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Abstract
Multimodal Learning with visual and tabular
modalities has become more and more popular
nowadays, especially in the healthcare area. Due to
the adaptation of new equipment or new factors be-
ing introduced, the tabular modality keeps chang-
ing. However, the standard process of training mul-
timodal AI models requires tables to have fixed
columns in training and inference; thus, it is not
suitable for handling dynamically changed tables.
Therefore, new methods are needed for efficiently
handling such tables in multimodal learning. In
this paper, we introduce a new task, multimodal in-
ference with incremental tabular attributes, which
aims to enable trained multimodal models to lever-
age incremental attributes in tabular modality dur-
ing the inference stage efficiently. We implement
a specialized encoder to disentangle the latent rep-
resentation of incremental tabular attributes inside
itself and with the old attributes to reduce informa-
tion redundancy and further align the incremental
attributes with the visual modality with consistency
loss to improve information richness. Experimen-
tal results across five public datasets show that our
method effectively utilizes incremental tabular at-
tributes, achieving state-of-the-art performance in
general scenarios. Beyond the inference, we also
find that our method achieved better performance
in fully supervised settings, evoking a new training
style for multimodal learning with tables.

1 Introduction
Modern datasets often include multiple modalities, with vi-
sual and tabular modalities being particularly prevalent in the
medical field [Sudlow et al., 2015]. The visual modality is
typically derived from imaging techniques such as CT scans,
containing rich spatial and anatomical information. In con-
trast, the tabular modality often records structured patient
data, such as medical history, laboratory results, and demo-
graphic information, which encapsulates a different set of
critical features compared to images [Soenksen et al., 2022;

∗Weimin Tan and Bo Yan are the corresponding authors.
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Figure 1: Illustration of multimodal inference with incremental tab-
ular attributes. A trained model on old table and image modalities
encounters incremental attributes (e.g. new biomarkers [Jack et al.,
2024; Guo et al., 2024] highlighted in pink) in tabular inputs during
inference. The goal is to seamlessly incorporate these incremental
attributes into the model to adapt to dynamic real-world tabular en-
vironments, overcoming limitations of existing methods.

Yi et al., 2023]. Numerous studies have demonstrated the
efficacy of integrating visual and tabular modalities, show-
ing that such multimodal approaches often outperform single-
modality models [Huang, 2023; Hager et al., 2023]. How-
ever, existing methods generally assume a static tabular
modality, requiring the attributes of tabular data at inference
time to align with those present during training [Somepalli et
al., 2021]. In practical applications, tabular data is frequently
updated. For instance, in Alzheimer’s disease prediction, ex-
isting models have been trained on MRI images with demo-
graphic information and clinical indicators. Recently, signif-
icant biomarkers such as the YWHAG protein [Guo et al.,
2024] and inflammation/immune-related markers [Jack et al.,
2024] have been discovered. Leveraging these new biomark-
ers alongside existing models for retraining poses a challenge,
as recalling patients from previous databases for re-evaluation
is impractical. Such dynamic nature of tabular modalities un-
derscores the need for models capable of handling incremen-
tal tabular attributes in a multimodal context, enabling more
robust and adaptable inference in real-world scenarios.

To address this challenge, we introduce a novel task termed
multimodal inference with incremental tabular attributes. As
shown in Figure 1, we consider a scenario in which a multi-
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modal model has been trained using any deep learning algo-
rithm on visual and tabular modalities. During the inference
stage, new attribute columns are introduced to the tabular
modality. Our objective is to propose a method that fine-tunes
the trained model to leverage the relationships among the in-
cremental tabular attributes, the old tabular attributes, and the
visual modality. In doing so, the model learns task-relevant
information more effectively in an unsupervised manner. This
approach aims to outperform models that discard the new at-
tributes and rely solely on the old ones, while simultaneously
reducing the data preparation overhead and improving con-
vergence speed compared to fully supervised re-training.

Designing such a method is challenging, with the main dif-
ficulty being the inability to dynamically adapt due to the het-
erogeneity of the tabular modality. Each column in a table
represents a distinct attribute with varying scales, semantics,
and statistical distributions [Nam et al., 2023]. Directly ap-
plying encoding patterns from old attributes to new ones may
not only fail to improve performance but could also degrade
it. Furthermore, effectively leveraging the visual and tabular
modalities to compress redundant information in incremental
attributes and extract novel, task-relevant knowledge is es-
sential. This ensures the new attributes contribute meaning-
fully to the model. However, research on multimodal tasks
involving visual and tabular modalities, particularly when in-
cremental tabular attributes are introduced, remains limited.

To address the aforementioned challenges, we propose a
novel framework named Multimodal Inference with Incre-
mental Tabular Attributes (MIITA). Specifically, we design
a dedicated encoder for the incremental tabular attributes
based on a Variational Autoencoder (VAE). This encoder not
only extracts implicit features but also decouples them, en-
suring that the learned latent representations are as indepen-
dent as possible across dimensions. This disentanglement
enhances interpretability and makes the latent features more
amenable to constraints imposed by the old tabular attributes
and the visual modality. Besides classification loss and CLIP
loss—encouraging the representations of the two modalities
to be close for the same sample and distant for different—we
introduce two new loss functions. The first is a disentangled
loss designed to further improve the disentanglement of the
latent representations with the old representation. The sec-
ond is a consistency loss, aimed at strengthening the align-
ment between the incremental tabular attributes and the visual
modality. Both losses have demonstrated their effectiveness
in ablation, showing significant contributions to overall per-
formance. In summary, the contributions of this paper are:

• This paper introduces a new task, Multimodal Inference
with Incremental Tabular Attributes, aiming to enable mul-
timodal models to incorporate incremental tabular columns
during the inference stage, enhancing the practicality of AI
models in dynamically changed tables.

• To dynamically and unsupervisedly leverage incremental
tabular attributes, we propose the MIITA framework, which
disentangles the incremental representation from the old
ones and adds the modality consistency constraint for bet-
ter alignment. Our approach achieves state-of-the-art per-
formance across five public datasets.

• Despite the new task, we show that MIITA evokes a
new training procedure for general supervised multimodal
learning with tabular and vision modalities.

2 Related Work
2.1 Multimodal Contrastive Learning
Multimodal contrastive learning has emerged as a power-
ful framework for learning representations across different
modalities. Methods such as CLIP [Radford et al., 2021]
and ALIGN [Jia et al., 2021] leverage large-scale paired
datasets to align representations of text and images through
contrastive objectives. These approaches ensure that similar
samples across modalities are brought closer in the shared
representation space, while dissimilar samples are pushed
apart [Wu et al., 2021]. Recent works have extended this
paradigm to other modality pairs, especially visual-tabular
data [Hager et al., 2023; Wang et al., 2024a], demonstrating
its versatility in fusing visual and tabular information.

However, existing multimodal contrastive learning meth-
ods are generally designed for static multimodal datasets and
assume fixed input dimensions for each modality. When new
attributes are introduced to the tabular modality, these models
fail to adapt without retraining on the updated dataset. This
limitation hinders their applicability to real-world scenarios.

2.2 Tabular Deep Learning
Tabular deep learning has become an important area of re-
search, focusing on adapting neural networks to structured
tabular data. Architectures such as TabNet [Arik and Pfister,
2020], FT-Transformer [Gorishniy et al., 2023] and SCARF
[Bahri et al., 2022] have shown promise in feature selec-
tion, representation learning, and interpretability for tabular
data. These models leverage advanced attention mechanisms
or feature gating to capture meaningful relationships between
attributes and outperform traditional machine learning ap-
proaches in various tasks. Recently, Large Language Models
(LLMs) have also been explored for tabular data tasks. Meth-
ods like TabLLM [Hegselmann et al., 2023a] and TableGPT2
[Su et al., 2024] convert tabular attributes into natural lan-
guage formats, enabling LLMs to incorporate prior knowl-
edge and perform reasoning directly on structured data.

Despite these advancements, traditional tabular deep learn-
ing models typically assume a fixed tabular input. Current ef-
forts, such as TransTab [Wang and Sun, 2022] and TabPFN
[Hollmann et al., 2025], have introduced methods for han-
dling dynamic attributes in tabular data. However, these
approaches are predominantly focused on single-modality
settings and lack the capability to effectively utilize visual
modality information. On the other hand, LLM-assisted ap-
proaches excel in zero-shot or few-shot scenarios by leverag-
ing pre-trained knowledge but often fall short in scenarios re-
quiring incremental learning of incremental attributes [Zhang
et al., 2024; Carballo et al., 2023]. Consequently, both tradi-
tional and LLM-assisted methods face significant challenges
in addressing dynamic tabular attributes and fully leveraging
cross-modal relationships, leaving a gap in solving incremen-
tal multimodal inference tasks.
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Figure 2: Overview of MIITA framework. MIITA takes images and an inference table with incremental attributes as input, producing adapted
inference column representations for downstream tasks. A trained multimodal model provides frozen tabular and visual encoders to extract
the visual and old tabular representations. A novel Disentangled Representation Learning (DRL) encoder processes incremental tabular
attributes, disentangling them into interpretable dimensions. The framework leverages four loss components: InfoNCE Loss, Classification
Loss with pseudo-labels, Incremental Disentangled Loss, and Visual Consistency Loss for modality alignment. This design enables efficient
use of incremental tabular attributes, improving performance and convergence in an unsupervised manner.

3 Method
In this section, we formally define the task of Multimodal
Inference with Incremental Tabular Attributes (MIITA). We
then present the proposed framework, also named MIITA, de-
tailing its architecture and the mechanisms it employs to han-
dle incremental updates in tabular attributes during inference.

3.1 Problem Formulation
Consider a multimodal dataset D = {(xvis

i , xold
i , yi)}Ni=1,

where xvis
i ∈ X vis represents a visual input (e.g., medical im-

ages), xold
i ∈ X old denotes tabular data comprising M old at-

tributes, and yi ∈ Y is the target label. A multimodal model f
is trained on D to predict yi by jointly utilizing xvis

i and xold
i :

ŷi = f(xvis
i , xold

i ; Θ), (1)

where Θ denotes the model parameters learned in training.
In the MIITA setting, during the inference phase, incre-

mental attributes are added to the tabular modality, result-
ing in an incremental tabular input xinf

i ∈ X inf, where
X inf ⊃ X old and the incremental attributes are denoted as
X inc = X inf \ X old. The goal is to adapt the trained model f
to utilize the augmented tabular input xinf

i along with xvis
i to

predict yi:
ŷi = f ′(xvis

i , xinf
i ; Θ′), (2)

where f ′ and Θ′ represent the adapted model and updated
parameters, respectively.

The MIITA task involves three key challenges:

• Dynamic Adaptation: The model must incorporate X inc

without requiring retraining on the entire dataset.

• Preserving Knowledge: The model should retain its abil-
ity to utilize the old attributes X old and X vis.

• Unsupervised Adaptation: The adaptation should not rely
on labels for the incremental attributes, instead leveraging
unsupervised learning to extract task-relevant information.

By addressing these challenges, MIITA enables robust
multimodal inference in dynamic real-world scenarios where
tabular data evolves over time.

3.2 MIITA Framework
As shown in Figure 2, our framework is based on a trained
multimodal model, from which we extract the tabular encoder
and the visual encoder, freezing their parameters to ensure
that MIITA does not perform worse than the old model. Dur-
ing inference, the image and the old tabular attributes of a
given sample are passed through the visual encoder and tabu-
lar encoder, respectively, producing the visual representation
and old tabular representation.

To handle incremental tabular attributes, we use a ded-
icated Disentangled Representation Learning (DRL) en-
coder. This encoder disentangles the entangled representa-
tions of the incremental attributes into interpretable dimen-
sions, such as spatial or temporal factors. This disentangle-
ment not only enhances the interpretability of the model but
also strengthens the effectiveness of subsequent multimodal
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learning procedures. After passing through the DRL encoder,
we obtain the incremental tabular representation.

Our framework leverages the relationships among the three
representations: visual, old tabular representation, and incre-
mental tabular representation, using a combination of novel
loss functions. Beyond the foundational InfoNCE loss and a
task-specific classification loss with pseudo-labels, we will
introduce novel Incremental Disentangled Loss and Visual
Consistency Loss in detail. By integrating the DRL encoder
with these four loss functions, we finally use the improved
inference tabular representation for downstream tasks. Our
framework can effectively utilize the information from the in-
cremental tabular attributes, improving model performance in
an unsupervised manner while achieving faster convergence.

DRL Encoder
The DRL encoder is pivotal for disentangling incremental
tabular attributes, enabling effective utilization of new infor-
mation in the MIITA framework. Specifically, it employs a
β-Variational Autoencoder (β-VAE) to encode the incremen-
tal attributes xinc into a disentangled latent space zinc, ensur-
ing independence among dimensions [Higgins et al., 2017].
Other DRL encoder variants, like FactorVAE [Kim and Mnih,
2019] and DIP-VAE [Kumar et al., 2018], are also compati-
ble with our framework. The β-VAE’s objective is defined by
a combination of reconstruction and regularization losses.

The reconstruction loss ensures that the encoder effectively
captures the information contained in xinc:

Lrec = Eqϕ(zinc|xinc)

[
∥xinc − x̂inc∥2

]
, (3)

where x̂inc is the reconstruction of the input. To promote
disentanglement, a regularization term enforces the indepen-
dence of latent dimensions by introducing a KL divergence
between the posterior qϕ(zinc|xinc) and a factorized unit Gaus-
sian prior p(zinc):

LKL-inc = DKL(qϕ(z
inc|xinc)∥p(zinc)). (4)

The overall loss for the DRL encoder is expressed as:
LDRL = Lrec + βLKL-inc, (5)

where β is a hyperparameter that controls the trade-off be-
tween reconstruction accuracy and disentanglement strength.

Incremental Disentangled Loss
In addition to disentangling the incremental attributes them-
selves, we aim to ensure that zinc encodes meaningful, com-
plementary information while avoiding redundancy with zold.
To achieve this, we introduce a disentangled loss with two
distinct focuses:

The redundancy mitigation loss focuses on maximizing
the KL divergence between qϕ(z

inc|xinc) and q(zold), ensuring
zinc captures novel, nonlinear information not present in zold:

LKL-redundancy = −DKL(qϕ(z
inc|xinc)∥q(zold)). (6)

The covariance regularization loss, on the other hand, pe-
nalizes linear cross-correlations between the dimensions of
zinc and zold, further promoting disentanglement by encour-
aging independence:

Lcov-cross =
∑
i,j

(
Ccross

ij

)2
, (7)

where Ccross
ij is the cross-covariance matrix in zinc and zold.

The overall disentangled loss is then defined as:
LDisentangled = λ1LKL-redundancy + λ2Lcov-cross, (8)

where λ1 and λ2 are hyperparameters controlling the trade-
off between nonlinear redundancy mitigation and linear co-
variance regularization.

InfoNCE Loss
The InfoNCE loss [van den Oord et al., 2019] facilitates
alignment between the visual and tabular modalities by en-
couraging the inference tabular representation zinf, formed by
concatenating zold and zinc, to be close to the visual represen-
tation zvis of the same sample while being far from those of
other samples in the batch.

The inference tabular representation is defined as:

zinf = concat(zold, zinc). (9)
The InfoNCE loss is expressed as:

LInfoNCE = − 1

B

B∑
b=1

log
exp

(
sim

(
zinf
b , zvis

b

)
/τ

)∑B
k=1 exp

(
sim

(
zinf
b , zvis

k

)
/τ

) ,
(10)

where sim(a, b) denotes cosine similarity, τ is a temperature
hyperparameter, and B is the batch size. This loss ensures
that zinf aligns closely with zvis for the same sample while
preserving inter-sample separability.

Visual Consistency Loss
To better align the tabular and visual modalities, we further
ensure that the inference tabular representation zinf is closer to
the visual representation zvis than the old tabular representa-
tion zold alone. This encourages incremental tabular attributes
to complement the old tabular representation effectively.

To enforce the desired alignment, we propose an InfoNCE-
inspired loss that compares the relative similarities between
the representations:

LVis-Cons = − 1

B

B∑
b=1

log
N

N +D
, (11)

N = exp
(
sim

(
zinf
b , zvis

b

)
/τ

)
, D = exp

(
sim

(
zold
b , zvis

b

)
/τ

)
.

By minimizing LVis-Cons, the model explicitly enforces the
inference tabular representation zinf to capture richer and
more complementary information from the incremental at-
tributes, improving its alignment with the visual modality.
This approach leverages the additional information from in-
cremental tabular attributes to enhance multimodal inference
while maintaining consistency with the visual modality.

Classification with Pseudo Labels
To enhance the framework’s classification capabilities,
pseudo-labels generated by old models are employed to pro-
vide supervision in an unsupervised setting. To ensure re-
liability, only pseudo-labels with a confidence score higher
than a specific threshold (e.g., 0.7) are retained for super-
vision. The classification loss is defined using the standard
cross-entropy loss as [Mao et al., 2023]:

LCls = − 1

B

B∑
i=1

ŷi log yi, (12)
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where ŷi represents the highest pseudo-label probability of
sample i, yi is the predicted probability for the correspond-
ing class.The purpose of LCls is to ensure that the learned
features are strongly related to downstream tasks by aligning
them with task-relevant information. This process helps to
discard task-irrelevant features, thereby improving the effec-
tiveness of MIITA for specific applications.

Overall Objective
The overall objective integrates all components to optimize
the MIITA framework holistically:

Lall = LDRL+LDisentangled+LInfoNCE+LVis-Cons+LCls (13)

where each term contributes to specific aspects of represen-
tation learning, alignment, and classification. By balancing
these losses, the model effectively captures and integrates
multimodal information, achieving robust and interpretable
performance.

4 Experiment
4.1 Experiment Setup
Datasets and Comparative Methods
We use five public datasets that are commonly used in mul-
timodal learning areas using tabular and visual modalities:
ADNI (AD) [Jr et al., 2008], Data Visual Marketing (DV)
[Huang et al., 2023], Pokemon Primary Type (PK), Hearth-
Stone Card’s category (HS), CS:GO skin quality (CG) [Lu
et al., 2023]. In each, we remove specific columns from the
train and validation sets while keeping them in the inference
set to simulate real-world incremental tabular inference. The
deleted columns were chosen logically, reflecting their histor-
ical appearance. Details are in the appendix.

For baselines, we use single tabular modality classifiers:
XGBoost [Chen and Guestrin, 2016], SCARF [Bahri et al.,
2021] and FT-Transformer [Gorishniy et al., 2021]. Since
these tabular methods can’t utilize incremental columns, we
only use the same columns as the train set for inference. Sin-
gle visual modality classifiers like CNN [O’Shea and Nash,
2015] and ViT [Dosovitskiy et al., 2021] are also used. Then,
we compare our method to recent tabular-visual multimodal
models: AutoMM [Shi et al., 2021], SimCLR [Chen et al.,
2020], MMCL [Huang, 2023] and TIP [Du et al., 2024].
Also, we compare our method to FT-Trans* and TransTab
[Wang and Sun, 2022], which can utilize all columns in the
inference set. Note that in our experiments, we modified FT-
Transformer by replacing the embedding layer with a linear
embedding (1 × encoder size) to handle any input dimen-
sions, noted as FT-Trans*. Finally, we compare performance
with LLM-assisted models, including TabLLM [Hegselmann
et al., 2023b] and MediTab [Wang et al., 2024b].

Implementation Details
We encode categorical features using a backward differ-
ence encoder [Potdar et al., 2017]. Key setting of MI-
ITA are: β (VAE) ∈ {2, 5, 10}, λ1 (KL) / λ2 (cov-cross)
∈ {0.5, 1.0, 2.0}, and pseudo-label threshold = 0.7. The loss
weights in Eq.13 were adjusted based on early gradient mag-
nitudes. The default setting is {1, 0.5, 0.8, 0.4, 1}.
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Figure 3: Visualization of the MIITA task. In the car brand and
Pokémon primary type prediction tasks, existing methods fail to
make accurate classifications due to their inability to effectively uti-
lize incremental tabular attributes. In contrast, our MIITA approach
successfully learns from this information, leading to correct results.

4.2 Results on Public Datasets
We evaluated the MIITA framework for six tasks in five
widely used datasets that span entirely different domains,
each containing both tabular and visual modalities. As shown
in Table 1, MIITA consistently outperformed state-of-the-art
(SOTA) single-modal and multimodal methods, representing
MIITA is a general framework applicable for all scenarios in-
cluding medical, advertisement and game. The visualization
result of two difficult samples is shown in Figure 3. All re-
sults were averaged over four runs to mitigate randomness,
with the corresponding variances provided in the appendix.

Single-Modal Baselines
We first conducted experiments using single-modal models
for both tabular and visual data. Since traditional tabular
learning methods cannot handle dynamic attributes, our tab-
ular experiments only used the static, old attributes match-
ing the training setup. The results demonstrate significant
performance limitations in both modalities: the visual data
proved unstable and informationally limited, while the tabu-
lar modality was severely constrained by its inability to utilize
incremental columns.

Multimodal Methods
Three multimodal learning models designed for tabular and
visual modalities were evaluated. These models achieved
superior performance compared to single-modal baselines,
highlighting the effectiveness of multimodal learning in lever-
aging complementary information from both modalities. We
used SimCLR as a baseline for further experiments, replacing
its tabular feature extractor with methods capable of handling
dynamic attributes.

Experiments with Incremental Tabular Attributes
To explore handling dynamic tabular attributes, we first tested
FT-Trans*, which directly maps tabular data with incremen-
tal attributes using the old encoder without adaptation. The
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Dataset size 1250 1250 176414 897 10710 956
Train tabular attribute size 30 30 5 7 5 2
Incremental tabular attribute size 85 85 11 10 7 3

Method/Dataset AD3 AD2 DV PK HS CG Rank(Std)
Tabular classifiers
XGBoost 0.758 0.866 0.890 0.616 0.600 0.546 9.8 (1.47)
SCARF 0.742 0.852 0.887 0.589 0.600 0.521 11.2 (1.51)
FT-Trans 0.746 0.868 0.891 0.607 0.610 0.533 9.2 (2.27)

Visual classifiers
CNN 0.761 0.883 0.880 0.322 0.550 0.682 8.8 (4.54)
ViT 0.768 0.885 0.880 0.308 0.568 0.674 8.6 (4.59)

Multimodal classifiers
AutoMM 0.760 0.902 0.887 0.620 0.460 0.600 8.0 (2.85)
SimCLR 0.760 0.908 0.896 0.634 0.702 0.604 4.3 (1.86)
MMCL 0.773 0.908 0.898 0.646 0.689 0.610 3.2 (0.98)

Multimodal classifiers with traditional dynamic tabular encoder
SimCLR w. FT-Trans* 0.628 0.830 0.847 0.561 0.432 0.519 13.7 (0.82)
SimCLR w. TransTab 0.730 0.882 0.892 0.634 0.647 0.590 7.4 (3.32)
TIP 0.788 0.908 0.906 0.634 0.653 0.624 3.2 (0.98)

Multimodal classifiers with LLM-assisted tabular encoder
SimCLR w. TabLLM 0.742 0.868 0.885 0.617 0.602 0.586 9.7 (1.54)
SimCLR w. MediTab 0.760 0.896 0.892 0.620 0.605 0.580 7.0 (1.58)

MIITA 0.814 0.930 0.924 0.692 0.714 0.742 1.0 (0.00)

Table 1: Comparison of different methods on public datasets. AD3 denotes a three-class classification on AD dataset, whereas AD2 refers to
a binary classification. The evaluation index is accuracy. For each dataset, the best results are shown in bold. Reported results are averaged
over four trials. The rank column reports the average rank across all datasets.

results were poor, demonstrating the necessity for tailored
adjustments in encoding schemes. Both the traditional self-
supervised pretraining approach (TransTab, TIP) and large
language model (LLM)-assisted tabular learning also failed
to achieve satisfactory results. Their performance was often
worse than multimodal models using only the old tabular at-
tributes because they cannot put trained tabular encoders into
fully usage. In contrast, MIITA consistently achieved leading
performance across all tasks. This demonstrates the superior-
ity and generalizability of the MIITA framework in address-
ing the challenges posed by incremental tabular attributes in
multimodal learning.

4.3 Generalizability Across Different Scenarios
As discussed in the methodology section, MIITA is designed
to be a model-agnostic framework, capable of integrating
with various architectures seamlessly. As illustrated in Fig-
ure 4, MIITA demonstrates consistent performance improve-
ments when applied to models employing different tabular
and visual feature extractors in AD3 dataset. This showcases
the flexibility of MIITA in adapting to diverse base architec-
tures without requiring significant structural modifications.

The generalizability of MIITA extends beyond tabular-
visual multimodal tasks to scenarios involving other modal-
ities. We conducted experiments on additional multimodal
learning tasks: tabular-text in a game dataset[Lu et al., 2023]
and tabular-temporal data in a stock dataset. Across these

FT&CNN FT&ViT SCARF&CNNSCARF&ViT
60

70

80

A
cc

ur
ac

y 
(%

)

Different Trained Encoders
Baseline
MIITA

Text Temporal
60

70

80

Different Multimodalities
Baseline
MIITA

Figure 4: Performance comparison of MIITA across different sce-
narios. MIITA demonstrates consistent performance improvements
when applied to different encoders with FT-Trans, SCARF in Tables
and CNN, ViT in Visions as well as different multimodalities, in-
cluding tabular-text and tabular-temporal, highlighting MIITA’s flex-
ibility and generalizability in integrating with diverse base models
without requiring significant structural modifications.

tasks, MIITA achieved a consistent performance improve-
ment, highlighting its effectiveness in leveraging incremental
tabular attributes with other modalities, reinforcing its poten-
tial as a universal approach for dynamic multimodal learning.

4.4 General Improvement on Supervised Learning
Beyond excelling in the proposed MIITA task, our frame-
work also demonstrated significant advantages in fully su-
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Settings/Dataset AD3 PK DV
Fully supervised 0.838 0.774 0.930
Disentangled rate 0.343 0.457 0.678
MIITA 0.870 0.796 0.938
Disentangled rate 0.689 0.824 0.749

Table 2: Performance comparison between MIITA and existing mul-
timodal learning models under fully supervised scenarios on three
datasets. Results demonstrate that the progressive inference strategy
using the MIITA framework achieves superior accuracy, leveraging
disentangled tabular features for incremental integration.

Attributes/Dataset AD3 DV PK
High Visual-Corr 0.783 0.900 0.646
Medium Visual-Corr 0.794 0.900 0.660
Low Visual-Corr 0.814 0.920 0.689
Few 0.788 0.900 0.668
Moderate 0.820 0.908 0.683
Many 0.814 0.924 0.692

Table 3: MIITA performance on various incremental tabular at-
tribute sets, top three rows represent the attributes’ correlation with
visual modality, while the bottom three rows represent the number
of tabular attributes.

pervised multimodal scenarios. The experiments showed
that MIITA consistently outperformed traditional training ap-
proaches when labeled data was available.

In the supervised setting, the MIITA framework was ap-
plied by first disentangling the complete tabular data using the
DRL encoder. The disentangled features were then treated as
original inputs and progressively grouped in batches to train
the MIITA framework with the proposed loss constraints.
For this scenario, the DRL encoder utilized a Transformer-
based architecture. As presented in Table 2, this incremen-
tal training approach achieved superior performance across
three datasets compared to state-of-the-art multimodal learn-
ing models [Hager et al., 2023]. Furthermore, we evalu-
ated the disentanglement level using the metric introduced
in [Higgins et al., 2017], demonstrating that MIITA achieves
a higher disentanglement rate compared to traditional multi-
modal methods, which is beneficial for the integration of mul-
timodal learning. These findings highlight the broader appli-
cability of the MIITA framework and its potential to inspire
novel strategies for progressive training and disentangling in
general tabular-visual multimodal learning tasks, moving be-
yond the limitations of holistic learning approaches.

4.5 Incremental Tabular Attributes Settings
As shown in Table 3, we explored the impact of different in-
cremental attribute settings in the tabular modality on the per-
formance of MIITA. Based on human cognitive perception,
we categorized the tabular attributes into three groups: those
highly related to the image (i.e., the table attributes are fully
reflected in the image), moderately related, and weakly re-
lated. Experimental results demonstrate that weakly related
tabular attributes provide more information for multimodal

Components/Dataset AD3 DV PK
w/o. VCL & DRL & IDL 0.788 0.900 0.651
w/o. VCL 0.796 0.906 0.662
w/o. DRL & IDL 0.790 0.906 0.679
w/o. IDL 0.773 0.904 0.608
ALL 0.814 0.924 0.692

Table 4: Ablation study of different components in MIITA, VCL
represents Vision Consistency Loss, DRL represents Disentangled
Representation Learning Encoder while IDL represents Incremental
Disentangled Loss.

tasks and play a more significant role in incremental infer-
ence. We also tested different numbers of incremental at-
tributes, categorized as few, moderate, and many. Results in-
dicate that as more attributes are added, MIITA’s performance
generally will improve. Even with a small incremental col-
umn size, MIITA shows performance gains, meaning MIITA
treats incremental attributes as valuable rather than noise.

4.6 Ablation Studies

To validate the effectiveness of the MIITA framework and
the proposed loss functions, we conducted ablation studies
by removing or replacing key components, as summarized in
Table 4. Removing the visual consistency loss caused a no-
table performance drop, emphasizing its role in aligning the
tabular representation with the visual modality. Replacing
the disentangled encoder and incremental disentangled loss
with a standard transformer also led to reduced performance,
highlighting the benefits of disentangling incremental tabular
attributes into interpretable dimensions. Additionally, using
the disentangled encoder without the incremental disentan-
gled loss caused a significant performance decline, showing
that isolating incremental attributes leads to redundancy and
inefficiency. The full MIITA framework, with all modules
included, achieved the best results, demonstrating the effec-
tiveness of each component in addressing the challenges of
incremental tabular attributes in multimodal learning.

5 Discussion and Conclusion

In this work, we introduced MIITA, a novel framework de-
signed to address the challenge of multimodal inference with
incremental tabular attributes. Our extensive experiments
demonstrated that MIITA outperforms state-of-the-art single-
modal and multimodal methods across a variety of datasets.
The key strength of MIITA lies in its ability to effectively in-
tegrate incremental tabular attributes, leveraging disentangled
representation learning and innovative loss functions to main-
tain alignment with existing modalities. We believe that MI-
ITA offers broad applicability to multimodal learning tasks
involving tabular data, and its design principles can be ex-
tended to other domains like audio and video. MIITA repre-
sents a significant step forward in integrating dynamic tabular
data with other modalities and opens new opportunities for
future research in flexible, interpretable multimodal learning.
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