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Abstract

Launching a new blockchain system or applica-
tion is frequently facilitated by a so called airdrop,
where the system designer chooses a pre-existing
set of potentially interested parties and allocates
newly minted tokens to them with the expectation
that they will participate in the system — such en-
gagement, especially if it is of significant level, fa-
cilitates the system and raises its value and also the
value of its newly minted token, hence benefiting
the airdrop recipients. A number of challenging
questions befuddle designers in this setting, such as
how to choose the set of interested parties and how
to allocate tokens to them. To address these con-
siderations we put forward a game-theoretic model
for such airdrop games. Our model can be used to
guide the designer’s choices based on the way the
system’s value depends on participation (modeled
by a “technology function” in our framework) and
the costs that participants incur. We identify both
bad and good equilibria and identify the settings
and the choices that can be made where the de-
signer can influence the players towards good equi-
libria in an expedient manner.

1 Introduction

Launching a new blockchain system is challenging as it re-
quires the upfront contributions of different parties, without
any guarantee that the system will be successful. The charac-
teristics of such launches are as follows:

» There is a set of possibly interested parties. Participating
incurs some cost, hence the system designer performs
an airdrop of tokens to entice the participants: a cer-
tain amount of the available tokens are distributed in ad-
vance to potential contributors, regardless of their (fu-
ture) individual contribution to the system [Allen et al.,
2023]." Identifying the potential contributors typically
piggybacks on an existing blockchain system e.g., as in
“restaking” in Ethereum where new tokens are allocated

!The nature of participation or contribution should be interpreted
broadly and includes holding tokens, participating in governance, or
actively running bespoke software that performs system functions.

based on existing staked ether holdings [EigenLabs,
2014], but more direct approaches have also been at-
tempted, e.g., in worldcoin [Worldcoin, 2025], prospec-
tive users scan their retina in order to receive tokens.

* The eventual success of the system depends on the actual
contributions and level of participation, which, in turn,
reflects on the monetary value of the tokens received via
the airdrop. The higher the overall participation of the
players, the higher is the value of the new token, and thus
also the value of the airdrop allocation received initially.
The dependency between system value and participation
can be modeled by an underlying fechnology function
that we make explicit below.

Potential contributors thus face a dilemma: If they con-
tribute, they incur a cost but (potentially) increase the value
of their token allocation. Naturally, contributors should act
strategically and contribute in a way that maximizes utility.
Several equilibria exist: in good equilibria, “enough partici-
pation” is achieved and the launch of the system ‘“succeeds”
while in the bad equilibria a complete breakdown of the sys-
tem is possible.

From the designer’s perspective, some fundamental ques-
tions need to be addressed in order to understand how a
project can be successfully launched:

What is the level of contribution of the parties that
we can reasonably expect, given a specific alloca-
tion? How can this be influenced by different “to-
kenomics” policies that award larger or smaller
amounts of tokens as part of the airdrop allocation?
What kind of technology functions are more favor-
able in terms of facilitating a successful launch?

In this work, we formally address these questions via a novel
game-theoretic model and its analysis. To illustrate the nature
of the problems, consider the following technology function:

Example 1 (Threshold Technologies.). Consider a system
technology that requires contributions from at least 50% of
the contributors (the total number being N = 10). If this
threshold is met, the system operates correctly, and the to-
ken’s value is high, $10. Conversely, if the threshold is not
reached, the system fails, and the token’s value drops to low,
at 0. With an airdrop granting each participant 1 token and
contribution cost o = 1, two equilibria emerge: (i) no one
contributes, since an individual contribution alone does not
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increase the token’s value but incurs a cost of $1, and (ii) ex-
actly 50% contribute, that is 5 players. If any one of them
contemplated not contributing, that would cause the token’s
value to drop from $10 to O (a net profit change from 10 - 1=
9 to 0). Also none of the 5 players not contributing has any
incentive to contribute, since they are already enjoying the
high value without any cost. Clearly, the latter equilibrium
is preferable, and its existence for higher costs is guaranteed
only if the designer sets the airdrop properly (e.g., for partici-
pation costs of o = 20 USD, an individual airdrop of at least
2 tokens would be required).

The threshold-based technology described above is natural,
but we can consider other types of technologies determining
the system’s value. For instance, [Alabi, 2017] suggests that
several systems follow Metcalfe’s Law: the value of a net-
work is proportional to the square of the number ¢ of contrib-
utors (number of entities holding the native token in a wallet).
In this case, the token’s value follows t(¢) = q - /2, with ¢ a
rescaling constant. The equilibria emerging with this technol-
ogy are different from the example above, leading to different
trade-offs when deciding on the number of tokens to airdrop.

1.1 Our Contribution
Our contributions can be summarized as follows.

Game-theoretic model (Section 2). We propose a game-
theoretic model for airdrops. The model incorporates the key
feature that token allocations are issued in some new token
whose value: (i) is not determined at launch but, (ii) is af-
fected by the actual participation or contribution of the po-
tentially interested parties allocated these tokens according to
some technology function. The analysis of equilibria in our
model (see below) is informative to the designer and answers
basic questions like “Who receives tokens/how many?” as
posed in [Fréwis and Bohme, 2019]. Intuitively, the designer
sets some ‘“‘eligibility” criterion based on past information,
which determines the number and the individual costs (“who
receives tokens and why”), and the corresponding airdrop al-
location (“how many tokens”).

Analysis of equilibria (Section 3). We characterize the set
of pure Nash equilibria for the general setting, as a function of
amount of rewarded tokens, the number of potential contrib-
utors, their individual costs, and the technology which “con-
verts” individual contributions into system value. We show
that the model’s general version corresponds to a potential
game (Theorem 1). Thus, pure Nash equilibria always ex-
ist and are reached via simple best response dynamics. We
further characterize the set of pure Nash equilibria in Sec-
tion 3.1. It is worth noting that (i) we consider heteroge-
neous costs, that is, players have different costs in general,
(ii) pure Nash equilibria do not require players to know about
others’ costs but only about others’ strategies (contributions),
and (iii) these equilibria are quite natural as they arise from
simple best response (as opposed to mixed Nash equilibria for
which no “simple” dynamics exist, and whose empirical sup-
port is comparably limited at the level of individual player
behavior in the lab or field). These considerations are also
fundamental for the designer, as a target.

Refined unique (logit) equilibria (Section 3.2). For some
technologies, bad equilibria where no player contributes co-
exist with good equilibria where a sufficiently high level
of players contribution is reached, thus making the system
valuable. We consider a well-known class of “noisy” best
response dynamics, termed logit dynamics [Blume, 1993;
Blume, 2003] (see Section 1.2 for further discussion) for our
model. These seem natural in our context and do not require
excessive sophistication from the players. We first show that,
in the so-called vanishing noise regime, these dynamics se-
lect only stochastically stable pure Nash equilibria, charac-
terized by Theorem 3, thus discarding bad equilibria in sev-
eral cases (see below). We also consider the so-called finite
noise regime and the corresponding unique stationary equi-
librium [Auletta et al., 2011]. Under some mild restrictions
on the model (Section 4), we provide tight bounds on the
time for the dynamics to reach its equilibrium or a particu-
lar level of contribution (Section 4.1). Time is also a funda-
mental aspect for the designer, as the system needs to reach a
“sufficiently good” state within the given launch period (after
which the system is supposed to start its normal autonomous
operations).

Applications to relevant technology functions (Section 5).
Our model accommodates generic technology functions to
express the token value depending on the actual contributions
of the tokens’ receivers. We apply our results to the important
class of threshold technologies, a natural, simple description
of systems which need an “initial minimal base” to succeed
[Chaidos et al., 2023; Arieli et al., 2018; Yan and Chen, 2021;
Jiménez-Jiménez et al., 2021; Chang, 2020; Shao et al., 2023;
Wang et al., 2023]. Threshold technologies are a typical ex-
ample where bad equilibria with zero participation always ex-
ist, along with good equilibria, so there is a need for theory
to explain how successful systems can reach good equilibria.
Threshold technologies represent a “hard case” in our setting,
in the sense that bad equilibria persist for any airdrop reward
amount. Logit dynamics provide a formal argument that good
equilibria are more likely to be chosen (Theorem 6 and Corol-
lary 2) also in this hard case. The analysis further indicates
when it is optimal for the designer to perform an airdrop at
all (and the optimal rewards) in both the vanishing- and non-
vanishing regimes (Sections 5.1 and 5.2).

The analysis of threshold technologies highlights the need
for low costs to converge to a desired state within reasonable
time (Section 5.3). This highlights the benefits of recent tech-
nological developments like Ethereum’s restaking [Eigen-
Labs, 2014] or Cardano’s partnerchain framework [Ward,
2024], which “reuse” contributors from a mainchain who are
likely to incur lower costs (see [Georganas et al., 2025]).

We stress that our results can be applied to other technol-
ogy functions, including Meltcafe’s Law and other examples
in the literature (details in [Georganas et al., 2025]).

1.2 Related Work

Airdrops. Airdrops are costly as an action, as recording
them on an existing chain incurs transaction fees, necessi-
tating the designer to implement simple allocation strategies
[Frowis and Bohme, 2019; Lommers et al., 2023]. Em-
pirical studies suggest simple airdrops will remain common
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for “projects without established on-chain activity” [Allen,
2024], while others [Messias et al., 2023] recommend ‘“scal-
ing rewards with costs”, aligning with our theoretical find-
ings. Additional work on practical features and goals of air-
drops includes [Makridis er al., 2023; Yaish and Livshits,
2024; Fan et al., 2023; Lommers et al., 2023].

Related Games and Models. Our model can be seen as
a variant of blockchain participation games [Chaidos et al.,
2023] and the combinatorial agency model [Babaioff ef al.,
2012] in contract theory. In the former, players receive a
monetary reward, contrary to our setting where the rewards
are tied to the system value (the variant of universal pay-
ments with no retraction is the closest to ours, whereas in
other variants rewards are even more loosely tied to the sys-
tem’s success); the system value is a threshold technology
of (eligible) players actively contributing. In the combinato-
rial agency model, players receive again a monetary reward
conditioned on the success of the project, expressed by some
“success probability” function on the contributing players.
Consequently, the equilibria in these two models are differ-
ent from ours and these results do not apply to our setting.

A closely related class of problems is crowdfunding games
[Arieli et al., 2018; Yan and Chen, 2021; Jiménez-Jiménez et
al., 2021; Chang, 2020; Shao e al., 2023; Wang et al., 2023].
Similar studies concern public funding projects [Soundy et
al., 2021; Bild et al., 2023] and public goods projects on net-
works [Bramoullé and Kranton, 2007; Galeotti et al., 2010;
Dall’Asta et al., 2011; Yu et al., 2020]. These models are
mathematically equivalent to our games in the case where
the designer cannot change the rewards. Specific problems
correspond to technology functions being S-shaped [Burago-
hain et al., 2003] or a threshold function [Galeotti et al.,
2010]. Stochastic stability is studied in [Boncinelli and
Pin, 2012]. All these problems (and ours) belong to rich
class of public goods games. These are generally com-
putationally hard, even when the underlying (technology)
function is specified by a network [Papadimitriou and Peng,
2021; Gilboa and Nisan, 2022; Klimm and Stahlberg, 2023;
Do Dinh and Hollender, 2024; Galeotti and Goyal, 2010].

Logit Dynamics. Logit dynamics have been largely studied
in the context of games and equilibrium selection problem,
that is, as a refinement of pure Nash equilibrium (see e.g.
[Blume, 1993; Blume, 2003; Montanari and Saberi, 2009;
Asadpour and Saberi, 2009; Alés-Ferrer and Netzer, 2010;
Alos-Ferrer and Netzer, 2015; Auletta et al., 2011; Auletta
et al.,, 2012; Auletta et al.,, 2013b; Auletta et al., 2013a;
Okada and Tercieux, 2012; Coucheney et al., 2014; Ferraioli
et al., 2016; Mamageishvili and Penna, 2016; Ferraioli and
Ventre, 2017; Alés-Ferrer and Netzer, 2017; Penna, 2018;
Kleer, 2021]). This is usually done in two ways. The first
is to consider the so-called vanishing noise regimes and a re-
sulting set of stable equilibria (see e.g. [Blume, 1993; Alds-
Ferrer and Netzer, 2010; Alds-Ferrer and Netzer, 2015]). The
second is to consider non-vanishing noise regimes and the
corresponding unique stationary distribution of the process
as the equilibrium concept [Auletta er al., 2011]. The logit
response model also finds applications in economics [Costain
and Nakov, 2019], in pricing algorithms [Miiller ez al., 2021;

van de Geer and den Boer, 2022], and coalitional bargaining
[Sawa, 2019].

2 Modelling Airdrop Games

The model captures the following key aspects of airdrops: (i)
The designer chooses the amount of tokens to be airdropped
to potential contributors. (ii) Potential contributors decide
whether to perform a (costly) task for the system. The re-
sulting system value depends on the total contribution and
the underlying “technology” of the project. (iii) Contributors
maximize utility, resulting in an equilbrium and system value.

The designer faces a tradeoff between the airdrop amount
and the resulting system value (too small airdrops do not in-
centivize enough contributors and thus the project fails, while
giving away all tokens is not optimal either because it mini-
mizes profit).

Parameters and Underlying Game

Contributors. There is a set of n potential contributors
(players): Each contributor chooses her actual contribution
(strategy) a; € A; € RT, incurring in a cost of ¢; - a; where
¢; denotes the per unit cost of <.

System (technology) value. The overall value of the sys-
tem depends on each individual effort or contribution, i.e., on
the strategy profile a = (ay, ..., ay) and it is equal to V(a)
for some monotone non-decreasing function (higher contri-
butions yield the same or higher value).

Token value (and total supply). Given the token total sup-
ply (the overall number of tokens of in system) T3,, the value
or price of the token is
Ha) = L) (1)
tot
Airdrop (Token) Allocation. The designer allocates some
constant fraction p € [0,1] of the overall token supply as
an airdrop, i.e., to be distributed equally among the players.
Thus, each player receives y tokens, where
P Thot
' n
(For the sake of simplicity, we allow  to be a fractional num-
ber, and ignore rounding effects.) It is worth noting that the
monetary reward (number of tokens times the token price) is
independent on the token total supply 73, and it equals to a
fraction p/n of the system value,

pelo.1]. )

W+ p-Tiot Via) _p
v-tla) = - T, —n V(a) . 3)
Utilities. Players’ utilities equals the monetary reward re-
ceived (number of tokens times the token value) minus the
incurred cost
— N
ui(a) ==~y -t(a) —c;-a; = E~V(a) —ci-a;. 4
Equilibria. A strategy profile ¢« = (aq,...,a,) is a pure
Nash equilibrium if no player ¢ can increase her utility by
changing her strategy a;, that is,

ui(a) > ui(a") L P
n

foralliand all a’ = (a1,...,a;-1,6G},Qix1, ..., 0n).
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Logit dynamics. Logit dynamics [Blume, 1993; Blume,
2003] are a kind of “noisy” best response dynamics where
players have some inverse noise or learning rate 5 > 0 and
each of them responds according to a so-called logit response

exp(Bu;(a;,a—;))

o ©)

Pl (aila_;) =

where Zf is a normalizing factor so that the above
formula is a probability distribution, and (z,a_;) :=
(a1y...,6_4,T,Qiy1,...,a,). For B = 0, players choose
a strategy at random with uniform distribution, while for
B — 00, they tend to the best response rule.> At each step of
the dynamics, a randomly chosen player revises her current
strategy according to the logit response above (6). Logit dy-
namics converge to a unique equilibrium 7° given by the sta-
tionary distribution of the underlying Markov chain: 7°(a)
is the probability of players selecting profile a after suffi-
ciently many steps of revisions (“learning”) have been per-
formed. Note that this depends on the parameter 5. For the
class of exact potential games, in the vanishing noise regime
(8 — o0), equilibrium 7 concentrates on the subset of pure
Nash equilibria whose potential is optimal [Blume, 1993;
Blume, 2003]. The mixing time of the underlying Markov
chain is the time required by the dynamics to reach the
equilibrium 77 starting from any state [Levin et al., 2006;
Auletta et al., 2011].

Objectives and Metrics

There are different (possibly conflicting) metrics to evalu-
ate system performance, given contributions, costs, the de-
signer’s profit etc.

System Value. This is the value specified by the technology
function V' (a) as a function of all contributions.

Social Cost. This is the sum of all players costs,

SC(a,c) := Zci ca; . @)
Users’ Welfare. This is the sum of all players’ utilities (4),

UW (a,p,c) = Zui(a) @£ p-V(a)—SC(a,c). (8)

Profit. This is the value of the remaining tokens remaining
with the designer, after subtracting the airdropped tokens and
the cost dy for developing the technology V' (),

profit(a,p) = (1 —p) - V(a) —dy . )

The designer strategically chooses the airdrop allocation p
aiming to maximize its profit (utility) defined as in (9). > We
consider which system values can be achieved given the un-
derlying technology, players’ costs, and their utility maximiz-
ing strategies. Note that the designer’s profit can be negative
(also when the former does not provide any reward, p = 0).

2In case multiple best response exist, the corresponding player
chooses any of them with uniform distribution.

3Note that we still assume the designer to move first by announc-
ing the airdrop p, and then the (other) players will reach some equi-
librium accordingly.

This corresponds to inherently “bad” projects that are des-
tined to fail and should not be implemented. More generally,
we consider a technology “implementable” or “profitable” if
there is some equilibrium (also in randomized sense — Sec-
tion 3.2) which yields a positive profit to the designer.

Special Cases

We shall sometime consider the following relevant restric-
tions on the technology functions, the possible contribution
levels, the possible costs, and combinations thereof.

Anonymous Technologies. It is natural to assume that the
value of the system simply depends on the overall level of
contribution £ = )" a;, that is, V(a) = V(a’) whenever
> ai =y, a;. We refer to this case as the anonymous tech-
nology function. With slight abuse of notation, we write V' (¢)
instead of V' (a).

Binary Contributions. In some settings where potential
contributors have only two options (strategies), either to con-
tribute (a; = 1) or to not contribute (a; = 0), we refer to this
restriction as binary contributions.

Uniform Costs. It is natural to consider equal cost for
all (e.g. if they are fully determined by the type of hard-
ware/resources required). This means ¢; = «, with a > 0.

3 Airdrop Games: Main Characteristics

In this section, we consider games with utilities in (4), airdrop
allocations (2) in full generality. We show that these games
are always potential games (Theorem 1), implying that (i)
best/better response dynamics always converge to pure Nash
equilibria and (ii) logit dynamics equilibria can be character-
ized in terms of potential, implying that bad equilibria are not
selected under vanishing noise (Section 3.2).

Theorem 1. For airdrop allocation (2), the game in (4) with
arbitrary efforts and any technology function is an exact po-
tential game with potential function

é(a) =~ - t(a) — SC(a) = % V(a) — SC(a). (10)

3.1 Characterization of pure Nash equilibria

The next theorem characterizes the set of pure Nash equilib-
ria. Intuitively, airdrop allocations should be neither too high
(otherwise players can benefit by increasing their contribu-
tion) nor too low (otherwise they can benefit by reducing their
contribution). Note an important asymmetry between the two
cases: increasing the contribution is never beneficial when the
system’s value does not change, while decreasing the contri-
bution is always advantageous under these conditions.

Theorem 2. For any technology function and arbitrary ef-
forts, and for airdrop allocations (2), the set of pure Nash
equilibria is given by the strategy profiles a such that the fol-
lowing two conditions hold for all i:

1. Forall a® = (a] ,a_;) with a}” > a;:

0=
£<Ci'

a*—ai
& < Ci - yatymvay Whenever V(a) < V(a™).
2. Foralla™ = (a; ,a—;) witha; < a;:

L >, ai—a;
ol

W and V(G) > V(CL_) .
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The next corollary provides a more convenient characteri-
zation for certain restrictions of interest.

Corollary 1. For any technology function and binary efforts,
and for airdrop allocations (2), the set of pure Nash equilibria
is given by the strategy profiles a such that the following two
conditions hold:
1. For all i such that a; = 0: £ < m or
V(l,a_;) =V(a).
2. For all j such that a; = 1: £ > W](()a,]) and
V(0,a_;) < V(a).
Moreover, for any anonymous technology function and binary

efforts, the set of strategy profiles a which are an equilibrium
corresponds to those satisfying these two conditions:

o)
< v v O V+1)=V({).

(1)
2. For0>0: £ > po s and V(U —1) < V(0).
(0)

min

1. Forf < n:

3o

where c a; = 0} is the smallest cost among

players not contributing, and e = max{c; : a; = 0} is
the largest cost among players contributing.

= min{¢; :

Example 2 (linear technology with heterogeneous costs).
For linear technologies, V(£) = Ay - £ with Ay > 0, the
set of pure Nash equilibria is characterized by the {* such
that (w.l.o.g. assume c; < co < --- < ¢,) these inequal-
ities hold: ;\'%; < 'IBL < C‘;% . The optimal strategy (profit
maximizing) for the designer is to choose the minimum p sat-
isfying the above condition, thus making the first inequality
tight: p* = argmax,cp, (1 —p}) - Av -, p; = n- S, which
is equivalent to set p* = argmax,c(,)(A\v —n-cg) - L.

3.2 Logit response equilibria

We next consider logit dynamics and the corresponding equi-
libria. Specifically, for the vanishing noise regime (5 — o),
the dynamics selects a subset of so called stochastically stable
pure Nash equilibria (see e.g. [Asadpour and Saberi, 2009]).

Theorem 3. For any technology function and arbitrary ef-
forts, for airdrop allocations (2), and for vanishing noise
(B — ©0), the dynamics converges with probability which
tends to 1 to states of maximal potential. * In particular, the
corresponding stationary distribution 7, depending on the
airdrop allocation p, satisfies

1
SOTMAT € POTMAX,
lim (m,(a)) = { POTMAX,] Jora 2 11)
B—ro0 0 fora ¢ POTMAX,

where POTMAX, := argmax,{¢(a)} is a subset of equilib-

ria which depends on the airdrop allocation p as follows:
POTMAX, = argmax, {B -V(a) — SC(a)} . (12)
n

The next example shows that, the bad equilibria in which
no player contributes are selected with vanishing probability,
provided the airdrop allocation p is sufficiently high.

“Note that in this work we do not change sign in the definition of
exact potential game and related dynamics.

Example 3 (rule out bad equilibria). We consider a two-
player game with a simple anonymous technology function,
binary contributions, and uniform costs (¢; = «). The
technology function is an AND technology where a high
(non-zero) value is achieved only if both players contribute,
V() = V(1) = 0 and V(2) > 0, which implies that
(0,0) and (1,1) are the only two Nash equilibria. Theo-
rem 3 says that logit-response dynamics with vanishing noise
(8 — o0) the good equilibrium (1,1) is reached with proba-
bility tending to 1 if and only if the airdrop allocation p sat-
isfies £ - (V(2) — V(0)) > 2a. Also note that, since p < 1,
this holds only for V(2) — V(0) > 4a.

To repeat the intuition here, when contributors are prone to
some experimentation, instead of just picking best responses,
the system is likely to end up in the high value equilibrium
instead of the low one.

Profit and optimal airdrops revisited (logit dynamics)

We observe the same tradeoff regarding the optimal choice
of airdrop p. A too small p may result in a bad equilibrium
in which none cooperates, thus a system with small value
t(0). A very high p, on the other hand, will leave the system
designer with only a tiny fraction of the system ownership
(value). In order to deal with the logit (randomized) equilib-
rium 7, we simply consider the expected value of the system,
and extend the definition of profit (9) in the natural way:

profit(p) = (1 — p)V(m,) — dv,
where V(7,) 1= mIVETr [V(a)]. (13)

4 Binary Efforts and Uniform Costs

We consider a binary effort scenario where players contribute
or not (a; € {0,1}) and costs are uniform (c¢; = « for all 7).
Under these restrictions, our model is characterized by three
parameters: (i) «v is the cost per player when contributing; (ii)
B is the rationality level of the players; (iii) p is the airdrop
allocation — the corresponding number of tokens =y is given by
(2). While the rationality level /3 is exogenous to the system,
the designer can change p, and costs « are part of the airdrop
design (see [Georganas et al., 2025] for practical examples
where the designer can reduce o).

4.1 Logit equilibria and convergence time

In this section, we make use of birth and death processes to
analyze the case of binary effort and airdrop rewards, when
also the technology function is symmetric. In this case, the
dynamics boils down to a birth and death process, where we
keep track of the number ¢ of actively participating players
in a given profile a, i.e., ¢ = ), a; and a; € {0,1}. Hence,
the birth and death process has n + 1 states, £ € [0,n]. The
stationary distribution is thus

#(t) = (’;) (L) (14)

where 7({) is the stationary distribution of a generic state
a with ZZ a; = ¢, and the binomial coefficient counts the
number of such states in the original Markov chain which are
“erouped together” in the birth and death process. The birth
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and death process has transition probabilities p(¢) and ¢(¢) of
moving “up by one” or “down by one”, respectively, given by

p(f)=n_é

where pf (+) is the logit response (6).
Since our process in (15) is an irreducible birth and death
chain, the following “sharp” bound on the mixing time holds.

Theorem 4 (Theorem 1.1 in [Chen and Saloff-Coste, 2013]).
Let £y be a state satisfying 7 ([0, o)) > 1/2 and 7([ly, n]) >
1/2, where 7w(I) := Y, 7(£), and set

14
P asi), al€) =~ pf(Olas) (15)

Lo—1 n
[ R & )
Teutoff = { ;:0 ﬁ-(g)p(g),[:e§0+1 #0al0) } . (16)

Then the mixing time of the logit dynamics satisfies Tmix =
O(Tcutoff) and, in particular, the following bounds hold:

(1/24) : 7::utoff S 7:nix S 288 - 7::utoff . (17)

Note that such an ¢, always exists (sum up all 7(¢) from
0 until the smallest £, where the sum of these probabilities is
at least 1/2). We next introduce useful definitions to analyze
the hitting time of a target ¢, based on the technology’s “local
steepness’.

Definition 1. We define the drift at location { as the ratio
d(0) := w(£+ 1)/7(£). We also say that technology function
V is s-steep at some interval I = [(1, 03] if V({+1)-V () <
sforalll € I\ {{s}.

Intuitively, the drift describes the tendency of the process
to “move down” (drift < 1) or “move up” (drift > 1). The fol-
lowing theorem states that the hitting time for a target value ¢
grows exponentially with the length of any interval, preceding
the target value, where the tendency to move down persists.
The theorem further connects the drift to the “flatness” of the
technology function (see the threshold function in Section 5).
Its proof is based on bounds in [Palacios and Tetali, 1996].

Theorem 5. The hitting time Thiwing (£) of the logit dynamics
to reach a state with contribution level { starting tom the state
with contribution level { = 0 can be bounded as follows:
1. If the drift in some interval I = [{1,{s] is at most d,
then ﬁitting(g) > (1/d1)mfor all ¢ > 0.
2. If V is s-steep in some interval 1 = [l1,0s],
then for all £ > [ly it holds that Thiting() >

(exp (-8 (2-s—a))- %)52%1'

S Application to Threshold Technologies

We analyze a threshold technology, modelling scenarios in
which the system is either highly valuable if the overall con-
tribution of the players reaches a certain threshold 7, and less
valuable otherwise:

Viow
V({¢) =
( ) {‘/high

where £ is the number of actively participating players, i.e.,
¢ = >,a; and a; € {0,1}. The corresponding token val-
ues according to (1) are thus fiow = Viow/Tior and thigh =

l<T

/ > 7 Viow < Wmigh ; (18)

Vhigh/Trot. We are interested in the probability that the un-
derline dynamics selects the high value (optimal) outcome,

Dhigh(p) = ag{ [V (a) = Vhign] - (19)

5.1 Stochastic stability (5 — oo regime)

Theorem 6. For any threshold technology (18) with airdrop
rewards (2) and vanishing noise (3 — o), the probability
of selecting the high value outcome (19) undergoes a sharp
transition given by the rewards p:

a-n-T

L p>pe P
o ‘/high_‘/low

. (20
0 p<p.’ (20)

ﬁhHH;O Phigh (p) = {

For the edge case where p = p., the probability satisfies
limg 0 phigh(p) = 1/ (1+ (7)) -

An immediate corollary of the previous result follows. In-
tuitively, the corollary states that there exists three regions:
(i) for very high cost, the probability of selecting the good
outcome vanishes no matter how we set the rewards, and thus
the optimal strategy of the designer is to set no airdrop, (ii) for
intermediate costs, though it is possible to set p > 0 such that
the probability of selecting the good outcome tends to one,
the designer still prefer to set p = 0, and (iii) for low costs
there is p > 0 maximizing the designer’s profit and making
the probability of selecting the good outcome going to one.

Corollary 2. For any threshold technology (18) with airdrop
rewards (2) and vanishing noise ( — o), the probability of
selecting the high value outcome (19) is as follows:

1. For a-n-7 > Vihigh — View the probability of selecting the
high value outcome vanishes for any airdrop reward p.
Hence, and the best strategy for the designer is to give no
airdrop rewards, which guarantees a profit of View — dy.

2. For o -n -7 < Vhigh — View the probability of selecting
the high value outcome tends to 1 for any airdrop reward
p > pe. The optimal strategy (profit maximizing) for the
designer is as follows:

(a) Fora-n-7 > (Vhigh — Viow) - (1 — Viow/Vhigh) it
is still optimal for the designer to give no rewards
(causing the probability of selecting the good out-
come to vanish).

(b) Fora-n-1 < (‘/high - Mow) : (1 - Wow/%igh)
the best strategy for the designer is to set airdrop
rewards slightly above p. < 1, which guarantees a
profit of (1 — pe — €) Vhigh — dv for any small € > 0.

Note that the “intermediate” regime in part 2a of the corol-
lary above occurs only for Vio,, > 0. Here high rewards could
make the system succeed, but they are not optimal for the
designer. For Vi, = 0 we have a single transition (either
provide no airdrop or set the airdrop slightly above p.).

5.2 Non-vanishing noise (5 finite regime)

In this section, we analyze logit dynamics for threshold tech-
nologies in the case of non-vanishing inverse noise 5 > 0.
Research suggest that in practice people respond according
to some specific value of 5 which is approximately the same
across different games and situations they face (details in
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Figure 1: On the left, larger costs « increase the hitting time (100
repetitions 95% confidence). On the right, larger rewards values p
help to maintain the dynamics above the threshold once it is reached.

[Georganas et al., 2025]). The next result provides useful
bounds on the probability that the high value outcome is se-
lected at equilibrium by the dynamics.

Theorem 7. For any threshold technology (18) with airdrop
rewards (2) and any inverse noise parameter 3 > 0, the prob-
ability of selecting the high value outcome (19) is monotone
increasing in the rewards p and, in particular, it has the fol-
lowing form:

1 B
i = » B=="(Vhigh = Viow) ,
Prign () 1+ C -exp(—pB) n (Vhign ow)
where C = C(af,n,7) = 71;5:&*‘0()0) does not depend on

rewards p nor on the values Vi, and Viigh.
Based on the result above, we are able to characterize the
optimal airdrop rewards for the designer.

Theorem 8. For any threshold technology (18) with View =

0, and with airdrop rewards (2) and any inverse noise param-

eter 3 > 0, the designer’s profit (13) is
l—p

14 C-exp(—p- B)

profit(p) = Vhigh - —dyv, (2D
where quantities C and B = g - Vhigh are defined as in The-
orem 7. Moreover the following holds:

1. For n > B - Vhigh the optimal strategy (profit maximiz-
ing) for the designer is to give no airdrop rewards, which
guarantees a profit of Viigh - Phigh(0) — dy.

2. For n < B - Vhigh the optimal strategy (profit max-
imizing) for the designer is to set an airdrop reward
p<p=1-1/B=1- B‘ngh' The probability of
selecting the high value outcome for the designer’s op-
timal rewards p* is bounded as follows: phigh(p*) <

1

N 1 N
phigh(p) T 14C-exp(1-B) = 1+C-exp(1—3-Vyign/n) "

3. Forn < 8- Vihigh - (1 — phign(0)) the optimal strategy
(profit maximizing) for the designer is to give strictly
positive airdrop rewards.

5.3 Convergence time

In this section, we study the time for logit dynamics to con-
verge to its equilibrium (stationary distribution) and to the
good outcome of the threshold function (¢ > 7). Specifically,
we provide tight bounds on the mixing time (Theorem 9) and
on the hitting time of a target value (Theorem 10).

Some intuition first. We observe experimentally (Figure 1)
that lower costs « accelerates convergence to the desired
“high value” region, while increasing rewards p helps to
maintain the desired equilibrium (but it does not accelerate
convergence). Intuitively, the dynamics converge quickly to
an “average” contribution level £* which depends only on a3:

. 1
" =mn-pag, Dap (22)

T 1+exp(af)
Then, convergence to the desired “high value” region ¢ > 7
is fast for 7 < ¢* but becomes slow for 7 > £*. This suggests
that the convergence time grows with the gap 7 — ¢* and the
hard case is when £* < 7.

Formal analysis As for the mixing time, we leverage on the
bounds for birth and death chains (Theorem 4). To this end,
we note that in this particular case of threshold functions, the
birth and death probabilities (15) assume a special form. This
leads to the next theorem, which provides a lower bound on
the mixing time for the “useful” scenario, that is, when the
success probability is larger than the failure probability.

Theorem 9 (mixing time). For any threshold technology (18)
and airdrop rewards (2), if phigh(p) > 1/2, then the mixing
time can be bounded as follows: Tmix = ©(Teutoft) and

exp(T — 1)
(’Til)

We next provide bounds on the hitting time of the good
value, that is, to reach a contribution level ¢ = 7. The first
part of the next theorem says that the dynamics converge
quickly to a contribution level £* given by (22).

7::utoff 2 Z m 2 eXp(aﬁ) :
=0

. F(Op(0) R

Theorem 10 (hitting time). For any threshold technology
(18) and airdrop rewards (2), let Thiting(¢) be the expected
time for the logit dynamics to reach state £ starting from state
0. Then, for * defined as in (22), the following holds:

1. (Upper Bound). Thiting(£*) < O (n2 . nz*).

T—4

2. (Lower Bound).  Thitting(T) > (exp(aﬁ) . %) 4

forall 0 < ¢ < 1. This implies, Thitting(T) > (1 +
1/6*)7—6*—1'

The second part of the theorem states that the time to reach
the “high value” region increases with larger a3, growing ex-
ponentially with the gap between ¢* and 7 > £*.

6 Conclusions and Future Work

This paper presents a game-theoretic framework to address
the dynamics involved in launching a new blockchain, specif-
ically focusing on how contributions can be incentivized
through token rewards and the possibility of support from
an established mainchain. The analysis provided, offers both
theoretical and practical insights into the design of blockchain
launches, airdrop mechanisms, and the use of mainchain re-
sources to achieve successful outcomes.
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