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Abstract

Structural-functional coupling (SC-FC cou-
pling) offers an effective approach for analyzing
structural-functional relationships, capable of
revealing the dependency of functional activity on
the underlying white matter architecture. However,
extant SC-FC coupling analysis methods primarily
center on disclosing the statistical association
between the topological patterns of structural
connectivity (SC) and functional connectivity
(FC), while often neglecting the neurobiological
mechanisms by which the brain typically transmits
and processes information in the form of spikes.
To address this, we propose a biologically inspired
deep-learning model called spike-based coupling
neural networks (SCNNs). It can simulate spiking
neural activity to more realistically reproduce the
interaction between brain regions and the dynamic
behavior of neuronal networks. Specifically, we
first use spike neurons to capture the FC temporal
characteristics of the original functional magnetic
resonance imaging (fMRI) time series and the
SC spatial characteristics of the structural brain
network. Then, we use synaptic and neuronal filter
effects to simulate the coupling mechanism of
SC and FC in the brain at different temporal and
spatial scales, thereby quantifying SC-FC coupling
and providing support for the identification of brain
diseases. The results on real datasets show that
the proposed method can identify brain diseases
and provide a new perspective for understanding
SC-FC relationships.

1 Introduction

Analyzing the relationship between structure and function
in the human brain is a current hot topic in neuroscience
[Sporns, 2013]. Fundamentally, the brain’s structure provides
the physical basis for its complex functions, while functional
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changes may prompt structural adjustments in turn [Anderson
and Finlay, 2014]. Most studies have indicated a close inter-
connection and synergy between the brain’s regional struc-
tures and functions [Park and Friston, 2013; Pessoa, 2014;
Petersen and Sporns, 2015]. In addition, the relationship be-
tween the local optimization function of the brain and the pat-
tern of neuronal activity has prompted researchers to try to
imitate the structure and function of the brain and develop
artificial neural network models [Kanwisher et al., 2023].
Therefore, in-depth research on the brain structure-function
relationship aids in understanding brain complexity and pro-
vides crucial theoretical support for artificial intelligence.

Structural-functional brain connectivity coupling (SC-
FC coupling) is a new paradigm for analyzing structural-
functional relationships [Fotiadis er al., 2024]. Structural
connectivity (SC) usually refers to the physical connection
between brain regions [Zhang er al., 2024], while func-
tional connectivity (FC) refers to the temporal co-activation
between activities in different brain regions [Gao and Wu,
2016]. SC-FC coupling integrates cross-information of struc-
tural and functional brain networks and can detect abnormali-
ties more sensitively than relying on either network alone [Ma
et al., 2021]. Existing studies have shown that changes in SC-
FC coupling are considered potential biomarkers [Popp et al.,
2024] and are closely related to the occurrence of a variety of
brain diseases, such as schizophrenia, epilepsy, Alzheimer’s
disease, and Parkinson’s Disease, etc [Zhu and Yu, 2025;
Sun et al., 2017]. In addition, SC-FC coupling has been
shown to be a unique feature of brain organization, which
is affected by genetic factors and provides important clues
for understanding changes in cognitive function at different
developmental stages [Gu et al., 2021].

A variety of methods have been developed over the past
decade to quantify SC-FC coupling, including statistical
models, biophysical models, and communication models [Za-
mani Esfahlani et al., 2022; Griffa et al., 2022]. However,
the complex relationship between structural and functional
connectivity remains elusive, and current state-of-the-art SC-
FC coupling methods have not fully considered the neurobi-
ological mechanisms between SC and FC. Specifically, many
SC-FC coupling methods primarily focus on finding statisti-
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Figure 1: The architecture of the proposed spike-based coupling neural networks (SCNNs) for structural-functional coupling analysis of brain
networks. a. Data preprocessing, b. Spike FC feature extraction module, c. Spike SC feature extraction module, d. Spike coupling pooling

(SCP), e. Example of output neuron classification.

cal correlations between SC and FC topology patterns, lack-
ing principled system-level integrated to characterize the cou-
pling mechanism of how neuronal populations communicate
and generate significant brain function on top of structural
connectivity [Dan ef al., 2023]. Therefore, to more accurately
describe the SC-FC coupling relationship, models more con-
sistent with neurobiological principles must be employed.

To this end, we propose a biologically inspired deep-
learning model called spike-based coupling neural networks
(SCNNs), which uses spike neurons to characterize the dy-
namic interaction behavior of SC and FC to understand the
SC-FC coupling relationship in the human brain. In addition,
to establish the interaction mechanism between SC and FC in
the brain, that is, how to accurately quantify SC-FC coupling,
we focus on designing a new spike coupling pooling (SCP)
module to effectively integrate the interaction between brain
structure and function. The schematic diagram of our pro-
posed method is shown in Figure 1. Specifically, we use spike
neurons to capture the FC temporal characteristics of the orig-
inal fMRI time series and the SC spatial characteristics of the
structural brain network, and use synaptic and neuronal filter
effects to simulate the coupling mechanism of SC and FC in
the brain at different temporal and spatial scales. Finally, we
fuse SC and FC spike trains through the SCP module to ob-
tain spike SC-FC coupling for brain disease identification. In
this work, our contributions are summarized as follows:

* We propose an end-to-end spike train-based framework
for analyzing structural and functional relationships,
called spike-based coupling neural networks (SCNNGs).
To the best of our knowledge, the proposed SCNNs are
the first deep-learning model that uses spike neurons to
understand the SC-FC coupling mechanism from a neu-
robiological perspective.

* We design a novel low-rank prior-based spike coupling
pooling (SCP) module to quantify SC-FC coupling by
fusing the variation characteristics of SC in the spatial
dimension and the temporal variation of FC in the tem-
poral dimension.

* We evaluate the performance of the proposed method us-

ing a real epilepsy dataset, and the results show that the
proposed method outperforms existing methods.

2 Method

2.1 Subjects and Data Preprocessing

In this study, we recruited 103 frontal lobe epilepsy (FLE) pa-
tients (53 men, 50 women, mean age 24.1), 89 temporal lobe
epilepsy (TLE) patients (44 men, 45 women, mean age 25.9),
and 114 normal controls (NC) (58 men, 56 women, mean age
26.2). The experiment was approved by the Ethics Commit-
tee of Jinling Hospital, Nanjing University Medical School.
All subjects provided written informed consent before partic-
ipation. All subjects were right-handed. The data was col-
lected by a Siemens Trio 3 T magnetic resonance scanner.
We used DPARSF and spm12 toolboxes to process the fMRI
data, including time correction, alignment, normalization,
and detrending and then applied a bandpass filter of 0.01-
0.08 Hz. The resulting volume had 240-time points and was
divided into 90 regions of interest (ROI) using the automatic
anatomical labeling (AAL) atlas. We used PANDA and FSL
toolboxes to process Diffusion Tensor Imaging (DTI) data,
including distortion correction, extraction of brain masks,
deterministic tracking, and definition of anatomical regions
based on AAL, with fiber count representing connectivity
strength.

2.2 Spiking Neuron Model

The general Leaky Integrate-and-Fire (LIF) neuron [Gerstner
and Kistler, 2002] only focuses on the membrane potential
dynamics, ignoring synaptic dynamics and SNN filtering, it
is difficult to handle the temporal and long-term dependency
characteristics in SC and FC. Thus, we use infinite impulse
response (IIR) filters to represent the dynamics of LIF neu-
rons [Fang et al., 2021], using their recursive structure to cap-
ture the long-term memory effect of the signal and handle the
historical dependency and temporal feedback in SC and FC.
We denote the input spike train as a sequence of time-

shifted Dirac delta functions: z; = >, 6(t — t7), where t/
denotes the arrival time of the j;;, spike from the 7., input
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synapse. Similarly, the output spike train can be defined as
o) =>6(t—t),t! € {t/ : v(t!) = Vipre}. Thus, the
SNN model is reformulated as a linear constant coefficient
difference equation:

U[t] = _Vthrer[t] + Zwifi[t] (1)
r(t] :e%rlr[t—l] + Ot —1] 2)
O[t] = Hea(v[t] — Vinre) 3)

filt] = a1 filt = 1] + aofi[t — 2] + Bt = 1] (4)
where ¢ is the time, v[t] is the neuron membrane potential,
Vinre 1s the threshold potential, w; is the associated weight of
the 4;;, synapse, M is the total number of synapses, 7[t] is the
reset filter, 7,. controls the decay speed of the reset impulse,
filt ] is the second-order IIR filter of the Teh, synapse o =

- _ Tm+Ts
eTm +eTs a9 = —€ TmTs 3= eTm —eTs, Ty and T,
are time constants, and Hea(-) is the Heaviside step function,
ifx > 0, Hea(z) = 1, otherwise Hea(z) = 0.

In biological systems, axons often connect multiple target
neurons, and their synapses share the same state [Luo, 2021;
Shen et al., 2021]. Therefore, tracking the state of synapses
with the same neuron is unnecessary, because these synapses
can share the same state and computation. Furthermore, the
state of neuron v[t] may also depend on past states, which en-
ables SNN to be interpreted as IIR filter networks with non-
linear neurons:

N1
Vit =0Vt —1] + X)MJ — VinreRt] (5)
RLt] = ARL[t — 1] + Ol[t — 1] (6)
Olt] = Hea(VHt] — Vinre) (7

Za]ijlt—

where ¢ and [ represent the index of the neuron and layer re-
spectively, 7 represents the input index, and V; is the number
of neurons in the I, layer. V}![t] is the neuron membrane po-
tential, R[t] is the reset voltage, O'[] is the spike function,
and F]l [t] is the postsynaptic potential. 7 and A are the coef-
ficients of the neuron filter and the reset filter respectively. P
and Q represent the feedback and feedforward orders, while

» and ﬂl are the coefficients of the synaptic filter. We
show the SNN model simulated by IIR filters in Figure 2(a).
It is worth noting that better to simulate the dynamic behav-
ior of biological neural networks, we use alpha synapses [Ye,

1 2

+§:ﬁ;0§1t—ﬂ (8)

2021] to simulate neuron, where oy = 2¢~ 7+, ag =—e T,

ap = 0,p € {3,4,..,P} and 3, = fe T, By = 0,

q€1{0,2,3,...,Q}.

Let Azxon(-) represent the operation of transmitting a spike
to the next neuron, which can be simulated by a second-order
exponential IIR filter in Eq. 8. Let SN () represent the behav-
ior of the neuron updating the membrane potential and firing

b ﬂAxon(') operation ﬂ&/\/’(‘) operation
Spike @ -
/ (
— / | 1l O . .
Input ’\ Axon \Synapse1l /= ‘ Output
Neuron m Neuron n

Figure 2: a. SNN model simulated by IIR filter, including two oper-
ations: Azon(-) and SN(-). b. The connection structure composed
of two biological neurons shows the neural simulation process of
two operations: Azon(-) and SN (-). For intuitiveness, we assume
that the axon of neuron m only contains synapse 1, the correspond-
ing weight is w1, and the remaining synapses are negligible.

spikes, as shown in Eq. 5 to 7. Therefore, the SNN model
simulated by the IIR filter can be divided into two operations,
Azon(-) and SN(-). For ease of understanding, we provide
a specific example in Figure 2(b).

2.3 Spike FC Feature Extraction Module

Based on the advantages of SNN in accurately capturing
spike train and temporal patterns [Guo et al., 2023], we adopt
a temporal coding method to encode the signal through pre-
cise spike timing, effectively representing FC information in
the original fMRI time series. In addition, we use the SNN
model simulated by IIR filters to capture the time series fea-
tures in fMRI. Let G/¢ € RV *T represent the time series ma-
trix of fMRI, N correspond to the set of brain regions nodes,
and T correspond to the length of the time series. We use G/¢
as the functional input of SCNNs and obtain the FC spike ma-
trix through the Azon(-) and SN (-) operations:

S; = SN (Azon(S;-1)), 1=1,...,L )

where [ is the layer index, here . = 3. When ! = 1,
S;_1 = G7¢. The final output FC spike matrix is denoted
as S7¢ € RV*T, We show the detailed process for calculat-
ing the spike FC in Figure 1(b).

2.4 Spike SC Feature Extraction Module

Considering the graph structure of structural connections, this
study uses Convolutional Neural Networks for Brain Net-
works (BrainNetCNN) [Kawahara et al., 2017] to obtain
complex features from structural brain network data. Specif-
ically, we use E2E (Edge-to-Edge) and E2N (Edge-to-Node)
convolutions to extract features from structural brain net-
works hierarchically. We will introduce these two convolu-
tion operations in detail. Let A%¢ € RINIXINI denote the
adjacency matrix of SC and IV correspond to the node set of
brain regions.

E2E Convolution. E2E convolution is used to extract edge
features from the original adjacency matrix. It takes advan-
tage of the topological structure of the network and performs
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filtering operations by combining the weights of the edges of
shared nodes. Its mathematical form is expressed as follows:

|V

=f" Z?‘" AL (10)

where 7 € RINl and ¢ € RIN! are the learned weights, f"
represents the nonlinear activation function of the n;, filter.

E2N Convolution. E2N convolution aggregates edge fea-
tures into node features, which extract information from the
neighboring edges of each node and generate a representa-
tion of each node. Therefore, the output of the E2N layer is
defined as:

M |N|

= (30 (1)

m=1 k=1

where 7™ € RIN| is the learned weight, (m,n) represents
each pair of input and output feature maps of each layer.

The features of SC can be extracted hierarchically through
E2E and E2N convolution operations. As shown in Fig-
ure 1(c), the SC feature map after the E2E convolution is
Q¢ € RNXNXC1 and the feature map after the E2N con-
volution is G5¢ € RN *C2 where C and Cs, are the number
of filters for the two convolution operations, respectively.

We use the SC feature map G°¢ after E2E and E2N con-
volution operations as the structural input of SCNNs and per-
form implicit spike encoding through internal spike neurons.
Figure 1(c) shows the detailed process of calculating spike
SC. We obtain the SC spike matrix through the SA/(-) opera-
tion and the linear network:

Vs = SN(VSC), Ve ¢ RTXNxD (12)

= SN (Linear(V5)), X% e RNxT (13)

where X *¢ is the final output SC spike matrix, D is the fea-
ture dimension and 7' is the time step. It is worth noting
that the choice of T is determined by the length of the fMRI
time series. V' °¢ is obtained by passing G*¢ through a lin-
ear network after 7" repetitions. V¢ is obtained by passing it
through SA/(+), so it is a binary spike tensor.

2.5 Spike Coupling Pooling Module

After the above operations, we obtain the FC spike matrix S/¢
and SC spike matrix X *¢ containing the functional and struc-
tural information of the brain network. Since S/¢ and X*¢
are high-dimensional binary spike signals, direct calculation
may lead to increased memory cost and the risk of overfitting
[Yu et al., 2017]. Thus, we propose a spike coupling pooling
(SCP) module based on a low-rank prior to effectively quan-
tify the coupling relationship between FC and SC by low-rank
decomposition, thereby reducing the amount of computation
and improving model efficiency.

The functional and structural inputs of SCP can be de-
scribed as Sf¢ = (sq, ..., 5¢, ..., 57), ¢ € RY and X*¢ =
(20, ooy Ty ooy ), Ty € RY respectively. For ease of ex-
planation, we focus on the processing at time ¢ (¢ € [0, 7).
Specifically, given the FC feature vector s; and the SC feature

N
s, eR

= @ e

- Jrerm o Rﬂ

& Jw»yfr[
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Figure 3: Details of spike coupling pooling (SCP) module.
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m is the number of
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vector x; at time ¢, the simplest bilinear transformation is de-

fined as h; = sﬁ”’ Wz, € R, where W € RVXN is the pro-
jection matrix, (¢r) represents the transpose operator. To ob-
tain a o-dimensional output, we need to learn W € RV *Nxo,
which results in a large number of parameters. However, W
can be factorized into two low-rank matrices:

he = s\ PQU 3, = 107 (P g, @ QU xy)  (14)
where £k is the factorization rank, ® is the element-wise mul-
tiplication (Hadamard) of two eigenvectors, 1 € R is an
all-ones vector, P € RVN*k Q e RN*k_ Therefore, to
obtain an output feature vector h; € R, two 3-D tensors
P = LPl’ P27 ...,Po] - RNXkXO and Q = [Qh QQ, ey Qo] €
RN*kx0 are required. Without loss of generality, we can
reformulate P and Q as 2-D matrices P’ € RN*k0 and
Q' € RNk respectively with simple reshape operation. The
final fused vector h;° /® € R® is obtained by performing
sum pooling on the projection vectors using P’ and )’ with a
1-D non-overlapping window of size k:

h:=7¢ = SumPool(P'"s, @ Q'

As shown in Figure 1(d) and Figure 3, the above operation

generates a feature vector hi°~ /¢ that combines FC temporal
information and SC spatial 1nformati0n. It only represents the
coupling relationship between FC and SC at time ¢. After re-
peating the above operation 7' times, we obtain a spike matrix
Hsc—fe ¢ RTxo consisting of 7" feature vectors, which we
call spike SC-FC coupling. It not only contains temporal FC
features, but also retains spatial SC features, and fully charac-
terizes the coupling relationship between FC and SC. Finally,
we can get the spike 7 [t] € R™ fired by each output neuron
over time through the linear network and SN (+) operation. It
is a vector that changes over time, where m is the number of
output classes.

zt,k) (15)
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Method FLE vs. NC TLE vs. NC

ACC SEN SPE PPV NPV BAC ACC SEN SPE PPV NPV BAC
Statistic [Chiang et al., 2015] 68.18 57.14 7826 70.59 66.67 67.70 6591 61.90 69.57 65.00 66.67 65.73
Multi-kernel [Dyrba et al., 2015] 74.57 63.86 84.44 79.10 71.10 74.15  73.17 61.11 82.61 73.33 73.08 71.86
MPCA [Huang er al., 2020] 76.30 71.08 81.11 77.63 75.26 76.10 77.46 7590 78.89 76.83 78.02 77.40
Self-calibrated [Lei er al., 2020] 77.16 7432 79.55 7534 78.65 7693  76.15 70.15 82.54 81.03 72.22 76.34
C-BSF [Liu et al., 2024] 79.23 80.56 77.59 81.69 76.27 79.07 7692 7639 77.59 80.88 72.58 76.99
DCNN [Atwood and Towsley, 2016] 80.77 72.22 91.38 91.23 72.60 81.80  79.77 7222 87.95 86.67 74.49 80.09
MVGCN [Zhang et al., 2018] 81.54 79.17 84.48 86.36 76.56 81.82 83.08 77.78 89.66 90.32 76.47 83.72
Brain-DNN [Sarwar et al., 2021] 8272 75.68 88.64 84.85 81.25 82.16 82.10 6892 93.18 89.47 78.10 81.05
Brain-GRL [Li e al., 2022] 83.33 71.62 93.18 89.83 79.61 8240 84.57 76.47 90.43 85.25 84.16 83.45
MMP-GCN [Song et al., 2022] 85.80 7432 9545 9322 81.55 84.89 85.19 74.63 92.63 87.72 83.81 83.63
Brain-GCN [Xia er al., 2024] 88.73 81.54 94.81 9298 85.88 88.17 8521 81.54 8831 85.48 85.00 84.93
SFDN [Wei er al., 2024a] 87.65 7838 9545 9355 84.00 86.92 87.69 85.71 89.55 88.52 86.96 87.63
Kuramoto [Dan et al., 2023] 89.51 81.08 96.59 9524 85.86 88.84 90.12 85.14 94.32 92.65 8830 89.73
Koopman [Chow et al., 2024] 90.29 89.29 91.30 92.59 87.50 90.30  91.67 94.12 89.86 87.27 95.38 91.99
NeuroPath [Wei et al., 2024b] 93.33 91.07 95.31 9444 9242 93.19 9225 94.74 90.59 87.10 96.25 92.66
SCNNs (Our method) 95.16 94.12 9643 96.97 93.10 95.27 94.17 92.59 95.45 9434 94.03 94.02

Table 1: Test accuracy (%) comparison of different methods. There are three types of methods from top to bottom in the table: i) Based on
classifier, ii) Based on DL and iii) Based on DL and neuroscience. All results are averaged over 5 runs. The best results are boldfaced.

2.6 Implementation

Let p" € R™ count the spikes of each output neuron, which
can be obtained by summing Z[t] over 7' time steps:

!

Z[t]

p= (16)

The index of p’ with the maximum count corresponds to the
predicted class 4:

) = argmax p; 17)

J

We provide an example in Figure 1(e), where neuron 1 fired 6
spikes, neuron 2 fired 3 spikes, and neuron 3 fired no spikes.
Compared to neurons 2 and 3, neuron 1 has the maximum
spike count, and the corresponding prediction class is 1. In
addition, to train the SCNNs architecture, we use the classi-
fication cross-entropy loss function L.. For binary classifica-
tion tasks, the cross-entropy loss is calculated as follows:

Le=—(9logy+ (1 —9)log(l —y))

where y is the true label.

(18)

3 Experiments and Results

3.1 Experimental Setup

The proposed model and algorithm are implemented in Py-
Torch and snnTorch [Eshraghian et al., 20231, and the GPU
used in training is NVIDIA RTX 4090. We first briefly in-
troduce the architecture of BrainNetCNN. The input of the
BrainNetCNN model is the structural brain network A*¢, rep-
resented as a 90 x 90 adjacency matrix. In our experiment,
the E2E layer is composed of [32, 1 x 90] and [32, 90 x 1]
filters producing feature maps of size 90 x 90 x 32. Next
is the E2N layer, composed of [64, 1 x 90 x 32] filters pro-
ducing SC feature maps of size 1 x 90 x 64. For the design
of SCNNs, we employ synapse model depicted by Eq. 8, in

1

which 7, = 0.9, Vipre = 1, = 1, A = ¢ ™, T = 240.
During training, we use a dropout of 0.1 and use the Adam
optimizer with hyperparameters #; = 0.9 and 65 = 0.999.
The learning rate is 1 x 1072, the training epochs are 100,
factorization rank k = 3.

We mainly perform two binary classification tasks: FLE
vs. NC and TLE vs. NC task. The performance of our
method is evaluated with the following metrics: accuracy

(ACC = rpritn-)- sensitivity (SEN = 1P, specificity
(SPE = ), positive predictive value (PPV = 5,
negative predictive value (NPV = %), and balanced ac-

curacy (BAC = W). FP, TP, FN and TN represent false-
positive, true-positive, false-negative, and true-negative clas-
sification results. It is worth noting that the selection of pa-
rameters and other experiments are performed using a five-
fold cross-validation strategy.

3.2 Methods for Comparison

To verify the effectiveness of the SCNNs method, we com-
pare SCNNs with existing SC-FC coupling analysis meth-
ods. For convenience, we divide the comparison methods into
three types and briefly introduce the basic characteristics of
these three types of comparison methods below.

The first type is the traditional SC-FC coupling meth-
ods based on classifiers, mainly including i) Direct statistics
(Statistics) [Chiang et al., 2015], ii) Multi-kernel learning
method (Multi-kernel) [Dyrba er al., 2015], iii) Multilinear
principal component analysis (MPCA) [Huang et al., 2020],
iv) Self-calibrated [Lei er al., 2020] and v) Coupling in Brain
SC and FC (C-BSF) [Liu et al., 2024]. These methods focus
on modeling and analyzing SC-FC coupling using statistics
and classical machine learning algorithms, usually relying
on feature extraction and selection, combined with support
vector machines, random forests, and other machine learning
classifiers for prediction and classification.

The second type is methods based on deep learning (DL),
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mainly including i) Diffusion-convolutional neural networks
(DCNN) [Atwood and Towsley, 2016], ii) Multi-view graph
convolutional network (MVGCN) [Zhang er al., 2018], iii)
Deep neural network (BrainDNN) [Sarwar er al., 2021], iv)
Supervised graph representation learning (Brain-GRL) [Li
et al., 2022], v) Multicenter and multichannel pooling graph
convolutional network (MMP-GCN) [Song et al., 2022], vi)
Graph convolutional network (Brain-GCN) [Xia er al., 2024]
and vii) SC-FC detour network (SFDN) [Wei et al., 2024al.
These methods use deep neural networks to extract complex
features in brain network data, and gradually extract higher-
level features through a multi-level network structure, thereby
improving the prediction accuracy of the model.

The third type is to introduce neuroscience improvement
methods into DL methods, mainly including i) Deep Ku-
ramoto model [Dan er al., 2023], ii) Neural Koopman oper-
ator [Chow et al., 2024] and iii) Neural pathway transformer
(NeuroPath) [Wei et al., 2024b]. These methods combine
neurobiological mechanisms and improve the neural network
structure by simulating the activity and connection mode of
brain neurons, so as to better capture biological characteris-
tics and laws. This type of method has certain similarities
with the SCNNs we proposed in terms of ideas, and both try
to improve the performance of DL models by drawing inspi-
ration from neuroscience.

3.3 C(lassification Performance

The experimental performance of each method in the FLE vs.
NC and TLE vs. NC tasks is shown in Table 1. Specifically,
the ACC of the SCNNs method proposed by us for epilepsy
identification reaches 95.16% and 94.17% in two tasks, re-
spectively. In comparison, only the third type of method
(Based on DL and neuroscience) has an ACC of more than
90%, while the first type of method (Based on classifier) and
the second type of method (Based on DL) do not reach 90%.
By introducing neuroscience and biological mechanisms, the
disease prediction accuracy of the model is significantly im-
proved, and SCNNs perform best among these methods.

From the perspective of other evaluation indicators, in the
FLE vs. NC task, the SEN of the SCNNs method is 3.05%
higher than that of the best NeuroPath method among other
methods. Similarly, in the three indicators of PPV, NPV,
and BAC, the SCNNs method shows improvements of 0.68%
to 2.08%. In addition, the SPE of the Kuramoto method
is slightly higher than that of SCNNs, with a difference of
0.16%, while the SPE values of other methods are lower than
that of SCNNs. In the TLE vs. NC task, although the Neu-
roPath method outperforms SCNNs in the SPE and NPV in-
dicators, the SCNNs method performs best in SPE, PPV, and
BAC. Overall, the comprehensive performance of our pro-
posed SCNNs method in identifying epilepsy is significantly
better than that of other methods.

3.4 Spike SC-FC Coupling Statistical Analysis

To demonstrate the effectiveness of the SC-FC coupling fea-
tures obtained by our method, we performed statistical analy-
sis. Specifically, in the experiment, we count the total number
of spike SC-FC couplings fired in 90 brain regions of FLE,
TLE patients, and normal controls in the test sets of the two

FLE vs. NC__

50 150 240 50 150 240 50 150 240 50 150 240
Subject 6 (Normal) Subject 40 (FLE) Subject 5 (Normal) Subject 24 (TLE)

Figure 4: a. Total number of spike SC-FC couplings fired in 90
brain regions in FLE, TLE patients, and normal controls in the test
sets of the FLE vs. NC and TLE vs. NC tasks. The horizontal axis
represents each subject. b. Spike SC-FC coupling generated by a
single subject in both tasks, presented as spike raster plots. Each
yellow bar represents the firing of a neuron.

tasks. For ease of observation, we show in Figure 4 the total
number of spike SC-FC couplings fired in 90 brain regions
in the test set in the FLE vs. NC and TLE vs. NC tasks, as
well as the visualization results of the spike SC-FC couplings
generated by a single subject. It is clear from Figure 4 that,
within 240 time points, almost every brain region of normal
controls fires a large number of spikes, while some brain re-
gions of FLE and TLE patients do not fire spikes, and other
brain regions only fire a small number of spikes. We speculate
that epilepsy disrupts information transmission and cognitive
circuits within the brain, interfering with normal communica-
tion between brain regions. Abnormal electrical activity may
also cause damage to neurons, thereby affecting the normal
performance of spike SC-FC coupling.

To further verify the reliability of the results, we perform
a statistical analysis on the total number of spike SC-FC cou-
plings fired by patients and normal controls across 90 brain
regions in the two tasks of FLE vs. NC and TLE vs. NC. The
results show that the difference between patients and normal
controls is statistically significant. We present the five brain
regions with the most significant differences and their box
plots in Figure 5. It is clearly visible from Figure 5 that the
number of spike SC-FC couplings fired by normal controls in
these five brain regions is large and densely distributed, while
the spike SC-FC couplings fired by FLE and TLE patients in
these regions are significantly fewer and more sparsely dis-
tributed. Some previous studies have also confirmed similar
findings, although these studies mainly focus on traditional
SC-FC coupling rather than SC-FC coupling in the form of
spike trains. For example, [Sinha ef al., 2023] and [Zhou et
al., 2024] report that, compared with normal controls, the SC-
FC coupling in certain brain regions of epileptic patients ex-
hibits weaker responses or inactive states. [Shah er al., 2019]
and [Wang et al., 2015] point out that SC-FC coupling in pa-
tients with epilepsy is significantly reduced compared with
normal controls, particularly during epileptic seizures, where
the reduction trend becomes even more pronounced. These
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Figure 6: Radar chart to verify the effectiveness of SCP module.

findings are consistent with our current results, which show
that the reduction in SC-FC coupling corresponds to a de-
crease in the number of spike SC-FC couplings fired. Addi-
tionally, the brain regions with significant differences (such
as PreCG.L, SMA.L, and ACG.L in the FLE vs. NC task, as
well as HIP.L and PCG.L in the TLE vs. NC task) are also
shown to be associated with frontal lobe [O’Muircheartaigh
and Richardson, 2012] and temporal lobe epilepsy [Pitkdnen
and Sutula, 2002]. These results further demonstrate that
epileptic seizures are closely linked to impaired connectiv-
ity and abnormal electrical activity patterns between brain re-
gions, thereby confirming the reliability of our findings.

3.5 Spike Coupling Pooling Module Validity

To verify the effectiveness of the spike coupling pooling
(SCP) module in SCNNs, we conduct ablation experiments
on the same dataset. Specifically, we design the follow-
ing three multimodal fusion and two single-modal compar-
ison methods: i) SC-FC: retain the SCP module without any
changes, ii) Hadamard: remove the low-rank decomposition
and pooling operations in the SCP module, and only use the
Hadamard product to calculate the spike SC-FC coupling, iii)
SC+FC: concatenate and fuse the spike FC and SC and input
them into the classification layer to obtain accuracy, iv) FC:
train SCNNs using only single-modal FC (original fMRI time
series), v) SC: train SCNNs using only single-modal SC.
The results are shown in the radar chart of Figure 6, we

find that in both tasks, the multimodal fusion method con-
sistently outperforms the single-modal method, and the SC-
FC method with the SCP module retained achieves the best
performance among the multimodal fusion methods. Specif-
ically, in the FLE vs. NC task, the ACC of the single-modal
methods, FC and SC, is 71.54% and 66.47%, respectively. In
the multimodal methods, the ACC of Hadamard and SC+FC
is 81.48% and 76.54%, respectively, both significantly better
than the single-modal methods. However, the ACC of the SC-
FC method reaches 95.16%, outperforming both Hadamard
and SC+FC. Similarly, in the TLE vs. NC task, the SC-FC
method with the SCP module retained also demonstrates a
clear advantage. In addition, we find that the performance of
single-modal FC is slightly better than that of single-modal
SC, which may be because the original fMRI time series con-
tains more dynamic information related to epilepsy, making
FC more prominent in extracting effective features. These re-
sults indicate that both FC and SC are indispensable, and that
the spike SC-FC coupling generated by the fusion of the two
comprehensively considers structural and functional informa-
tion and can more accurately capture the dynamic character-
istics of brain networks.

4 Conclusion

This study proposes spike-based coupling neural networks
(SCNNGs) for understanding the SC-FC coupling relationship
in the human brain, which simulates the interaction of SC
and FC in the brain through dense interconnection of spiking
neurons and synaptic weights, and quantifies SC-FC coupling
using spike timing and network activity characteristics. Our
experiments on a real epilepsy dataset demonstrate the supe-
rior performance of SCNNSs in brain disease diagnosis and
provide a new perspective for SC-FC coupling analysis.
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