], PatchKD [Sun and Mu, 2022], and MEGE [Pu
et al., 2023]. Additionally, several class-incremental learn-
ing (CIL) methods, such as LwF [Li and Hoiem, 2017],
SPD [Tung and Mori, 2019], PRAKA [Shi and Ye, 2023],
and PRD [Asadi et al., 2023], are also tested. To ensure a
fair comparison, all models are implemented using the same
backbone and training configurations. Furthermore, we re-
port the results of Joint-Train, which represents the upper
bound for LReID models by assuming access to all datasets
simultaneously during training.

We present the results of different methods on each seen
domain, as well as the average performance across all seen
domains (Seen-Avg) in Tab. 1 and 2, corresponding to Train-
ing Order-1 and Training Order-2, respectively.
Seen-Domain Performance Evaluation. As shown in Tab.1
and Tab.2, our PKA significantly outperforms all exist-
ing LReID models. Compared to the second-best method,
DKP, our model achieves an improvement of 3.6%/4.6% and
3.9%/4.3% on the average mAP/R@1 performance for seen
domains. The performance of DKP deteriorates in later train-
ing stages, likely because it adopts a static fusion strategy be-
tween the old and new models, failing to properly balance the
storage of old knowledge and the acquisition of new knowl-
edge. And our PKA demonstrates an average mAP/R@1 im-
provement of 14.1%/13.5% and 13%/14.1% over the best CIL
method, PRAKA, across seen domains in both training or-
ders. This indicates that by utilizing prototypes in LReID,
we have successfully enhanced the propagation of old knowl-
edge within the model, effectively mitigating the catastrophic
forgetting problem, while also improving the model’s gener-
alization ability.

It should be noted that the MSMT17 dataset presents in-
herent challenges due to substantial variations in weather and
lighting conditions. Nevertheless, our approach significantly
outperforms existing methods on this dataset, achieving a no-
tably higher mAP and Rank-1 accuracy, which underscores
the superior effectiveness of our method.

To visually understand the performance trends of differ-
ent models in the seen domain, we present the performance
curves over different training steps in Fig 3. As can be seen in
the figure, our model PKA consistently achieves the highest
mAP and R@1 compared with the other methods. Although
the initial performance of PKA may not be the top among
these methods, it emphasizes the propagation and application
of prior knowledge, granting it superior resistance to forget-
ting. Consequently, PKA outperforms others in later tests and
exhibits more prominent performance.
Unseen-Domain Generalization Evaluation. The average
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Figure 3: Illustration of performance trend on previously seen do-
mains. After each training phase, the model is evaluated on domains
it has encountered before.
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Figure 4: Illustration of performance trend on unseen domains. Af-
ter each training phase, the model is evaluated on domains it has not
encountered before.

performance in the unseen domains is shown in the last two
columns of Tab.1 and Tab.2. Our method demonstrates su-
perior generalization capabilities compared to SOTA CIL
models, exhibiting an average mAP/R@1 improvement of
14.6%/13.7% and 11.9%/11.7% across both training orders.
Furthermore, our model also significantly outperforms the
SOTA LReID DKP models by a margin of 3.1%/3.7% and
1.3%/1.2% in average mAP/R@1 improvement. These re-
sults show that our model effectively consolidates more gen-
eralizable knowledge. To further evaluate the generaliza-
tion ability of our model on unseen domains, we provide de-
tailed performance curves over different training steps in Fig
4. The analysis of the curves indicates that our model not
only achieves high performance but also maintains stable and
consistent performance improvement even in unseen environ-
ments. This demonstrates that our proposed Prototype-guided
Knowledge Propagation approach, compared to LReID train-
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Baseline PKP APE Seen-Avg Unseen-Avg

mAP R@1 mAP R@1

✓ 42.8 57.4 50.7 45.0
✓ ✓ 53.4 66.0 58.7 51.4
✓ ✓ 54.5 67.8 60.9 54.1
✓ ✓ ✓ 55.4 68.7 62.3 55.3

Table 3: Ablation study of different components.

ing methods that focus solely on classifier calibration,is more
effective in enhancing the model’s capability to extract fea-
tures and shape a better embedding distribution. As a result,
it achieves more discriminative embedding representations on
unseen datasets, with improved generalization and flexibility.

4.3 Ablation Studies
Influence of Different Components. In this section, we con-
duct several ablation studies on the proposed method. To
better analyze the impact of the core designs, our approach
is divided into two components:Prototype-guided Knowledge
Propagation (PKP) and Adaptive Parameter Evolution (APE).
The baseline model refers to a framework that does not incor-
porate the PKP and APE modules, meaning it does not utilize
prototypes for knowledge propagation. Instead, after com-
pleting each training task, the old model and the new model
are directly integrated using a static fusion strategy. Both the
PKP and APE modules excel at propagating prior knowledge,
significantly improving performance on both seen and unseen
domains. As shown in Tab. 3, furthermore, the APE module
facilitates the transfer of prototype knowledge constructed by
the PKP module. Consequently, performance is further im-
proved when both modules are used together.
Influence of Hyperparameters. To analyze the impact of
hyperparameters on our method, we conducted experiments
to evaluate the effects of different hyperparameter settings.
We analyzed the effects of the weights of Ltri and Lpkp.
Specifically, Ltri focuses on distinguishing the distributions
among new data, while Lpkp emphasizes the separation be-
tween the distributions of new input data and the prototypes
of old data. We set the weights of these two losses to the same
value, and based on the results shown in Fig. 5(a), we choose
α = 1.5 as the default setting. In addition, we augmented the
prototypes by adding random noise to enhance the model’s
ability to transfer old knowledge through prototypes. Ap-
propriate noise augmentation can significantly improve per-
formance on unseen domains, whereas excessive noise can
degrade performance on both seen and unseen domains. As
shown in Fig. 5(b) we choose β = 0.2 as the default setting.

4.4 Visualization Results
To further analyze the impact of our PKA method on the fea-
ture space, we employ t-SNE to visualize features of selected
identities. As shown in Fig. 6, two identities from each of the
five seen datasets are selected. Comparing Fig. 6(a) (base-
line) with Fig. 6(b) (PKA), we observe that the PKA model
yields more compact and separable clusters. In the baseline,
clusters are scattered and overlapping, making inter-class dis-
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Figure 5: Ablation studies on hyperparameters.
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Figure 6: t-SNE results of our PKA compared with the Baseline.
Different colors represent different identities, highlighting the class-
wise aggregation and the distinction between different categories.
The visualization demonstrates how our PKA improves intra-class
cohesion and inter-class separation.

tinction difficult. In contrast, PKA produces tighter and more
distinct clusters, indicating that it learns more discriminative
features beneficial for classification and analysis.

5 Conclusion
In this paper, we tackle the challenging task of LReID by in-
troducing PKA, a novel non-exemplar-based approach. PKA
mitigates catastrophic forgetting through Prototype-guided
Knowledge Propagation (PKP), which utilizes prototypes and
triplet loss to preserve and transfer knowledge, and Adaptive
Parameter Evolution (APE) to enable dynamic model updates
for task adaptation. Extensive experiments on five benchmark
datasets demonstrate PKA’s effectiveness, achieving notable
improvements in mean Average Precision (mAP) and rank-
1 accuracy, along with enhanced generalization. These re-
sults highlight the potential of PKA as a robust, privacy-
preserving, and practical solution for LReID.
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