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Abstract
Probabilistic relational models such as parametric
factor graphs enable efficient (lifted) inference by
exploiting the indistinguishability of objects. In
lifted inference, a representative of indistinguish-
able objects is used for computations. To obtain a
relational (i.e., lifted) representation, the Advanced
Colour Passing (ACP) algorithm is the state of the
art. The ACP algorithm, however, requires under-
lying distributions, encoded as potential-based fac-
torisations, to exactly match to identify and exploit
indistinguishabilities. Hence, ACP is unsuitable
for practical applications where potentials learned
from data inevitably deviate even if associated ob-
jects are indistinguishable. To mitigate this prob-
lem, we introduce the ε-Advanced Colour Pass-
ing (ε-ACP) algorithm, which allows for a devia-
tion of potentials depending on a hyperparameter
ε. ε-ACP efficiently uncovers and exploits indistin-
guishabilities that are not exact. We prove that the
approximation error induced by ε-ACP is strictly
bounded and our experiments show that the approx-
imation error is close to zero in practice.

1 Introduction
Probabilistic relational models, denoted as parametric factor
graphs (PFGs), combine probabilistic modelling with rela-
tional logic (that is, first-order logic with known universes).
By introducing logical variables (logvars) to represent sets of
indistinguishable objects, PFGs allow lifted inference algo-
rithms to use a representative of indistinguishable objects for
efficient computations. In practice, however, when learning
the underlying probability distribution of a PFG from data,
indistinguishable objects are often not recognised. In partic-
ular, considering a potential-based factorisation of the prob-
ability distribution, learned potentials inevitably deviate even
for indistinguishable objects due to estimates from data. To
mitigate this issue and ensure the practical applicability of ob-
taining a compact representation for lifted inference, we solve
the problem of constructing a lifted representation while tak-
ing into account small deviations of potentials for indistin-
guishable objects. In particular, we ensure that the obtained

lifted representation is approximately equivalent to a given
propositional (ground) representation by solving an optimisa-
tion problem to minimise the approximation error. Allowing
for small deviations between potentials is essential for prac-
tical applications, where potentials, for instance, are learned
from data and hence are subject to inaccuracies. For exam-
ple, consider the probabilities p1 = 0.501 and p2 = 0.499. In
case p1 and p2 are estimates from data, it is likely that p1 and
p2 should actually be considered equal.

Poole [2003] first introduces PFGs, which combine rela-
tional logic and probabilistic models, and lifted variable elim-
ination as a lifted inference algorithm to perform lifted prob-
abilistic inference in PFGs. In probabilistic inference, lifting
exploits indistinguishabilities in a probabilistic model, allow-
ing to carry out query answering more efficiently while main-
taining exact answers [Niepert and Van den Broeck, 2014].
Since its introduction by Poole [2003], lifted variable elimi-
nation has steadily been refined by many researchers to reach
its current form [De Salvo Braz et al., 2005; De Salvo Braz
et al., 2006; Milch et al., 2008; Kisyński and Poole, 2009;
Taghipour et al., 2013; Braun and Möller, 2018]. More re-
cently, Luttermann et al. [2024b; 2024c] extend PFGs to in-
corporate causal knowledge and thereby allow to perform
lifted causal inference. To perform lifted probabilistic (or
causal) inference, the lifted representation (e.g., a PFG) has to
be constructed first. The Advanced Colour Passing (ACP) al-
gorithm [Luttermann et al., 2024a; Luttermann et al., 2024d;
Luttermann et al., 2024e; Luttermann et al., 2024f], which
generalises the CompressFactorGraph algorithm [Kersting et
al., 2009; Ahmadi et al., 2013], is the current state of the art
to construct a PFG from a propositional model with equiva-
lent semantics. ACP employs a colour passing procedure to
detect symmetric subgraphs, similar to the Weisfeiler-Leman
algorithm [Weisfeiler and Leman, 1968], which is a well-
known algorithm to test for graph isomorphism. While ACP
is able to construct a PFG entailing equivalent semantics as a
given propositional model, ACP requires potentials to exactly
match, which is a significant limitation in practice.

In this paper, we contribute the ε-Advanced Colour Pass-
ing (ε-ACP) algorithm, which solves the problem of con-
structing an approximate lifted representation with a mini-
mal approximation error and thereby makes the construction
of a lifted model applicable in practice. The ε-ACP algo-
rithm allows for potentials to deviate by a factor of ε to still
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be considered identical, where ε is a hyperparameter control-
ling the required agreement between potentials. Thus, the hy-
perparameter ε controls the trade-off between the exactness
and the compactness of the lifted representation obtained by
ε-ACP. We further prove that the approximation error in-
duced by ε-ACP is strictly bounded. In addition to the theo-
retical bounds, we empirically show that ε-ACP significantly
reduces run times for inference while at the same time keep-
ing the approximation error close to zero.

The remaining part of this paper is structured as follows.
We begin by introducing background information and nota-
tions in Sec. 2. Thereafter, we introduce the ε-ACP algo-
rithm to solve the problem of constructing an approximate
lifted representation with a minimal approximation error. We
then prove that the approximation error induced by ε-ACP is
strictly bounded and show that the given bound is optimal.
Finally, we empirically demonstrate that in practice, the ac-
tual approximation error induced by ε-ACP is well below the
theoretical bounds before we conclude the paper.

2 Background
We first define factor graphs (FGs) as propositional models
and afterwards introduce the idea of lifted representations
such as PFGs. An FG is a probabilistic graphical model
to compactly represent a probability distribution over a set
of random variables (randvars) by factorising the distribu-
tion [Frey et al., 1997; Kschischang et al., 2001].

Definition 1 (Factor Graph). An FG M = (V ,E) is an
undirected bipartite graph consisting of a node set V =
R ∪Φ, where R = {R1, . . . , Rn} is a set of variable nodes
(randvars) and Φ = {ϕ1, . . . , ϕm} is a set of factor nodes
(functions), as well as a set of edges E ⊆ R × Φ. There
is an edge between a variable node Ri and a factor node
ϕj in E if Ri appears in the argument list of ϕj . A factor
ϕj(Rj) defines a function ϕj : ×R∈Rj

range(R) 7→ R+ that
maps the ranges of its argumentsRj (a sequence of randvars
from R) to a positive real number, called potential. The term
range(R) denotes the possible values a randvar R can take.
We define the joint potential for an assignment r (where r is
a shorthand notation for R = r) as

ψ(r) =
m∏
j=1

ϕj(rj), (1)

where rj is a projection of r to the argument list of ϕj . The
full joint probability distribution encoded by M is then given
by the normalised joint potential

PM (r) =
1

Z

m∏
j=1

ϕj(rj) =
1

Z
ψ(r), (2)

where Z =
∑

r

∏m
j=1 ϕj(rj) is the normalisation constant.

Example 1. Consider the FG depicted in Fig. 1, which mod-
els the interplay between the revenue Rev of a company and
the salary of two employees, denoted as SalA and SalB. We
have R = {SalA, SalB,Rev}, Φ = {ϕ1, ϕ2}, and E =
{{SalA, ϕ1}, {Rev, ϕ1}, {Rev, ϕ2}, {SalB, ϕ2}}. For the

SalA

Rev

SalB

ϕ1

ϕ2

SalA Rev ϕ1(SalA,Rev)
high high φ1

high low φ2

low high φ3

low low φ4

SalB Rev ϕ2(SalB,Rev)
high high φ′

1
high low φ′

2
low high φ′

3
low low φ′

4

Figure 1: An FG modelling the interplay between the revenue of a
company (Rev) and the salaries of two employees (SalA, SalB).
The potential tables of the factors are shown on the right.

sake of this example, let range(SalA) = range(SalB) =
range(Rev) = {low, high}. The potential tables of ϕ1
and ϕ2 are shown on the right. In particular, it holds that
ϕ1(high, high) = φ1, ϕ1(high, low) = φ2, and so on, where
all φi, φ

′
i ∈ R+ are arbitrary positive real numbers.

Probabilistic inference describes the task of computing
marginal distributions of randvars given observations for
other randvars. In other words, probabilistic inference refers
to query answering, where a query is defined as follows.
Definition 2 (Query). A query P (Q | E1 = e1, . . . , Ek =
ek) consists of a query term Q and a set of events {Ej =
ej}kj=1 (called evidence), whereQ and eachEj are randvars.
To query a specific probability instead of a probability distri-
bution, the query term is an event Q = q.
Example 2. Take a look at the FG shown in Fig. 1. The query
P (SalA | Rev = high) asks for the probability distribution
of A’s salary given that the company has a high revenue.

When considering relations between objects, there are of-
ten groups of indistinguishable objects that behave identically
(or at least similarly). Lifted representations such as PFGs
exploit identical behaviour to enable scalable probabilistic in-
ference with respect to domain sizes of logvars. To illustrate
the idea behind lifting, consider the following example.
Example 3. Consider the FG depicted in Fig. 1 and the query
P (Rev = high). Then, it holds that
P (Rev = high)

=
∑

a∈range(SalA)

∑
b∈range(salB)

P (a, b, high)

=
1

Z

∑
a∈range(SalA)

∑
b∈range(salB)

ϕ1(a, high)ϕ2(b, high)

=
1

Z

(
φ1φ

′
1 + φ3φ

′
1 + φ1φ

′
3 + φ3φ

′
3

)
.

If employeesA andB are indistinguishable, that is, if it holds
that φi = φ′

i for all i ∈ {1, . . . , 4}, we can simplify the
computation and obtain
P (Rev = high)

=
1

Z

∑
a∈range(SalA)

ϕ1(a, high)
∑

b∈range(salB)

ϕ2(b, high)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

=
1

Z

( ∑
a∈range(SalA)

ϕ1(a, high)

)2

=
1

Z

(
φ1 + φ3

)2
.

Example 3 illustrates that in case A and B are indistin-
guishable, we can select one representative (e.g., A) and re-
duce the number of factors to consider for computations.
The idea of exploiting exponentiation can be generalised to
groups of k indistinguishable objects (e.g., employees) to sig-
nificantly reduce the computational effort when answering
queries. Indistinguishable objects frequently occur in rela-
tional models and are relevant in many real world domains.
For example, in an epidemic domain, each person influences
the probability of an epidemic equally, i.e., the probability
of an epidemic depends on the number of sick people and is
independent of which individual people are sick.

As we have seen, to exploit indistinguishabilities, we need
to find factors with identical potential tables. Currently, the
ACP algorithm is the state of the art to find factors with iden-
tical potential tables and group them together to obtain a lifted
representation such as a PFG.1 In Ex. 3, we assume φi = φ′

i
for all i ∈ {1, . . . , 4}, which is required by ACP. However,
in practice, we often face situations where estimates of poten-
tials lead to deviations such that φi = φ′

i · (1± ε) for a small
ε ∈ R+. The ACP algorithm does not group factors if they
are not strictly equal and thus is hardly applicable in practice
to identify factors that should be grouped. To address this
limitation, we next investigate how indistinguishabilities can
be approximated when constructing a lifted representation.

3 Approximation of Indistinguishabilities
To control the trade-off between the exactness and compact-
ness of the resulting lifted representation when grouping fac-
tors with approximately equivalent semantics, we now intro-
duce a hyperparameter ε ∈ R+. More specifically, we allow
for a maximum relative deviation of factor (1 ± ε), i.e., two
potentials φ and φ′ are considered approximately equivalent
if φ ∈ [φ′ ·(1−ε), φ′ ·(1+ε)] and φ′ ∈ [φ·(1−ε), φ·(1+ε)].2
The notion of ε-equivalence formally captures the idea of ap-
proximately equivalent factors.

Definition 3 (ε-Equivalent Factors). Let ε ∈ R+ be a pos-
itive real number. Two potentials φ1 ∈ R+ and φ2 ∈ R+

are ε-equivalent, denoted as φ1 =ε φ2, if φ1 ∈ [φ2 · (1 −
ε), φ2 · (1 + ε)] and φ2 ∈ [φ1 · (1 − ε), φ1 · (1 + ε)].
Further, two factors ϕ1(R1, . . . , Rn) and ϕ2(R

′
1, . . . , R

′
n)

are ε-equivalent, denoted as ϕ1 =ε ϕ2, if there exists a
permutation π of {1, . . . , n} such that for all assignments
(r1, . . . , rn) ∈ ×n

i=1range(Ri), where ϕ1(r1, . . . , rn) = φ1

and ϕ2(rπ(1), . . . , rπ(n)) = φ2, it holds that φ1 =ε φ2.

1A formal description and a detailed explanation of the ACP al-
gorithm is provided in the appendix, which is available in an ex-
tended version of this paper at https://arxiv.org/abs/2504.20784.

2Since potentials are arbitrary positive real numbers (and thus
might differ in their order of magnitude), we allow for a relative
deviation instead of using an absolute deviation.

Note that the notion of ε-equivalence is symmetric and as
a necessary condition to be ε-equivalent, ϕ1 and ϕ2 must be
defined over the same function domain and hence must have
the same number of arguments. We further remark that indis-
tinguishable objects are not guaranteed to be located at the
same position in their respective factors, which is the rea-
son we consider permutations of the arguments. For exam-
ple, in Fig. 1, SalB could also be the second argument of
ϕ2: Then, the potential table of ϕ2 would read φ′

1, φ′
3, φ′

2,
φ′
4 from top to bottom (if we keep the order of the assign-

ments), i.e., even if φi = φ′
i for all i ∈ {1, . . . , 4}, we would

only be able to exploit this property if we permute the argu-
ments of ϕ2 (or of ϕ1) such that SalA and SalB are located
at the same positions in their respective argument lists. A
full example to showcase the role of permutations is given in
the appendix. For simplicity, we assume that π is the identity
function throughout this paper (however, all results also apply
for arbitrary choices of π [Luttermann et al., 2024a]).
Example 4. Let φ = 0.49, φ′ = 0.5, and ε = 0.1. Then, it
holds that φ′ = 0.5 ∈ [φ·(1−ε) = 0.441, φ·(1+ε) = 0.539]
and φ = 0.49 ∈ [φ′ · (1− ε) = 0.45, φ′ · (1 + ε) = 0.55]. In
consequence, φ and φ′ are ε-equivalent.

To group ε-equivalent factors such that we can use a rep-
resentative and exploit exponentiation to reduce the number
of factors to consider during computations, we need to find
ε-equivalent factors and change their potentials in a way that
their potential tables become identical. We first address the
issue of detecting ε-equivalent factors and then show how po-
tentials are changed to minimise the approximation error.

3.1 Finding and Grouping ε-Equivalent Factors
A problem when searching for groups of ε-equivalent factors
is that ε-equivalence is not transitive. More specifically, it
might happen that there are factors ϕ1, ϕ2, and ϕ3 such that
ϕ1 =ε ϕ2 and ϕ2 =ε ϕ3 but ϕ1 ̸=ε ϕ3.
Example 5. Consider the factors ϕ1(R1

1, R
1
2), ϕ2(R

2
1, R

2
2),

and ϕ3(R
3
1, R

3
2) and their potential tables depicted in Ta-

ble 1a. For the sake of this example, let ε = 0.1. The
intervals allowing for a deviation of factor (1 ± ε) accord-
ing to Def. 3 are shown in Table 1b. Since all potentials
of ϕ1 lie within the corresponding intervals of ϕ2 (and vice
versa), it holds that ϕ1 =ε ϕ2. Analogously, it holds that
ϕ2 =ε ϕ3. However, due to 0.75 /∈ [0.756, 0.924] (as well as
0.84 /∈ [0.675, 0.825]), it holds that ϕ1 ̸=ε ϕ3.

Due to the non-transitivity of ε-equivalence, we cannot
simply group a factor ϕ with a group of ε-equivalent factors
G = {ϕ1, . . . , ϕk} if ϕ is ε-equivalent to any ϕi ∈ G. Doing
so would give rise to the issue of cascading errors, that is, in
the worst case, completely different factors could be grouped
together (e.g., assuming ε = 0.1, the potential 1.0 can be
grouped with the potential 0.9, which itself can be grouped
with the potential 0.81, and so on). To avoid cascading er-
rors, we thus ensure a factor ϕ is only added to a group of
ε-equivalent factors G if ϕ is ε-equivalent to all factors in G.

Next, we need to solve the problem of changing the po-
tentials for every group of pairwise ε-equivalent factors G =
{ϕ1, . . . , ϕk}. To exploit exponentiation and thus avoid look-
ing at every factor individually, the changes must ensure that
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Ri
1 Ri

2 ϕ1(R
1
1, R

1
2) ϕ2(R

2
1, R

2
2) ϕ3(R

3
1, R

3
2)

high high 0.75 0.8 0.84
high low 0.33 0.3 0.31
low high 0.48 0.5 0.51
low low 0.22 0.2 0.22

(a)

ϕ1 · (1∓ ε) ϕ2 · (1∓ ε) ϕ3 · (1∓ ε)
[0.675, 0.825] [0.72, 0.88] [0.756, 0.924]
[0.297, 0.363] [0.27, 0.33] [0.279, 0.341]
[0.432, 0.528] [0.45, 0.55] [0.459, 0.561]
[0.198, 0.242] [0.18, 0.22] [0.198, 0.242]

(b)

Table 1: (a) The potential tables of exemplary factors ϕ1(R
1
1, R

1
2),

ϕ2(R
2
1, R

2
2), and ϕ3(R

3
1, R

3
2), where the randvars Ri

1 and Ri
2, i ∈

{1, 2, 3}, all have the same range {low, high}, and (b) the intervals
resulting from a deviation of factor ε = 0.1. We omit the arguments
of the factors and their assignments for brevity (the order of the as-
signments is identical to the order in (a)).

all factors map to the same potentials. At the same time, we
aim to minimise the approximation error, that is, we want
to apply the smallest possible change to the potentials. For-
mally, the goal is to find ϕ∗ such that

ϕ∗ = argmin
ϕj

∑
ϕi∈G

Err(ϕi, ϕj), (3)

where Err(ϕi, ϕj) is the sum of squared deviations between
the potentials of ϕi and ϕj :

Err(ϕi, ϕj) =
∑

r1,...,rn

(
ϕi(r1, . . . , rn)− ϕj(r1, . . . , rn)

)2
,

(4)

with r1, . . . , rn denoting the possible assignments of the ar-
guments of ϕi and ϕj .3 To obtain identical potentials within
a group G = {ϕ1, . . . , ϕk}, our goal is to update the factors
in G such that ϕ1 = ϕ∗, . . . , ϕk = ϕ∗.

Thus, we now solve the problem of finding ϕ∗. In fact, it
holds that for any set of numbers {φ1, . . . , φk}, the arithmetic
mean φ̄ = 1

k

∑k
i=1 φi minimises the sum of squared devia-

tions
∑k

i=1(φi − φ̄)2, i.e., replacing φ̄ by any other value
would increase the sum of squared deviations.

Theorem 1. Let φ1, . . . , φk ∈ R+. It holds that the arith-
metic mean φ̄ = 1

k

∑k
i=1 φi is the optimal choice for φ∗ =

argminφ̂
∑k

i=1(φi − φ̂)2.

Theorem 1 is a well-known property of the arithmetic mean
(proof given in the appendix). As Eq. (3) aims to minimise a
sum over a sum of squared deviations Err(ϕi, ϕj), the sum

3Recall that we assume π from Def. 3 to be the identity function.
In case π is not the identity function, we end up with Err(ϕi, ϕj) =∑

r1,...,rn
(ϕi(r1, . . . , rn)− ϕj(rπ(1), . . . , rπ(n)))

2.

Algorithm 1 ε-Advanced Colour Passing
Input: An FG M = (R ∪Φ,E), a hyperparameter
ε ∈ R+, and a set of observed events (evidence) O =
{E1 = e1, . . . , Eℓ = eℓ}.
Output: A lifted representation M ′, encoded as a PFG,
which is approximately equivalent to M .
▷ Phase I: Find groups of pairwise ε-equivalent factors

1: G← {{ϕ1}}
2: for each factor ϕi ∈ Φ \ {ϕ1} do
3: C ← ∅
4: for each group Gj ∈ G do
5: if ∀ϕk ∈ Gj : ϕi =ε ϕk then
6: C ← C ∪ {Gj}
7: if C ̸= ∅ then
8: Gj ← argminCi∈C

∑
ϕj∈Ci

Err(ϕi, ϕj)

9: Gj ← Gj ∪ {ϕi}
10: else
11: G← G ∪ {{ϕi}}

▷ Phase II: Assign colours to factors and run ACP
12: for each group Gj ∈ G do
13: for each factor ϕi ∈ Gj do
14: ϕi.colour ← j

15: G′ ← Call ACP onM and O using the assigned colours
▷ Phase III: Update potentials

16: for each group Gj ∈ G′ do
17: ϕ∗(r)← 1

|Gj |
∑

ϕi∈Gj
ϕi(r) for all assignments r

18: for each factor ϕi ∈ Gj do
19: ϕi ← ϕ∗

20: M ′ ← construct PFG from groupings of ACP

in Eq. (3) becomes minimal if we minimise Err(ϕi, ϕj), i.e.,
the right hand side of Eq. (4), according to Thm. 1. Therefore,
for any group G = {ϕ1, . . . , ϕk} of pairwise ε-equivalent
factors, we set ϕ1 = ϕ∗, . . . , ϕk = ϕ∗ such that

ϕ∗(r) =
1

k

k∑
i=1

ϕi(r) (5)

for all possible assignments r = r1, . . . , rn to ensure that all
factors in G map to the same potentials while minimising the
cumulative squared deviation of the group G.

Next, we compile the insights on finding and grouping ε-
equivalent factors into the ε-ACP algorithm, which paves the
way to apply lifted model construction in practice.

3.2 The ε-Advanced Colour Passing Algorithm
The ε-ACP algorithm consists of three phases and is de-
scribed in Alg. 1. In the first phase, ε-ACP computes groups
of factors that are pairwise ε-equivalent. For every factor ϕi
in the input FG, ε-ACP checks whether it can be added to
an existing group or if a new group has to be created. As it
is possible for ϕi to be ε-equivalent to all factors of multiple
existing groups (e.g., in Table 1, ϕ2 could be grouped both
with {ϕ1} and {ϕ3}), ε-ACP computes all candidate groups
C (Lines 3 to 6) and then adds ϕi to the group that minimises
the sum of squared deviations between ϕi and all factors in
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the group (Lines 8 and 9). If ϕi cannot be added to an exist-
ing group, ε-ACP creates a new group for ϕi (Line 11). Then,
in the second phase, ε-ACP assigns to every factor a colour
based on the group it belongs to, that is, all factors within
the same group receive the same colour (and factors in differ-
ent groups receive different colours). Factors within the same
group could potentially be grouped together in a lifted repre-
sentation if their arguments are indistinguishable. To ensure
the factors’ arguments are indistinguishable, ε-ACP runs the
ACP algorithm using the previously assigned colours (instead
of ACP’s original colour assignment). By running ACP with
the assigned colours, ε-ACP ensures that in addition to the po-
tential tables, the surrounding graph structure of the factors is
taken into account, thereby enforcing that the arguments of
factors within a group are indistinguishable (more details on
this are given in the appendix). Finally, in phase three, ε-ACP
updates the potentials of every group of factors computed by
ACP according to Eq. (5) to ensure that all factors in a group
have identical potential tables (Lines 16 to 19). As poten-
tials within a group are now strictly equal, the corresponding
PFG is constructed from the groups as in the original ACP al-
gorithm.4 Commonly used lifted inference algorithms, such
as lifted variable elimination, operate on PFGs and thus can
directly be run on the output of ε-ACP.5

Example 6. Take a look at the FG given in Fig. 1 and as-
sume the potential tables of ϕ1 and ϕ2 are as given in Ta-
ble 1a (i.e., φ1 = 0.75, φ′

1 = 0.8, and so on). Further,
let ε = 0.1 and assume we do not have any evidence, i.e.,
O = ∅. As ϕ1 and ϕ2 are ε-equivalent, ε-ACP puts them into
the same group and after the first phase, ε-ACP ends up with
G = {{ϕ1, ϕ2}}. Then, ACP is called with ϕ1 and ϕ2 hav-
ing the same colour, and after passing the colours around, ϕ1
and ϕ2 remain in the same group because their surrounding
graph structure is symmetric (and thus, their arguments are
indistinguishable). After the third phase, the potential tables
are updated by computing a row-wise arithmetic mean, that
is, φ1 = φ′

1 = (0.75 + 0.8) / 2 = 0.775, φ2 = φ′
2 = 0.315,

φ3 = φ′
3 = 0.49, and φ4 = φ′

4 = 0.21.

The ε-ACP algorithm takes a fundamental step towards the
practical applicability of lifted inference algorithms by gener-
alising the ACP algorithm to account for inaccurate estimates
of potentials, which are abundant in practice. In particular, it
holds that ε-ACP is identical to ACP when setting ε to zero
because ε-equivalence reduces to strict equivalence if ε = 0.

Corollary 2. If ε = 0, ε-ACP returns the same PFG as ACP.

So far, we have shown how ε-equivalent factors can be
grouped and updated to enable lifted inference with a minimal
approximation error. As we show later, the approximation er-
ror is often even negligible in practice. To get an initial idea
about the extent of the approximation error, consider Ex. 6
and the query P (SalA | Rev = high). In the original FG,

4For a detailed description of the PFG construction in Line 20 of
Alg. 1, we refer the reader to Luttermann et al. [2024a].

5We remark that ε-equivalence can also be applied to exploit ap-
proximate symmetries within factors that map assignments of their
arguments to identical potentials independent of the order of the as-
signed values (for more details, see the appendix).

we obtain P (SalA | Rev = high) ≈ ⟨0.6098, 0.3902⟩ and
after running ε-ACP, we have P (SalA | Rev = high) ≈
⟨0.6126, 0.3874⟩. An essential question now is how much
query results can change in general when using the approx-
imate lifted representation instead of the initial exact FG for
query answering. We answer this question next.

4 Bounding the Change in Query Results
We now bound the change in query results when modifying
a given FG by grouping and updating the potentials of ε-
equivalent factors according to Alg. 1. For the sake of our
analysis, let M denote the input for Alg. 1 and M ′ the output
of Alg. 1 such that M encodes the distribution PM and M ′

encodes the distribution PM ′ . In our analysis, we use the fol-
lowing distance measure between two distributions PM and
PM ′ introduced by Chan and Darwiche [2005]:

D(PM , PM ′) = lnmax
r

PM ′(r)

PM (r)
− lnmin

r

PM ′(r)

PM (r)
(6)

= lnmax
r

1
Z′ψ

′(r)
1
Zψ(r)

− lnmin
r

1
Z′ψ

′(r)
1
Zψ(r)

(7)

= lnmax
r

ψ′(r)

ψ(r)
− lnmin

r

ψ′(r)

ψ(r)
, (8)

where we define 0/0 := 1 and∞/∞ := 1. D satisfies impor-
tant properties of a distance measure (positiveness, symmetry,
and the triangle inequality) and a major advantage ofD is that
it allows us to bound the change in query results, which is not
possible with other common distance measures such as the
Kullback-Leibler divergence [Chan and Darwiche, 2005]. In
particular, if it holds that D(PM , PM ′) = d, the change in a
query result is bounded by

e−d ≤ OM ′(r | e)
OM (r | e)

≤ ed, (9)

where OM (r | e) = PM (r | e) / (1 − PM (r | e)) defines
the odds of r given e. We can also write Eq. (9) in terms of
probabilities instead of odds and obtain

pe−d

p(e−d − 1) + 1
≤ PM ′(r | e) ≤ ped

p(ed − 1) + 1
, (10)

where p = PM (r | e) is the initial probability of r given e in
modelM and PM ′(r | e) is the probability of r given e in the
modified model M ′ [Chan and Darwiche, 2005]. The bounds
given in Eqs. (9) and (10) are sharp. To obtain a bound on
the change in query results, we thus need to determine the
value of d = D(PM , PM ′) for a given choice of ε. In gen-
eral, the normalisation constant Z changes when modifying
the original model M . Rewriting Eq. (6) as Eq. (8), however,
allows us to avoid dealing with the change from Z to Z ′ (a
full derivation is given in the appendix).

We next give a general bound on the distanceD(PM , PM ′)
that applies to arbitrary FGs M where updates of factors re-
sulting in an FG M ′ ensure that all factors in M ′ remain ε-
equivalent to their original values after the update.
Theorem 3. Let M = (R ∪Φ,E) be an FG and let M ′ be
an FG obtained by updating arbitrary potentials of factors
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Figure 2: Plots of the bound given in Eq. (10) with d = ln (1+ ε)m − ln (1− ε)m. Bounds are illustrated for (a) m = 10, (b) m = 100, and
(c) m = 1000 where ε = 0.01 (dashed line) and ε = 0.001 (solid line), respectively. The x-axes depict the initial probability p = PM (r | e)
and the y-axes reflect the bound on the change in the query result.

in M such that every updated potential remains ε-equivalent
to its original value. Then, it holds that D(PM , PM ′) ≤
ln (1+ε)m− ln (1−ε)m, where PM and PM ′ are the under-
lying full joint probability distributions encoded by M and
M ′, respectively, and m = |Φ|.

Proof Sketch. By definition, every potential in M ′ differs
from its original value inM by factor at most (1±ε). Adding
a deviation by factor (1± ε) to every potential in M ′ and en-
tering this into Eq. (8) yields the desired result.

Corollary 4. Given the bound from Thm. 3, Eq. (9) leads to(
1− ε
1 + ε

)m

≤ OM ′(r | e)
OM (r | e)

≤
(
1 + ε

1− ε

)m

. (11)

The next lemma shows that updating the potentials within
a group of pairwise ε-equivalent factors according to Eq. (5)
satisfies the premise of Thm. 3 and hence, the bound given in
Thm. 3 holds if M ′ is the output of Alg. 1 run on M .

Lemma 5. Let G = {ϕ1, . . . , ϕk} denote a group of pairwise
ε-equivalent factors and let ϕ∗(r) = 1

k

∑k
i=1 ϕi(r) for all

assignments r. Then, G∗ = {ϕ1, . . . , ϕk, ϕ∗} is a group of
pairwise ε-equivalent factors.

Proof Sketch. As for the arithmetic mean ϕ∗(r) it holds that
minϕj∈G ϕj(r) ≤ ϕ∗(r) ≤ maxϕj∈G ϕj(r) and all ϕi, ϕj ∈
G are pairwise ε-equivalent, it follows that ϕ∗(r) ∈ [ϕi(r) ·
(1− ε), ϕi(r) · (1 + ε)] and ϕi(r) ∈ [ϕ∗(r) · (1− ε), ϕ∗(r) ·
(1 + ε)] for any assignment r and ϕi ∈ G.

Lemma 5 implies that all updated potentials for every fac-
tor differ by factor at most (1 ± ε) from their original poten-
tial after running Alg. 1. To obtain a bound on the change
in query results depending on the choice of ε, we enter the
bound from Thm. 3 into Eq. (10). Figure 2 provides plots
of the bound for different values of ε and m = |Φ| to
give a better idea on how the bound behaves. Observe that
ε = 0.01 yields a strong bound for m = 10, however,
from m = 100 onward, the bound becomes weak (in par-
ticular, for m = 1000, the change in query results is essen-
tially unbounded when choosing ε = 0.01). When choosing
ε = 0.001, the bound remains strong for m = 100, how-
ever, for m = 1000, the bound weakens as well. Fortunately,

the bound from Thm. 3 is overly pessimistic for the output of
Alg. 1, as we show in the following.

Lemma 6. For two ε-equivalent factors ϕ1 and ϕ2, it holds
that ϕ1 ∈ [ϕ2· 1

1+ε , ϕ2·(1+ε)] and ϕ2 ∈ [ϕ1· 1
1+ε , ϕ1·(1+ε)].

Proof. Due to the symmetric definition of ε-equivalence, we
get ϕ2−i ≤ ϕi+1 · (1 + ε) for i ∈ {0, 1}, resulting in ϕ2−i ·
1

1+ε ≤ ϕi+1. Since 1 − ε ≤ 1
1+ε holds for any ε > 0, ϕ2−i

is contained in the strict subset [ϕi+1 · 1
1+ε , ϕi+1 · (1 + ε)] ⊊

[ϕi+1 · (1− ε), ϕi+1 · (1 + ε)].

Using Lemma 6 and the properties of the arithmetic mean,
we obtain the following stronger bound on D(PM , PM ′).

Theorem 7. Let M = (R ∪Φ,E) be an FG and let M ′ be
the output of Alg. 1 when run onM . With PM and PM ′ being
the underlying full joint probability distributions encoded by
M and M ′, respectively, and m = |Φ|, it holds that

D(PM , PM ′) ≤ ln

1 + m−1
m ε

1+ 1
m ε

1+ε

m

(12)

= ln

((
1 + m−1

m ε
)(
1 + ε

)
1 + 1

mε

)m

(13)

< ln
(
1 + ε

)2m
(14)

< ln

(
1 + ε

1− ε

)m

. (15)

Corollary 8. Given the bound from Thm. 7, Eq. (9) leads to 1+ 1
m ε

1+ε

1 + m−1
m ε

m

≤ OM ′(r | e)
OM (r | e)

≤

1 + m−1
m ε

1+ 1
m ε

1+ε

m

.

(16)

We give a proof of Thm. 7 in the appendix. The plot of the
bound from Thm. 7 looks similar to the plot of Thm. 3 (see
Fig. 2) and is optimal (i.e., it is the best bound we can find).

Theorem 9. The bound given in Thm. 7 is optimal.

Proof Sketch. We construct an FG hitting the boundary from
Thm. 7. For the construction, see the appendix.
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Figure 3: Average query times of lifted variable elimination on the output of ACP and ε-ACP for every choice of k (left), and a boxplot
showing the distribution of the quotient p′ / p, where p′ = PM′(r | e) and p = PM (r | e), for each choice of k (right).

Algorithm Avg. Run Time Avg. p′ / p

ACP 183 ms (± 21) 1.0 (± 0.0)
ε-ACP 105 ms (± 9) 1.0001 (± 0.01)

Table 2: Average query times and quotients of query results on parts
of the MIMIC-IV dataset [Johnson et al., 2023].

Fortunately, in practice, the change in query results is often
close to zero (and thus well below the theoretical bound), as
we will show in our experiments. The reason for this is that
the worst-case scenario is an extreme case and slightly devi-
ating from it significantly improves the bounds. For instance,
if there are more factors in a group than rows in their potential
tables, the worst-case scenario can no longer occur, resulting
in notably smaller values for the distance measure D. More
details are given in the proof of Thm. 7 in the appendix.

5 Experiments
We test the practicality of the ε-ACP algorithm in a series of
experiments. ε-ACP is not only required to make ACP appli-
cable in practice but also allows for more compression (and
thus faster inference) if we are willing to trade the exactness
of query results for additional speedup. We thus report the run
time gain and the resulting approximation error to get a better
understanding of the trade-off between the exactness and the
compactness of the lifted representation obtained by ε-ACP.
For our experiments, we generate a variety of FGs with differ-
ent graph structures and graph sizes (i.e., numbers of randvars
and factors). More specifically, we generate FGs containing
between 2k+1 and 2k+ k · ⌊log2(k)⌋+1 Boolean randvars
as well as between 2k and k+k ·⌊log2(k)⌋+1 factors, where
k ∈ {2, 4, 8, 16, 32, 64, 128} is the domain size. The domain
size k controls the number of objects in the models and thus
the size of the FGs. We provide all data set generators along
with our source code in the supplementary material.

In every FG, we modify a proportion of x ∈ {0.1, 0.3, 0.5,
0.7, 0.9, 1.0} of the factors such that their potential tables dif-
fer by at most factor (1 ± ε) from their original potential ta-
bles, where ε ∈ {0.001, 0.01, 0.1}. For each setting, we pose
multiple queries to each FG. We report the average run time
of lifted variable elimination (the state-of-the-art lifted infer-
ence algorithm) on the output of ACP and ε-ACP, respec-

tively, over all settings for each choice of k in the left plot of
Fig. 3 and show the distribution of PM ′(r | e) / PM (r | e)
over all queries for each choice of k in the right plot of Fig. 3.

Taking a look at the left plot in Fig. 3, it becomes evident
that ε-ACP yields a speedup of up to factor 100 compared
to ACP. The question now is at what cost ε-ACP achieves
this speedup. The right plot in Fig. 3 demonstrates that the
price ε-ACP pays for the speedup is close to zero: Most of
the quotients are nearly equal to one (i.e., most query re-
sults hardly differ from their original value). As expected,
the larger the domain size (and hence the size of the FG),
the larger quotients become. However, even the outliers (de-
noted by the dots outside of the boxes) only deviate at the
third decimal place from the optimal value one. The experi-
mental results highlight the practical effectiveness of ε-ACP
as the approximation error is significantly smaller in practice
than suggested by the theoretical bounds. To give a better
overview on how the approximation error behaves for specific
choices of x and ε, we provide additional results for individ-
ual choices of x and ε in the appendix.

In addition to the generated FGs, we learn an FG from the
MIMIC-IV dataset [Johnson et al., 2023] and apply ε-ACP
with ε = 0.1 to it. MIMIC-IV contains real-world medical
data and we consider a subset of 4000 patients and their treat-
ments from it. The learned FG contains 344 randvars and fac-
tors, respectively, and we query each randvar in it. We report
average run times and average quotients over all queries in Ta-
ble 2. While the speedup of ε-ACP is smaller than in Fig. 3,
the error quotients are also reduced by an order of magnitude,
showing that the approximation error is again close to zero.

6 Conclusion
Potentials learnt from data often slightly differ even for in-
distinguishable objects. Therefore, we solve the problem of
constructing a lifted representation from a given propositional
representation taking inaccurate estimates of potentials into
account, while previous approaches require exact matches.
We present the ε-ACP algorithm, which allows for a small de-
viation of potentials depending on a hyperparameter ε. By not
relying on strictly identical potentials, ε-ACP makes a funda-
mental step towards the practicality of obtaining a compact
representation for lifted inference. We further show that the
approximation error of ε-ACP is strictly bounded and demon-
strate that it is even close to zero in practice.
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