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Abstract

Accurate forecasting of time series is crucial for
many applications in the real world. Conventional
methods primarily rely on statistical analysis of his-
torical data, often leading to overfitting and fail-
ing to account for background information and con-
straints imposed by external events. Therefore, in-
troducing large language models (LLMs) with ro-
bust textual capabilities holds significant potential.
Howeyver, due to the inherent limitations of LLMs
in handling numerical data, they do not exhibit
advantages in precise numerical prediction tasks.
Therefore, we propose a framework to integrate
LLMs with conventional methods synergistically.
Rather than directly outputting numerical predic-
tions, we leverage the capabilities of the LLMs
to generate textual temporal patterns, thereby fully
utilizing their inherent knowledge and reasoning
abilities. Additionally, we introduce a memory net-
work designed to decode these textual representa-
tions into a format that numerical models can effec-
tively interpret. This approach not only capitalizes
on the strengths of the LLM in text processing but
also bridges the gap between textual and numerical
data, enhancing the overall predictive performance
of the model. Our experimental results demonstrate
the framework’s effectiveness, achieving state-of-
the-art performance on various benchmark datasets.

1 Introduction

As acritical task, time series forecasting holds extensive prac-
tical application value across various domains such as mete-
orology, power systems, transportation, and finance [Shao et
al., 2022; Choi et al., 2022; Wang et al., 2023; Guo et al.,
2023]. In recent years, researchers have proposed a variety of
neural network models aimed at capturing detailed features in
time series data, including periodicity, scale, fluctuations, and
trends [Qiu et al., 2025; Wang et al., 2024a; Nie et al., 2022;
Wu et al., 2022; Wu et al., 2021], achieving notable success.
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Figure 1: Relying only on historical data leads to poor predictions,
while LLM-driven temporal pattern text improves predictions.

However, conventional time series forecasting methods
primarily rely on the statistical analysis of historical se-
quences [Qiu er al., 2024], which exhibit two significant
limitations. Firstly, These models are inherently suscepti-
ble to overfitting, a tendency underscored by the observa-
tion that simple linear models can achieve performance levels
comparable to those of intricate network architectures [Xu
et al., 2024]. Secondly, the models fail to account for the
constraints imposed by contextual information and external
events, which are pivotal in real-world predictive tasks. For
instance, power demand and traffic flow often exhibit differ-
ent temporal patterns across various periods, while external
events significantly influence financial scenarios, as shown in
Figure 1. Such information typically exists in textual form,
necessitating models with multimodal modelling capabilities
for effective integration and reasoning. It is worth noting
that advancements in computer vision (CV) and natural lan-
guage processing (NLP) have demonstrated that pre-trained
large language models (LLMs) exhibit exceptional perfor-
mance across various downstream tasks, benefiting from their
rich knowledge reserves, powerful pattern recognition capa-
bilities, and complex semantic reasoning abilities. More-
over, these models can effectively integrate and utilize knowl-
edge from different modalities for collaborative forecasting
in complex scenarios. Therefore, applying powerful LLMs
to the field of time series forecasting holds vast research
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prospects and application potential.

In the research on integrating LLMs into time series fore-
casting, one strategy [Xue and Salim, 2023] involves com-
bining numerical data with formatted text and directly uti-
lizing LLMs as the core output for predicting specific nu-
merical values. This approach demonstrates certain perfor-
mance advantages in zero-shot learning scenarios, effectively
leveraging LLMs’ text-processing capabilities. However, due
to the inherent limitations of LLMs in handling pure nu-
merical data [Wei et al., 2022; Rae er al., 2021], they do
not exhibit significant advantages over conventional meth-
ods in precise numerical prediction tasks. The second strat-
egy UJin et al., 2023; Sun et al., 2023] involves using the
backbone networks of pre-trained LLMs for feature extrac-
tion. Although this method can achieve state-of-the-art fore-
casting performance in some scenarios, recent studies [Tan et
al., 2024] indicate that the predictive performance of LLMs
does not significantly surpass and may even fall short of con-
ventional attention-based models. The advantages of such
methods primarily rely on the massive network architecture
and parameter scale rather than effectively utilizing the text
processing capabilities acquired through the pre-training of
LLMs. This is because the pre-training of LLMs does not
naturally include knowledge and reasoning abilities for pure
numerical data [Jin ef al., 2023]. Recent advancements in
multimodal research [Liu et al., 2024b; Wang et al., 2024c;
Wang e al., 2025] have predominantly focused on construct-
ing datasets rather than the more nuanced integration with
LLMs. Based on the above analysis, current research meth-
ods overly emphasize strategies that use LLMs for pure nu-
merical data processing, which are inefficient. Instead, fo-
cusing more on the core strengths of LLMs, namely their text
processing capabilities, is the key to effectively integrating
LLMs with time series forecasting.

Drawing on the aforementioned observations, we propose
a novel perspective on integrating LLMs with time series
forecasting, which is grounded in the forecasting of conven-
tional methods complemented by the time patterns forecasted
by LLMs based on their textual capabilities. This approach
aims to construct a forecasting framework that not only lever-
ages the strengths of LLMs in text processing but also de-
livers precise numerical prediction results. Considering that
LLMs inherently function as general-purpose pattern recog-
nition machines [Mirchandani et al., 2023] and to exploit
their knowledge and reasoning abilities in text fully, we em-
ploy a sentence-to-sentence approach without requiring the
LLMs to output specific numerical data. Instead, we request
the LLMs to provide time patterns within a specific future
time frame, which are used as auxiliary information in the
forecasting backbone. This design allows LLMs to focus on
processing text data, which they excel at, while the coarser-
grained time pattern text predictions also help mitigate model
overfitting issues. However, due to the high-dimensional na-
ture of text encoding, influenced by syntax, sentence struc-
ture, context, semantic roles, and other factors [Piantadosi,
2023], directly inputting them into the forecasting backbone
may adversely affect subsequent model learning. Therefore,
we propose an innovative memory network to decode text into
effects that numerical models can understand. Our contribu-

tions are summarized below.

* Propose a Novel Perspective on Combining LLLMs: We
innovatively propose a multimodal forecasting framework
that centers on numerical prediction using non-large model
methods while incorporating time pattern text prediction
from large models as auxiliary information. This design
fully leverages LLMs’ strengths in text processing and
achieves precise numerical prediction, offering a new so-
lution for time series forecasting tasks.

* Design an Innovative Memory Network Module: We in-
troduce a novel memory network module for fine-grained
constraint management of text embeddings. This design
ensures the diversity of text embeddings while avoiding ex-
cessive dispersion. Additionally, our method successfully
integrates multimodal data, further improving the perfor-
mance of time series forecasting tasks.

» Validate the Effectiveness Through Extensive Experi-
ments: We conduct experiments on multiple widely used
time series forecasting datasets, and the results demonstrate
that our framework achieves state-of-the-art performance.
Furthermore, we validated the model’s capability in multi-
modal data processing for text-assisted prediction on sev-
eral newly proposed multimodal datasets.

2 Related Work

Deep Learning Models for Time Series Forecasting. Deep
Learning Models for Time Series Forecasting. Recently,
deep learning models with meticulous architectures have
emerged as promising methods for time series forecasting.
Among them, the RNN-based model [Zhao et al., 2017,
Lai et al., 2018] and CNN-based [Hewage et al., 2020;
Luo and Wang, 2024] model, respectively, uses recurrent con-
nections and convolutional layers to capture temporal pat-
terns. Nevertheless, due to their excellent performance in
modeling long sequences, Transformer-based models have
gained more widespread recognition. LogSparse [Li et al.,
2019], Informer [Zhou et al., 2021] and Reformer [Kitaev
et al., 2020] mainly concern with complexity optimization
in modeling long sequences. Autoformer [Wu et al., 2021]
and FEDformer [Zhou et al., 2022] introduce a time decom-
position module to capture features. PatchTST [Nie et al.,
2022] and Crossformer [Zhang and Yan, 2023] consider the
effects of temporal segmentation and multi-dimension. How-
ever, architectural frameworks based on linear layers [Zeng
et al., 2023; Wang et al., 2024b; Oreshkin et al., 2019;
Xu et al., 2023] have demonstrated commendable perfor-
mance approximating that of state-of-the-art complex mod-
els, indicating that current methods based on statistical anal-
ysis have reached a saturation point [Xu et al., 2024]. Tt is
necessary to incorporate the textual ability to circumvent the
model’s sole reliance on historical numerical data and to har-
ness external information.

LLM-based Forecasters. Inspired by LLMs’ strong pat-
tern recognition and inference capabilities on complex token
sequences, exploring how to effectively transfer knowledge
from these powerful pre-trained large language models to the
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Figure 2: Framework overview, including numerical branch and textual branch.

time series domain becomes a growing tendency. Some re-
searchers [Gruver et al., 2024] use frozen LLM:s for zero-shot
learning after processing the raw numerical data. Prompt-
cast [Xue and Salim, 2023] transforms the numerical input
and output into prompts in a sentence-to-sentence manner,
applying language models for forecasting purposes directly.
Time-LLM [Jin et al., 2023] and TEST [Sun et al., 2023]
align time series embedding with textual embedding to op-
timize the utilization of the capabilities of LLMs. One Fits
All [Zhou et al., 2023] and TEMPO [Cao et al., 2023] freeze
some components of LLMs and fine-tune the selected com-
ponents to enhance their performance in time series analysis
tasks. Nevertheless, recent studies [Tan et al., 2024] have in-
dicated that the performance of prediction methods based on
pre-trained large language models is mainly comparable to, or
even inferior to, that of traditional baseline transformer-based
deep learning models. Works such as Time-MMD [Liu ef al.,
2024b; Wang et al., 2024c] have predominantly concentrated
on constructing high-quality multimodal datasets, represent-
ing a relatively nascent stage in developing LLMs. We con-
tend that current studies are overly fixated on enabling LLMs
to perform numerical predictions, thereby neglecting the true
forte of LLMs: their prowess in text processing.

3 Preliminaries

Problem Definition. We first define the concept of time
series forecasting. Time series forecasting involves predict-
ing the future numerical sequence within a certain period
based on past time series data. We can represent a seg-
ment of past time series data as input using vectors Xp =
{x¢t—7114} € R7T, where x; denotes the observed value
of the historical time series at time point ¢; the objective
of time series forecasting is to predict future observations
Xy = {Xtr144Mm} € RM | where M represents the num-

ber of time steps into the future to be predicted.

Prompt-Based Temporal Pattern Forecasting. The
prompt-based temporal pattern forecasting task extends the
conventional time series forecasting task. Its primary aim
is to circumvent LLMs’ direct processing of numerical data
while harnessing their extensive knowledge and sophisticated
reasoning abilities in textual data. The transformation of
traditional numerically oriented forecasting tasks from input-
output numerical pairs to a sentence-to-sentence format is
necessitated through an elaborate prompting process [Xue
and Salim, 2023]. In detail, this involves the conversion
of input numerical sequences X, along with temporal
information, into descriptive natural language sentences to
create input prompts. Concurrently, the output numerical
values are reinterpreted as textual descriptions of temporal
patterns delineated by specific time intervals.

4 Method

4.1 Framework Overview

The overall framework comprises four primary modules:
prompt-based temporal pattern forecasting, temporal pattern
representation, time series representation, and cross-modal
auxiliary representation, as shown in Figure 2.

The prompt-based temporal pattern forecasting module in-
corporates a two-step chain-of-thought prompt process. In
the first step, the LLMs summarize the current input tempo-
ral patterns, while in the second step, it forecasts future tem-
poral patterns. The temporal pattern representation section
initially utilizes a frozen LLM encoder to encode the pre-
viously obtained temporal pattern text. Simultaneously, the
text embeddings are aligned with the input time series data
based on timestamps to generate the initial text embeddings.
The memory network is then utilized to constrain the feature
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representation of the temporal pattern text input. The time se-
ries representation module consists of a normalization layer, a
patch embedding layer, and a time series encoder. The cross-
modal auxiliary representation module also employs cross-
modal alignment to aggregate the learned representations of
time series numerical values and text temporal patterns to ex-
tract compelling future features from temporal patterns. Fi-
nally, a linear decoder layer is used to project the cross-modal
fused temporal representations onto the prediction length for
forecasting. In the subsequent sections, we will elaborate on
the technical details of each module.

4.2 Prompt-Based Temporal Pattern Forecasting

Due to LLMs’ limitations in handling numerical tasks and
fully leveraging their knowledge and reasoning capabili-
ties developed from pre-training on extensive text datasets,
we have transformed conventional numerical prediction
tasks into sentence-to-sentence temporal pattern forecasting.
Rather than demanding specific numerical forecasting from
the LLMs, we require them to provide temporal patterns
within discrete time intervals, which aligns with recent re-
search findings that position LLMs as general-purpose pattern
recognition machines [Mirchandani et al., 2023]. To enhance
the LLMs’ proficiency in handling complex arithmetic, com-
mon sense, and symbolic reasoning tasks and to emphasize
a chained reasoning process, we have adopted a structured
chain-of-thought [Wei et al., 2022] approach with a two-step
prompt-based prediction process.

In the context of time series forecasting tasks, it is typi-
cally necessary to first analyze the given historical sequence
to distill trends, seasonality, and other temporal patterns.
Additionally, the geographical, dimensional, and domain-
specific information associated with the historical sequence
is paramount for analyzing time series. However, these as-
pects are often overlooked or challenging to integrate into the
forecasting process in previous work. To address this issue,
we have designed the first step of the thinking chain prompt,
which transforms numerical values devoid of additional con-
text into statements encompassing background information.
This prompt requires the LLMs to analyze the temporal pat-
terns of the historical sequence, leveraging their knowledge
and reasoning capabilities to conduct a comprehensive analy-
sis that integrates multifaceted information.

Given the limitations of LLMs in handling numerical data,
the prompt for the second step of the thinking chain was not
designed to require LLMs to output numerical forecasting di-
rectly. Moreover, previous approaches often rely solely on
the statistical analysis of historical data, which can lead to
over-simplification or over-fitting [Xu ef al., 2024]. In real-
world time series forecasting scenarios, future sequences are
typically influenced by many factors, necessitating the inte-
gration of various external information sources for enhanced
prediction accuracy, such as using climate change data to
forecast energy prices or news text to predict stock prices.
Therefore, in the second step of the prompt process, LLMs
are tasked with predicting future temporal pattern texts based
on past patterns, optionally incorporating external informa-
tion, to achieve more precise forecasting results.

4.3 Temporal Pattern Representation

Following the generation of the prediction text, we employ a
frozen pre-trained LLMs text encoder to generate text embed-
dings. Considering that text embeddings are closely related
to various semantic factors, we have designed an innovative
memory network module to ensure the stability and diver-
sity of the text embeddings, resulting in high-quality temporal
pattern text embeddings.

We utilize a pre-trained large language model backbone
network, optimized based on the BERT [Devlin, 2018] ar-
chitecture [Wang et al., 20201, as a text encoder to project the
text input into a temporal feature dimension, as illustrated by
the following equation.

T'; = SentenceTransformers(R;) (1)

where R; represents the original textual input, T'; € RP
represents the text features embeddings.

To mitigate the issue of excessive dispersion in text encod-
ing, which could lead to suboptimal learning performance in
subsequent models, we introduce a novel memory network
module. Firstly, memory items are initialized through K-
means clustering, as represented by the following equation.

M = K-means(T) (2)

where M € RV*P represents the initial memory items em-
beddings, and IN represents the number of memory items.

We align the text embeddings 7" with the time series on
the timestamp to the text query queue Q € R'*P| [ repre-
sents the length of series. Specifically, we map all timestamps
within the same period to identical temporal pattern text em-
beddings, thereby constructing a text embeddings queue of
the same length as the input time series. To obtain higher-
quality text embeddings, which would allow the model to
better understand key semantic information, we derived the
weight matrix W by calculating the similarity between the
query queue and the memory items. We obtained the final
text embeddings through the weighted output of the memory
items based on the weight matrix W. Due to the high dimen-
sionality of the text embeddings, in order to further reduce
dimensions and extract adequate information, both the query
queue and the memory items were processed through an ad-
ditional linear projection layer.

4.4 Time Series Representation

Due to the superior capability of attention mechanisms in
modelling long-term temporal dependencies within long data
sequences, our temporal representation module is primarily
derived from an adapted version of the vanilla Transformer
architecture. Initially, we incorporate normalization layers to
stabilize the sequence, thereby mitigating the issue of distri-
bution shift. Within the token encoding layer, a patch-wise
segmentation approach [Nie et al., 2022] is adopted, which
enriches the tokens with more comprehensive temporal se-
mantic information. This approach also aligns the granularity
with temporal pattern embeddings, facilitating more effective
information exchange. Ultimately, the self-attention mecha-
nism is employed to extract temporal features.

Owing to the phenomenon of distribution shift frequently
encountered in time series data, we initially incorporate a
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Method Ours Time-LLM | GPT4TS PatchTST | TimesNet DLinear | FEDformer | Autoformer | Informer
Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE| MSE MAE| MSE MAE| MSE MAE
ETT |0.778 0.639|0.897 0.653|0.817 0.640|0.834 0.657|0.854 0.657|0.873 0.666|0.827 0.672|0.950 0.724|1.405 0.878
Electricity | 0.357 0.4240.394 0.451]0.352 0.426|0.374 0.4380.351 0.426|0.393 0.457|0.390 0.459|0.569 0.556|0.526 0.538
Traffic |0.189 0.280|0.247 0.341|0.189 0.289|0.193 0.285|0.196 0.292{0.323 0.404|0.201 0.296|0.265 0.365|0.297 0.378
Station |0.215 0.311|0.386 0.405|0.296 0.359(0.254 0.333/0.305 0.357[0.448 0.452]0.348 0.420|0.569 0.549|0.467 0.466
Weather |0.526 0.466 |0.604 0.505|0.610 0.502|0.634 0.507|0.618 0.511|0.546 0.470|0.606 0.508|0.702 0.576|0.686 0.560
Exchange | 0.473 0.470|0.467 0.469|0.493 0.485|0.468 0.470|0.487 0.484]0.376 0.4570.557 0.537|0.581 0.551]0.993 0.746
Ilness |0.692 0.647 |0.871 0.777(0.669 0.653 |0.706 0.654|0.747 0.683|1.340 0.992(0.826 0.731]0.799 0.731|5.321 2.075
1% Count 10 0 2 0 1 2 0 0 0

Table 1: Univariate time series forecasting performance comparisons.

straightforward reverse instance norm module [Kim et al.,
2021]. This module employs a simple approach of normal-
izing the input time series using mean and variance, which
are added back to the output at the last stage. After this
normalization process, we replicate the last value of the se-
quence and append it to the end of the original sequence to en-
sure accurate patching. The patching process involves divid-
ing the time series X7 into overlapping or non-overlapping
patches. Letting the patch length be denoted as P, and the
non-overlapping stride between adjacent patches as S, we
can obtain a sequence of patches X, ¢ RNXP " Here, N
represents the number of patches, where NN is calculated as
N =[]+ 1.

To generate the input for the Transformer encoder, we ini-
tially project the sequence of patches X,, € RV*¥ into hid-
den representations through a linear projection W, € R"*P
combined with positional encoding W s, resulting in a se-
quence of patch representations, X§ = W, X ; + Woes,
which serves as the input token sequence for the Transformer.
Subsequently, for each head h of the multi-head attention
mechanism, linear projectionsW,, W, W, are applied to
map the input to the Query (Q), Key (K), and Value (V)
matrices. Attention scores are then computed through scaled
dot-product operations as illustrated by the following equa-

tion and get the final output of the encoder Og) € RVXD,

T
(Oh)T _ Attention(Qh, Kh7Vh) = Softmax(%)\’h
3)

4.5 Multimodal Auxiliary Representation

To seamlessly integrate temporal pattern text features with
temporal attributes, we have conceptualized a novel multi-
modal auxiliary representation module. This module is de-
signed to enhance the generation of a more accurate temporal
representation by effectively merging disparate data modal-
ities. The core function of this module is to meticulously
extract high-quality embeddings from temporal pattern em-
beddings, leveraging the synergistic power of time series em-
beddings. This dual-embedding approach ensures that the re-

sulting information is comprehensive and precise. By har-
monizing these distinct data sources, the module facilitates a
deeper understanding of temporal dynamics, enabling more
reliable and insightful forecasts.

Specifically, we employ a distinct cross-attention layer
where temporal (numerical) features are used as queries, and
temporal pattern (textual) features are employed as keys and
values, ensuring that the output dimensions are naturally
aligned with the temporal dimensions. Through linear projec-
tions W, Wy, W,,, we obtain the Query (@), Key (K), and
Value (V') matrices separately. Subsequently, the attention
mechanism computes the scores, revealing the correlation be-
tween the temporal numerical data and the temporal patterns.
These computed scores are then utilized to aggregate the in-
formation, producing high-quality representation. Utilizing
the cross-modal information interaction module, we transfer
the high-quality temporal pattern predictive information from
robust pre-trained large-scale models to the time series em-
beddings. By structuring the attention layer in this manner,
we maximize the utility of numerical and textual information,
leading to a more robust and precise temporal representation.

Finally, we employ a linear projection W, € R¥>*M (o
map the obtained high-quality temporal representations to the
desired prediction length whereN = N x D, followed by
the completion of the reverse instance norm module.

5 Experiments

5.1 Experimental Setup

Datasets. The proposed model framework has been rigor-
ously evaluated across eight real-world benchmark datasets,
encompassing various time series application domains. The
datasets include ETT [Zhou et al., 20211, which includes four
sub-datasets: ETTh1, ETTh2, ETTml, and ETTm2; Traffic;
Electricity [Lai er al., 2018]; Weather; ILLness; Exchange;
and Station [Liu et al., 2020]. We also evaluate our method
on multimodal datasets from Time-MMD [Liu et al., 2024b]
and From News to Forecast [Wang et al., 2024c]. The eval-
uation of these datasets thoroughly examines the model’s ef-
ficacy in various time series forecasting scenarios.
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Figure 3: Prediction cases from Station by different models. The input sequence length is set to 96 and the predictive length is set to 96. Blue

lines are the ground truths and orange lines are the model predictions.

Baselines. We have selected eight state-of-the-art time se-
ries forecasting methods for comparative analysis. This in-
cludes transformer-based models such as Informer [Zhou et
al., 20211, Autoformer [Wu et al., 2021], FEDformer [Zhou
et al.,2022], and PatchTST [Nie et al., 2022]; a linear model,
DLinear [Zeng et al., 2023]; a CNN-based model, TimesNet
[Wu er al., 2022]; language model-based approachs Time-
LLM [Jin et al., 2023] GPT4TS [Zhou et al., 2023].
Experimental Settings. We adhere to consistent settings
throughout our experiments to ensure a fair comparison with
the experimental setup detailed in Wu et al. [Wu et al., 2022].
The maximum number of epochs is set to 10, incorporating an
early stopping mechanism. Specifically, we employ a look-
back window of 36 for the illness dataset, while for the re-
maining datasets, a lookback window of 96 is utilized. We
integrated DeepSeek?2 [Liu er al., 2024a] for the sentence-
to-sentence temporal pattern text predictor. Additionally,
for the text encoder, we utilized the encoder component of
MinLM [Wang er al., 20201, which remains frozen during the
training process. The patch length is strategically selected to
be 16, and the stride is set to 8. The training process is fa-
cilitated using the AdamW optimizer, with an initial learning
rate of 0.0001. All experiments are meticulously conducted
on an NVIDIA 3090 24GB GPU.

5.2 Main Results

Table 1 presents the overall univariate time series forecast-
ing result, with an input length of 36 for the illness dataset
and 96 for the others; the forecast lengths are 24, 36, 48, and
60 for the illness dataset, and 96, 192, 336, and 720 for the
other datasets. The table records the average performance
across the four forecast lengths for each dataset. We have
bolded the best performance for each row and underlined
the second-best performance. As indicated in the table, our
model demonstrates significant improvements over the base-
line models, achieving the best or second-best performance in
61 out of 70 instances. Our performance surpasses that of the
other language model approachs, validating the effectiveness
of our integration of LLMs with time series.

Method Multimodal Unimodal

Metric MSE MAE MSE MAE
AULF 0.174 0.283 | 0.194 0.306
Agriculture 0.147 0.247 | 0.151 0.249
Climate 0326 0.425 | 0340 0.433
Economy 0.205 0358 | 0.225 0.375
Energy 0.215 0332 | 0.225 0.339
Environment | 0.299  0.399 | 0.321 0.406
Health(US) 1.328  0.758 1.352  0.768
Security 72175 4133 | 73.115 4.156
SocialGood 0.881 0.414 | 0903 0425

Traffic 0.122 0.209 | 0.125 0.213

Table 2: Multimodal experiments.

Our model’s performance across various datasets does not
consistently achieve top-tier results, which is a limitation be-
cause our framework is constructed upon an attention mech-
anism network. The inherent constraints of the attention net-
work restrict the framework’s performance, particularly in
scenarios where specific datasets exhibit characteristics that
are more conducive to linear models.

Furthermore, we evaluate our method across ten multi-
modal datasets, specifically assessing its capacity to enhance
predictive accuracy by incorporating external textual infor-
mation. Integrating external texts resulted in superior perfor-
mance across all datasets, underscoring our method’s adept-
ness at leveraging textual knowledge and reasoning capabili-
ties to refine prediction accuracy. We provide the average re-
sults in the table 2. Notably, we also conducted a comparative
analysis using the Time-MMD method [Liu er al., 2024b].
However, a significant performance disparity was observed,
potentially due to differences in experimental configurations.

Upon meticulous analysis of the experimental results, we
observe that the proposed framework exhibits significant per-
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formance advantages on datasets such as stations, which pos-
sess pronounced temporal patterns. This edge is attributed to
the knowledge and reasoning capabilities of the LLMs, which
effectively predict the temporal patterns of future sequences.
Nevertheless, when confronted with datasets like ETT, where
the temporal patterns are highly complex, the performance of
all models is generally low.

5.3 Model Analysis

Result Analysis

The performance of our model is more vividly depicted in
the accompanying figure 3, which highlight the inherent lim-
itations of models that exclusively rely on statistical anal-
ysis. When confronted with scenarios where the patterns
within the forecast window diverge significantly from those
observed in the historical window, these models demonstrate
a pronounced performance decline. In contrast, our approach,
which integrates LLMs, capitalizes on their extensive knowl-
edge and sophisticated reasoning capabilities. By harnessing
these attributes, we enable the model to infer potential shifts
in future patterns based on temporal information. This in-
ference process not only constrains but also corrects the pre-
dictions generated by the numerical model, leading to more
precise forecasts and demonstrating the model’s robustness in
handling abrupt changes or complex time series.

e w/o Mnet
e Mnet

0.0

—0.4 4

0.5 0.6 0.7 0.8 0.9

Figure 4: The text embeddings are visualized in a 2D space.

Ablation Studies
The primary objective of this work is to propose an enhanced
structure for integrating LLMs with time series data. As
such, the ablation studies are designed to validate the lan-
guage model branch modules’ effectiveness rigorously. Ini-
tially, we systematically remove the entire language model
module to evaluate the utility of our LLMs auxiliary mod-
ule in isolation. Subsequently, we focus on validating the
memory network’s (Mnet) effectiveness within the language
model branch. Our ablation results unequivocally demon-
strate that the language model module significantly augments
model performance, thereby underscoring the value of incor-
porating LLMs into the forecasting framework.

Additionally, the experiments reveal that the absence of
a memory network to constrain text embeddings leads to a

Method Ours w/o LLMs w/o Mnet
Metric | MSE MAE | MSE MAE | MSE MAE
96 | 0.720 0.605 | 0.740 0.607 | 0.785 0.629
— | 192 1 0.748 0.621 | 0.800 0.639 | 0.849 0.666
E 336 | 0.801 0.650 | 0.877 0.676 | 0.825 0.666
= 720 | 0.842 0.680 | 0.917 0.704 | 0.855 0.696
Avg | 0.778 0.639 | 0.834 0.657 | 0.829 0.664
96 | 0.192 0.283 | 0.200 0.290 | 0.198 0.288
ol 19210184 0.274 | 0.190 0.281 | 0.189 0.282
% 336 | 0.181 0.275 | 0.183 0.276 | 0.185 0.280
a 720 | 0.200 0.289 | 0.201 0.291 | 0.208 0.297
Avg | 0.189 0.280 | 0.193 0.285 | 0.195 0.287

Table 3: Ablation of method designs.

degradation in model performance. This finding highlights
the critical role of our memory network in preventing overly
broad text embeddings while maintaining the necessary di-
versity. Furthermore, we calculate the dispersion coefficients
(ratio of variance to mean) before and after processing, which
can measure the degree of data dispersion. Through the mem-
ory network, the dispersion coefficient of the feature vec-
tors decreased from 0.023 to 0.008, proving that our network
can suppress overly dispersed embeddings. Figure 4 offers
a succinct visualization of the memory network’s function-
ality. We have reduced the dimensionality of the text em-
beddings using principal component analysis (PCA) and pro-
jected them onto a two-dimensional space for visualization.
The illustration demonstrates that the memory networks ef-
fectively constrain overly scattered text embeddings, allow-
ing the model to understand key semantic information better.
The table 3 present a selection of our ablation results.

6 Conclusion

This work offers a novel perspective on leveraging the
strengths of LLMs in time series tasks, playing for strength:
capitalizing on the language models’ proficiency in text pro-
cessing while entrusting numerical models with the handling
of numerical data. The proposed approach fully utilizes
LLMs’ knowledge and reasoning abilities by leveraging the
predictive capabilities of these language models to gener-
ate textual descriptions of future temporal patterns and em-
bedding these texts to assist numerical model predictions.
It achieves precise forecasting, thereby enhancing predictive
performance. This method effectively mitigates the limita-
tions of conventional models that rely solely on statistical
analysis of historical data. Extensive evaluations have con-
firmed the effectiveness of our model in advancing state-of-
the-art predictive performance. It presents a promising direc-
tion for integrating LLMs with time series forecasting efforts.
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