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Abstract
Large language models (LLMs) have shown excep-
tional performance across various domains. How-
ever, LLMs are prone to hallucinate facts and gen-
erate non-factual responses, which can undermine
their reliability in real-world applications. Cur-
rent hallucination detection methods suffer from
external resource demands, substantial time over-
head, difficulty overcoming LLMs’ intrinsic limi-
tation, and insufficient modeling. In this paper, we
propose MHAD, a novel internal-representation-
based hallucination detection method. MHAD uti-
lizes linear probing to select neurons and layers
within LLMs. The selected neurons and layers are
demonstrated with significant awareness of hallu-
cinations at the initial and final generation steps.
By concatenating the outputs from these selected
neurons of selected layers at the initial and final
generation steps, a hallucination awareness vector
is formed, enabling precise hallucination detection
via an MLP. Additionally, we introduce SOQHD, a
novel benchmark for evaluating hallucination de-
tection in Open-Domain QA (ODQA). Extensive
experiments show that MHAD outperforms exist-
ing hallucination detection methods across multiple
LLMs, demonstrating superior effectiveness.

1 Introduction
Although large language models (LLMs) have demonstrated
remarkable performance across diverse fields [Wu et al.,
2023; Thirunavukarasu et al., 2023; Hedderich et al., 2024;
Wang et al., 2024], they are known to have a risk of gener-
ating hallucinations [Bang et al., 2023; Shen et al., 2023].
Hallucinations—instances where LLMs generate responses
that appear plausible but are factually incorrect—hinder the
adoption of LLMs in real-world applications that require high
reliability and factual correctness [Ji et al., 2023; Huang et
al., 2023]. Detecting hallucinations helps reliably assess the
truthfulness of LLM-generated responses.

∗Corresponding author
Project: https://github.com/Z-Luan/DIRA-HD

Current research on hallucination detection for LLMs can
be broadly classified into four categories: retrieval-based
methods, sampling-based methods, uncertainty-based meth-
ods, and internal-representation-based methods. Retrieval-
based methods [Li et al., 2023; Min et al., 2023] evaluate
the veracity of the response generated by LLMs against exter-
nal knowledge sources. However, these methods rely heavily
on external knowledge sources, which may not always be ac-
cessible. Sampling-based methods [Manakul et al., 2023;
Mündler et al., 2024] assess information consistency among
multiple sampled responses from the same LLM. How-
ever, these methods are impractical for real-time scenarios
due to the excessive time overhead of multiple samplings.
Uncertainty-based methods [Zhang et al., 2023; Manakul
et al., 2023] evaluate the factual accuracy of LLM-generated
responses by calculating the probability or entropy of tokens
within them. Although these methods eliminate the need
for additional resources like external knowledge sources or
sampled responses from LLMs, they present significant chal-
lenges in addressing the intrinsic limitation of LLMs: LLMs
can generate hallucinations with high confidence [Azaria and
Mitchell, 2023; Schulman, 2023]. Internal-representation-
based methods [Azaria and Mitchell, 2023; Su et al., 2024;
Chen et al., 2024; Du et al., 2024] detect hallucinations
based on the internal representation of LLMs. Azaria and
Mitchell [2023] show that the internal representation demon-
strates greater reliability than uncertainty. However, these
methods still suffer from insufficient modeling as they neglect
the complementary information across layers and generation
steps of LLMs.

To address the above issues, we propose MHAD (Model
Hallucination Awareness for Hallucination Detection), a
novel internal-representation-based method to detect halluci-
nations in LLMs. We assume that the internal representations
of LLMs encompass their awareness of whether the responses
they generate are hallucinated or factual. Our basic idea is to
model the hallucination awareness in LLMs based on their
internal representations across layers during the generation
process for detecting hallucinations.

After LLMs process the query but before generating a re-
sponse, they only encode the query without encoding any hal-
lucination. When LLMs generate the termination token, the
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factuality of the responses is determined, as the termination
token itself is hallucination-free, and the generation process
ceases once the termination token is generated. We focus on
the internal representation at the initial and final generation
steps. Moreover, some works suggest that different layers of
transformer-based language models capture various aspects
of the input, from basic lexical and grammatical features in
lower layers to more abstract concepts in higher layers [Jawa-
har et al., 2019; Sajjad et al., 2022; Wang et al., 2022;
Voita et al., 2024]. Therefore, we harness the complemen-
tary information across layers of LLMs to enhance the mod-
eling of hallucination awareness. Specifically, we leverage
linear probing [Alain and Bengio, 2017; Burns et al., 2023;
Park et al., 2024] to select neurons and layers within LLMs
that demonstrate significant awareness of hallucinations at the
initial and final generation steps. By concatenating the out-
puts from the selected neurons of selected layers at the initial
and final generation steps, a hallucination awareness vector
is formed. The vector is then used to detect hallucinations
via a multi-layer perceptron (MLP). MHAD eliminates the
need for external knowledge sources or multiple sampled re-
sponses and demonstrates superior performance.

To evaluate MHAD thoroughly, we develop SOQHD
(Sustainable Open-Domain QA Hallucination Detection),
a novel benchmark for hallucination detection in ODQA.
ODQA is a challenging knowledge-intensive task and rele-
vant to practical use cases [Guu et al., 2020; Lewis et al.,
2020; Friel and Sanyal, 2023]. We hence focus on detect-
ing hallucinations in ODQA. Previous benchmarks [Li et
al., 2023; Manakul et al., 2023; Azaria and Mitchell, 2023;
Friel and Sanyal, 2023] have primarily focused on specific
data types, such as responses generated by LLMs along with
hallucination labels, thereby limiting their applicability to
evaluate internal-representation-based methods. Moreover,
these benchmarks do not consider temporal consistency dur-
ing construction, which may result in outdated labels. For
example, the label for questions like—To the nearest million,
what is the population of Australia?—needs to be updated
to reflect the latest population. SOQHD provides not only
the LLM-generated responses, along with hallucination la-
bels, but also the internal representations across layers during
the generation process of multiple LLMs, such as LLaMA3-
Instruction-8B [Meta, 2024]. Additionally, SOQHD excludes
questions with answers that vary over time to ensure temporal
consistency. Our contributions are threefold:

• We propose MHAD, a novel hallucination detection
method, which utilizes the internal representations
across layers during the generation process of LLMs to
detect hallucinations.

• We develop SOQHD, a novel hallucination detec-
tion benchmark for ODQA, which provides the LLM-
generated responses along with hallucination labels and
the internal representations of LLMs, while ensuring
temporal consistency.

• We conduct extensive experiments on multiple datasets,
demonstrating that MHAD outperforms existing halluci-
nation detection methods across multiple LLMs in terms
of effectiveness.

2 MHAD
In this section, we introduce MHAD (Model Hallucination
Awareness for Hallucination Detection), a novel internal-
representation-based hallucination detection method. Three
types of internal representations are primarily utilized: at-
tention output, feed-forward network output, and layer out-
put. MHAD consists of several key steps: internal represen-
tation collection, linear probing, neuron selection, layer se-
lection, and hallucination awareness vector construction. The
overview of MHAD is provided in Figure 1.

2.1 Internal Representation Collection
We feed the question into LLMs and gather the internal rep-
resentations from each layer at the initial and final generation
steps.

To comprehend the internal representations, the mecha-
nism of the standard Transformer is formalized. The essential
computations involve query, key, and value vectors derived
from the hidden state, concatenation of attention heads out-
put, and feed-forward network transformations. Specifically,
the attention output (AO), feed-forward network output (FO),
and layer output (LO) are extracted as follows:

Qh = XWQ
h , (1)

Kh = XWK
h , (2)

Vh = XWV
h , (3)

AO = concath(softmax(QhK
T
h )Vh)W

O, (4)

H = X + AO, (5)

FO = fact(HW1 + b1)W2 + b2, (6)

LO = H + FO, (7)

where X represents the hidden state, WQ
h , WK

h , WV
h are

the projection matrices for computing the query vector Qh,
key vector Kh, and value vector Vh of the h-th attention
head, concat denotes the concatenation operation, WO is the
projection matrix after concatenation, W1, b1,W2, b2 are the
weights and biases of the feed-forward network (FFN), and
fact denotes the activation function in the FFN. Note that cur-
rent LLMs may replace the FFN with the Gated Linear Unit.

2.2 Linear Probing
Linear probing [Alain and Bengio, 2017] initially trains an
auxiliary classifier based on the internal activation layer out-
puts of neural networks to detect certain attributes of the in-
put. We use linear probing to model the hallucination aware-
ness within the internal representations of LLMs.

Specifically, we construct a linear probe classifier for each
layer at the initial and final generation steps. Each linear
probe classifier is a two-layer FFN, with its input correspond-
ing to the dimension of the internal representation. The output
of the classifier is a binary label, indicating whether the LLMs
generate hallucination. This step offers guidance for subse-
quent neuron and layer selection steps. The training process
of the linear probe classifier is formulated as:

Ŵ t
l , b̂

t
l ← arg min

W t
l ,b

t
l

BCE(Y, σ(ItlW
t
l + btl)), (8)
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t=1 t=T

Neuron & Layer Selection HAV Construction

T

D
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t

2L x

Linear Probing

Question

Decoder Block Layer

Attention

Feed-Forward
AOl

FOl

LOl

Internal Representation Collection

L

L: layer number of LLMs LO: layer output FO: feed-forward network output AO: attention output I: any internal representation
D: dimension of I T: total number of generation steps l: any layer t: any genetation step HAV: hallucination awareness vector  

Figure 1: Overview of MHAD. We focus on the internal representations at the initial and final generation steps (orange table). Neurons (gray
bold line) and layers (yellow node) within LLMs that demonstrate significant awareness of hallucinations are selected by linear probing.
The outputs from these selected neurons of selected layers at the initial and final generation steps are concatenated to form the hallucination
awareness vector (green table), which enables precise hallucination detection via a multi-layer perceptron (MLP).

where Itl represents the internal representations of the l-th
layer at the t-th generation step, σ is the sigmoid activation
function, mapping the output of the linear probe classifier to
the (0, 1) range, BCE is the binary cross-entropy loss func-
tion, W t

l and btl are the trainable weights and biases of the
linear probe classifier, and Y is the ground-truth label.

2.3 Neuron Selection
Han et al. [2016] assessed the importance of neural network
weight parameters by their absolute values, setting insignifi-
cant weights to 0 for weight pruning. We select neurons that
demonstrate significant awareness of hallucinations based on
the absolute value of the linear prob classifier’s weight param-
eters. Neurons with larger absolute weight values are consid-
ered more informative for hallucination detection.

Specifically, we first sort the linear prob classifier’s weight
parameters in descending order based on their absolute val-
ues. We then go through these weight parameters from largest
to smallest. When the ratio of the cumulative sum of squared
weight values to the total sum of squared weight values ex-
ceeds a predefined threshold, we select the neurons corre-
sponding to the traversed weight parameters. Squaring the
weight values is intended to reduce the impact of weight pa-
rameters with small absolute values. Since the internal repre-
sentations are high-dimensional vectors, this step reduces the
introduction of noise irrelevant to hallucination. The process
of neuron selection is formulated as:

A = argsort(abs(Ŵ t
l )), (9)

i−1∑
k=1

(Ŵ t
l,Ak

)2 < α · ||Ŵ t
l ||22 ≤

i∑
k=1

(Ŵ t
l,Ak

)2,

1 ≤ i ≤ |A|, 0 < α < 1,

(10)

N̂ t
l = {Ak | k = 1, 2, . . . , i}, (11)

where A is the index set of the weight parameters sorted in de-
scending order of their absolute values, Ak denotes the index
of the weight parameter with the k-th largest absolute value,
Ŵ t

l,Ak
represents the value of the weight, which ranks as the

k-th largest in absolute value, α is the predefined ratio thresh-
old, and N̂ t

l represents the index set of the neurons selected
in the l-th layer at the t-th generation step of LLMs. Note
that the smaller the α, the less likely it is to select neurons
corresponding to weights with small absolute values.

2.4 Layer Selection
We select layers that demonstrate significant awareness of
hallucinations based on the performance of the linear prob
classifier. The better the performance of the linear probe clas-
sifier, the more significant the hallucination awareness within
the internal representations of the corresponding layer.

Specifically, we employ two heuristic rules: (i) using the
top-k method to select the top-performing layers, and (ii) set-
ting a threshold to select layers with AUROC above the pre-
defined threshold on the validation set. Given the variance
in hallucination awareness across different layers, this step
helps mitigate the interference from the layers demonstrating
weak awareness of hallucinations.

2.5 Hallucination Awareness Vector Construction
The last step first constructs a hallucination awareness vector
through concatenating the outputs from the selected neurons
of selected layers at the initial and final generation steps. This
vector encapsulates the critical information necessary for hal-
lucination detection. The process is formulated as:

Î = concatt,l̂t(I
t
l̂t,N̂t

l̂t

), (12)

where t denotes the t-th generation step, l̂t represents the in-
dex of a selected layer at the t-th generation step, It

l̂t,N̂t
l̂t

rep-
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resents the outputs from the selected neurons of the selected
layer at the t-th generation step, and Î denotes the hallucina-
tion awareness vector. An MLP is then trained based on the
hallucination awareness vector to detect hallucinations.

3 The SOQHD Benchmark
In this section, we introduce SOQHD (Sustainable Open-
Domain QA Hallucination Detection), a novel hallucination
detection benchmark for ODQA. The construction process in-
cludes three steps: filtering, sampling, and reasoning.

3.1 Filtering
The filtering step aims to exclude questions with answers that
vary over time to ensure temporal consistency. For example,
the labels for questions like “To the nearest million, what is
the population of Australia?” have become outdated as they
fail to reflect current data.

This step begins with the manual annotation of a small
sample of questions from the development sets of Trivi-
aQA [Joshi et al., 2017] and NQ [Kwiatkowski et al., 2019],
which are widely used ODQA benchmarks. gpt-3.5-turbo is
also used to annotate these samples. Statistics indicate that
the annotation results of gpt-3.5-turbo achieve a consistency
rate of up to 96% with human annotations. Therefore, we an-
notate the remaining questions using gpt-3.5-turbo. Inspired
by self-consistency [Wang et al., 2023], we have gpt-3.5-
turbo annotate each question five times and obtain the final
annotation result via majority voting, ensuring high accuracy.
Questions in the development sets of TriviaQA and NQ with
time-varying answers are then filtered out.

3.2 Sampling
This step aims to construct the SOQHD question set while
preserving the original datasets’ response length distribution.

To ensure that the final token generated by LLMs is the
termination token, questions that LLaMA2-Chat-13B [Tou-
vron et al., 2023] cannot answer within a maximum gener-
ation length of 300 are excluded. The remaining questions
are stratified into three levels based on the length of response
generated by LLaMA2-Chat-13B. Stratified sampling is then
used to form the question set of SOQHD. The training set of
SOQHD contains a total of 2000 questions, and the test set
comprises 500 questions.

3.3 Reasoning
The reasoning step aims to obtain the responses generated by
LLMs, the hallucination labels, and the internal representa-
tions across layers during the generation process of LLMs.

We select five widely used open-source fine-tuned LLMs,
including LLaMA3-Instruction-8B [Meta, 2024], LLaMA2-
Chat-13B [Touvron et al., 2023], LLaMA2-Chat-7B [Tou-
vron et al., 2023], Vicuna-7B [Chiang et al., 2023], and
Alpaca-7B [Taori et al., 2023], for reasoning. Compared to
base LLMs, fine-tuned LLMs are better equipped to generate
concise and user-aligned responses necessary for real-world
applications. To tackle the challenge of hallucination in real-
world applications, we select fine-tuned LLMs as our focus.

Model H=0 Rate Complete Rate

Alpaca-7B 0.476 1.000
Vicuna-7B 0.464 0.998
LLaMA2-Chat-7B 0.545 0.999
LLaMA2-Chat-13B 0.573 1.000
LLaMA3-Instruction-8B 0.634 1.000

Table 1: H=0 rate and complete rate of LLMs on the training set of
SOQHD. The H=0 rate refers to the proportion of LLM-generated
responses that contain no hallucinations. The complete rate denotes
the proportion of responses that end with the termination token.

In this step, questions from SOQHD are inputted into
multiple LLMs to generate responses. Normalization op-
erations, including removing punctuation and converting to
lowercase, are applied before inputting the questions. The
greedy decoding strategy is employed. Since LLMs tend to
be wordy, which makes the Exact Match (EM) score, the tra-
ditional evaluation metric for ODQA tasks [Chen et al., 2017;
Izacard and Grave, 2021], not applicable. Thus, we consider
a response to have hallucination if it does not contain the
ground-truth answer; otherwise, it is considered not to have
hallucination. The generated responses, hallucination labels,
and internal representations across layers during the genera-
tion process are stored to form the final SOQHD.

3.4 Analysis
The hallucination-free (H=0) rate and complete rate of five
LLMs on the training set of SOQHD are shown in Table 1.

Findings indicate that larger LLMs generally perform bet-
ter, with LLaMA3-Instruction-8B outperforming even larger
models. Moreover, LLMs can typically answer the questions
from SOQHD within the maximum generation length.

4 Experiments
4.1 Experiment setting
Dataset and Metrics. We evaluate MHAD and other base-
lines on our proposed SOQHD dataset. Consistent with pre-
vious studies [Chen et al., 2024; Du et al., 2024], we use AU-
ROC as the evaluation metric. AUROC is a popular metric to
evaluate the quality of a binary classifier. We also evaluate on
the existing HaluEval [Li et al., 2023] dataset.
Baselines. We choose the following nine competitive hallu-
cination detection methods as baselines. (i) Probability As-
sessment [Manakul et al., 2023]: This method detects hallu-
cinations based on the probabilities of generated tokens by
LLMs. It uses average and max pooling to aggregate the
negative log probabilities of generated tokens, denoted as
Avg(− log p) and Max(− log p), respectively. (ii) Entropy
Assessment [Manakul et al., 2023]: This method detects
hallucinations based on the entropy of generated tokens by
LLMs. It uses average and max pooling to aggregate the en-
tropy of generated tokens, denoted as Avg(H) and Max(H),
respectively. (iii) SelfCheckGPT [Manakul et al., 2023]:
This method assesses the consistency among multiple sam-
pled responses from LLMs. Four methods are employed to
assess the consistency, denoted as SCG-BS, SCG-QA, SCG-
NG, and SCG-NLI. (iv) EUBHD [Zhang et al., 2023]: This
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Baselines LLC-13B LLC-7B LLI3-8B Vicuna-7B Alpaca-7B

Avg(− log p) 0.6336 0.5933 0.6498 0.6153 0.7009
Avg(H) 0.6122 0.5706 0.6842 0.4639 0.7313
Max(− log p) 0.5546 0.5211 0.6409 0.4627 0.7040
Max(H) 0.5496 0.5097 0.6793 0.5079 0.7215

SCG-BS 0.5552 0.5775 0.6195 0.5958 0.6792
SCG-QA 0.5431 0.5620 0.5888 0.5889 0.6969
SCG-NG 0.5364 0.5525 0.6018 0.6409 0.7109
SCG-NLI 0.5538 0.6073 0.7060 0.7019 0.7548

EUBHD 0.5728 0.5798 0.6431 0.6242 0.5764
SAPLMA 0.4384 0.4773 0.4052 0.4663 0.4310
MIND 0.5099 0.5138 0.5424 0.5065 0.5190
EigenScore 0.5398 0.5752 0.5972 0.6895 0.6532
HaloScope 0.6517 0.5959 0.5071 0.5581 0.5866
GPT4-HR 0.7092 0.6705 0.6684 0.7069 0.7942

MHAD-AO 0.7768 0.7336 0.7843 0.7771 0.7875
MHAD-FO 0.7642 0.7337 0.7665 0.7566 0.7869
MHAD-LO 0.7728 0.7204 0.7539 0.7646 0.7961

Table 2: Comparison of MHAD with baseline methods in terms of AUROC on the test set of SOQHD. SCG stands for “SelfCheckGPT”,
LLC stands for “LLaMA2-Chat”, and LLI3 stands for “LLaMA3-Instruction”. The best results are in bold.

method detects hallucinations based on the uncertainty of
generated keywords by LLMs. (v) SAPLMA [Azaria and
Mitchell, 2023]: This method detects the truthfulness of a
statement based on the internal representation of LLMs. (vi)
MIND [Su et al., 2024]: This is a training framework that
leverages the internal representations of LLMs for hallucina-
tion detection. (vii) EigenScore [Chen et al., 2024]: This
method explores the semantic information preserved within
internal representations for hallucination detection. (viii)
HaloScope [Du et al., 2024]: This is a learning framework
for hallucination detection, which exploits the LLM genera-
tions arising in the wild. (ix) GPT4-HR [Li et al., 2023]: This
method prompts an LLM to recognize whether the responses
generated by other LLMs have hallucinations. We employ
GPT-4 and refer to this method as GPT4-HR.
Implementation Details. The MHAD classifier employs a
4-layer MLP for hallucination detection, with its input cor-
responding to the dimension of the hallucination awareness
vector. The hidden layers have dimensions of 1024 and 128,
respectively. The ReLU activation function is used between
layers, with a dropout rate of 0.5. The classifier is optimized
using Adam with a learning rate of 1e-5, a weight decay of
1e-2, and a training batch size of 64. For the hyperparameters
α and top-k used for neuron and layer selection, the settings
are determined using the separate validation set, which is a
randomly sampled 20% subset from the SOQHD training set.
Baselines are implemented using official code and data while
following the settings outlined in the respective papers. All
experiments are conducted on a single RTX A6000.

4.2 Main Results
Table 2 presents the performance comparison of MHAD
against baseline methods. Our key findings are as follows:

(i) MHAD outperforms all baseline methods across
all LLMs. MHAD, leveraging the internal representations
across layers during the generation process of LLMs, shows

superior performance across all LLMs, highlighting its effec-
tiveness in detecting hallucinations. This supports the hy-
pothesis that LLMs’ internal representations encompass the
awareness of whether their responses are hallucinated or fac-
tual. It also demonstrates the potential of using comple-
mentary information within the internal representations of
LLMs to detect hallucinations. Notably, MHAD surpasses
Probability/Entropy Assessment baseline methods. We be-
lieve this suggests that LLMs are aware that they gener-
ate hallucinations with high confidence, making internal-
representation-based methods demonstrate greater reliability
than uncertainty-based methods, as aligned with the discover-
ies made by Azaria and Mitchell [2023]. Moreover, MHAD
does not rely on external knowledge sources or multiple sam-
pled responses, making it suitable for real-world applications.

(ii) In most LLMs, the hallucination awareness in the
attention output is comparable to, or stronger than, that
in the other two types of internal representations. As indi-
cated in Table 2, the MHAD-AO demonstrates superior per-
formance on LLaMA2-Chat-13B, LLaMA3-Instruction-8B,
and Vicuna-7B compared to both MHAD-FO and MHAD-
LO. When applied to LLaMA2-Chat-7B, MHAD-AO per-
forms only slightly below MHAD-FO. On Alpaca-7B,
MHAD-AO ranks second in performance among MHAD-
AO, MHAD-FO, and MHAD-LO.

(iii) Other findings. (1) LLaMA3-Instruction-8B shows
the lowest propensity for hallucinations among five LLMs, as
indicated in Table 1. However, the responses generated by
it are the most challenging for GPT-4 to recognize whether
they are hallucinated or factual, as shown in Table 2. We
believe this finding as different LLMs have different hallu-
cination patterns. LLaMA3-Instruction-8B is the least prone
to hallucinations, making its hallucination patterns the most
intricate and its responses the most challenging for GPT-4 to
correctly recognize. Nevertheless, our method still demon-
strates outstanding performance. (2) SAPLMA, though effec-
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Method LLC(13) LLC(7) LLI3 Vicuna Alpaca

SIR 0.7547 0.7071 0.7354 0.7475 0.7740
+SN 0.7672 0.7214 0.7685 0.7450 0.7756
+SL 0.7697 0.7182 0.7815 0.7649 0.7988
+CGS 0.7768 0.7336 0.7843 0.7771 0.7875

Table 3: Ablation results for attention output.

tive on its own training dataset, exhibits inferior performance
when applied to detect genuine hallucinations. We believe
this as its training data is not generated by LLM itself. Al-
though MIND and EUBHD are effective in wikipedia gener-
ation task, they show suboptimal performance in ODQA task.
This could be attributed to the discrepancy between the two
tasks. We would like to note that ODQA is a challenging
knowledge-intensive task and relevant to practical use cases,
ensuring SOQHD can effectively assess the performance of
hallucination detection methods in real-world applications.

4.3 Ablation Study
Table 3 presents the results of our ablation study for attention
output. We denote the baseline, which detects hallucinations
using the single-layer internal representation at the final gen-
eration step, as SIR. We then introduce the tricks of “Select
Neurons” (SN), “Select Layers” (SL), and “Concatenate Gen-
eration Steps” (CGS) incrementally to evaluate their impact.
Select Neurons. By the SN trick, the outputs from the se-
lected neurons across layers at the final generation step are
concatenated to detect hallucinations. The results show that
the SN trick improves the AUROC for most LLMs, indicating
the effectiveness of neuron selection. By harnessing the com-
plementary information across layers, more precise halluci-
nation detection is achieved. However, the Vicuna-7B shows
a decrease in performance with the SN trick, suggesting that
its layers may offer a more uniform hallucination awareness.
Select Layers. When SL trick is incorporated on the ba-
sis of SN, the outputs from the selected neurons of the se-
lected layers at the final generation step are concatenated to
detect hallucinations. The SL trick further enhances the per-
formance by mitigating the interference from the layers that
demonstrate weak awareness of hallucinations. However, the
LLaMA2-Chat-7B demonstrates a decrease in performance
with the SL trick. We believe this as heuristic rules may fall
into local optima, but we need to note that the complexity of
exhaustive search is O(2L), where L is the number of layers
in LLMs, making it impractical.
Concatenate Generation Steps. Through further leveraging
the CGS trick, the outputs from the selected neurons of se-
lected layers at the initial and final generation steps are con-
catenated to detect hallucinations. The CGS trick generally
yields the highest AUROC, suggesting that the internal rep-
resentation at the initial generation step can provide comple-
mentary information. We believe this is similar to the rethink-
ing process humans engage in during problem-solving. How-
ever, Alpaca-7B exhibits a decline in performance with the
CGS trick, possibly attributed to the significant gap in per-
formance among the top-performing layers at the initial and
final generation steps, as shown in Figure 2.

Figure 2: Comparison of performance on the validation set of SO-
QHD across different layers and generation steps. “ini” and “fin”
denote the initial and final generation steps, respectively.

Model H=1 Rate

Alpaca-7B 0.732 (↑ 0.220)
Vicuna-7B 0.724 (↑ 0.172)
LLaMA2-Chat-7B 0.660 (↑ 0.202)
LLaMA2-Chat-13B 0.590 (↑ 0.176)
LLaMA3-Instruction-8B 0.648 (↑ 0.280)

Table 4: Hallucination rate on the test set of SOQHD when LLMs
are presented with misleading information. H=1 Rate indicates the
hallucination rate, and the red arrow shows the increase in hallucina-
tion rate compared to when no misleading information is provided.

Baselines LLC(13) LLC(7) LLI3 Vicuna Alpaca

Avg(− log p) 0.4731 0.4175 0.4256 0.4740 0.4591
Avg(H) 0.4675 0.4110 0.4093 0.4732 0.4612
Max(− log p) 0.4538 0.3966 0.3915 0.4297 0.4227
Max(H) 0.4381 0.4017 0.3736 0.4384 0.4439

MHAD-AO 0.6552 0.5369 0.4561 0.5701 0.5375
MHAD-FO 0.6169 0.5040 0.3948 0.6008 0.5120
MHAD-LO 0.6448 0.5276 0.4670 0.5690 0.5377

Table 5: Robustness study results.

4.4 Robustness Study Against Misleading
Information

Retrieval Augmented Generation (RAG) enables LLMs to
assess external knowledge sources, but the quality of these
sources significantly affects the performance of LLMs. Mis-
leading information can increase the likelihood of LLMs gen-
erating hallucinations [Pan et al., 2023; Xu et al., 2024].
We examine the robustness of MHAD and baseline methods
when LLMs are presented with misleading information.

Specifically, we first have gpt-3.5-turbo generate mislead-
ing information for each question in the test set of SOQHD.
Then, we input both the misleading information and the ques-
tion into LLMs to obtain their responses.

Table 5 presents the robustness study results. The likeli-
hood of LLMs generating hallucinations increases with mis-
leading information, as shown in Table 4. However, MHAD
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Baselines LLC(13) LLC(7) LLI3 Vicuna Alpaca

HaluEval-HR 0.5373 0.4701 0.5707 0.4813 0.4936

MHAD-AO 0.6671 0.5538 0.6129 0.5458 0.7334
MHAD-FO 0.7413 0.4734 0.5983 0.4650 0.7918
MHAD-LO 0.6211 0.5258 0.5167 0.7439 0.7740

Table 6: Performance on HaluEval-QA dataset.

maintains remarkable performance, demonstrating robust-
ness against misleading information. Interestingly, LLaMA3-
Instruction-8B is more susceptible to misleading information,
likely due to its strong instruction-following ability. In gen-
eral, larger LLMs are less affected by misleading information.

4.5 Other Results
We also evaluate our proposed MHAD on the existing HaluE-
val dataset [Li et al., 2023], using AUROC as the evaluation
metric. The HaluEval dataset includes 30,000 samples from
HotpotQA [Yang et al., 2018], OpenDialKG [Moon et al.,
2019] and CNN/Daily Mail [See et al., 2017]. ChatGPT is
used to generate hallucinated responses.

To maintain task format consistency, we focus on the
10,000 HotpotQA samples from the HaluEval dataset. Fol-
lowing the setting of [Li et al., 2023] and the proxy model
strategy proposed by [Manakul et al., 2023], we concatenate
a question with the answer randomly selected from normal
and hallucinated answers, and then input them into LLMs.
The internal representations during processing the answer
are stored for utilization by MHAD. Although the proxy
model strategy can adapt the HaluEval-QA dataset to our pro-
posed method, it may not fully demonstrate the effectiveness
of MHAD due to the exposure bias [Bengio et al., 2015;
Ranzato et al., 2016] and the discrepancy between the syn-
thetic hallucinations and the genuine hallucinations generated
by LLM itself [Manakul et al., 2023; Zhang et al., 2024].

Table 6 presents the results of evaluating the hallucination
detection classifier, which is trained on the training set of
SOQHD, using 10,000 unseen samples from HaluEval-QA.
The baseline method prompts an LLM to assess whether the
answer randomly selected from normal and hallucinated an-
swers is factual. Although the flaws of the proxy model strat-
egy limit the performance of the classifier, MHAD still out-
performs the baseline across all LLMs. This further high-
lights MHAD’s effectiveness and generalization, suggesting
that real-generation processes better reflect its superiority.

5 Related Work
5.1 Hallucination Detection
Hallucination detection in LLMs has garnered significant at-
tention due to the increasing reliance on LLMs in various
applications. Existing hallucination detection methods for
LLMs can be broadly classified into four categories.
Retrieval-based. Li et al. [2023] proposed an approach that
prompts an LLM to evaluate whether the responses generated
by other LLMs contradict objective facts, where the LLM is
employed as an external knowledge source.

Sampling-based. Manakul et al. [2023] proposed Self-
CheckGPT, a method to assess information consistency
among multiple sampled responses from the same LLM. The
motivate idea of SelfCheckGPT is that when LLMs are uncer-
tain about a given concept, the sampled responses are likely
to be different and contain inconsistent facts.
Uncertainty-based. Manakul et al. [2023] proposed meth-
ods to detect hallucinations based on the probability or en-
tropy of tokens in a given response. Factual responses are
likely to contain tokens with higher probability and lower en-
tropy. Inspired by human focus in factuality checking, Zhang
et al. [2023] enhanced uncertainty-based hallucination detec-
tion with stronger focus.
Internal-representation-based. Azaria and Mitchell [2023]
trained an MLP based on the single-layer internal represen-
tation of LLMs to predict the truthfulness of a sentence. Su
et al. [2024] proposed a training framework that leverages the
internal representation of LLMs for hallucination detection.
Chen et al. [2024] explored the dense semantic information
retained within LLMs’ internal representation for hallucina-
tion detection. Du et al. [2024] estimated the membership
for samples based on an embedding factorization and trained
a binary truthfulness classifier on top. However, these are
limited by their single-layer focus and do not harness com-
plementary information across layers and generation steps.

5.2 Hallucination Detection Benchmarks
Hallucination detection benchmarks are utilized to assess the
effectiveness of hallucination detection methods. For in-
stance, Manakul et al. [2023] developed a hallucination de-
tection dataset by generating synthetic wikipedia articles with
GPT-3, followed by manual annotation. Li et al. [2023]
constructed a challenging dataset of generated and human-
annotated hallucinated samples to evaluate the capability of
LLMs to recognize hallucination. Azaria and Mitchell [2023]
introduced the True-False dataset of true and false statements.
Su et al. [2024] constructed HELM based on the wikipedia
articles generation task. Although Chen et al. [2024] and
Du et al. [2024] proposed internal-representation-based meth-
ods, they neither open-sourced their utilized representations
nor considered the temporal consistency of data. Friel and
Sanyal [2023] concentrated on QA tasks, using ChatGPT to
generate responses and assigning them hallucination labels.
However, this benchmark only provides the responses gen-
erated by a single LLM, which cannot evaluate the internal-
representation-based methods across multiple LLMs.

6 Conclusions
In this paper, we introduce MHAD, a novel hallucination de-
tection method. MHAD leverages the internal representations
across layers during the generation process of LLMs to detect
hallucination. Moreover, we propose SOQHD, a novel hallu-
cination detection benchmark for ODQA, which provides the
internal representations of LLMs and ensures temporal con-
sistency. Experimental results demonstrate the effectiveness
and generalization of MHAD. We aspire for our work to con-
tribute to the field of LLM research, enhancing the reliability
of LLMs in real-world applications.
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