
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Top-Down Guidance for Learning Object-Centric Representations
Junhong Zou1,2 , Xiangyu Zhu1,2∗ , Zhaoxiang Zhang1,2,3 and Zhen Lei1,2,3,4
1MAIS, Institute of Automation, Chinese Academy of Sciences, Beijing, China

2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
3CAIR, HKSIS, Chinese Academy of Sciences, Hong Kong, China

4School of Computer Science and Engineering, the Faculty of Innovation Engineering, M.U.S.T, Macau,
China

{zoujunhong2022, xiangyu.zhu, zhaoxiang.zhang, zhen.lei}@ia.ac.cn

Abstract
Humans’ innate ability to decompose scenes into
objects allows for efficient understanding, predict-
ing, and planning. In light of this, Object-Centric
Learning (OCL) attempts to endow networks with
similar capabilities, learning to represent scenes
with the composition of objects. However, exist-
ing OCL models only learn through reconstructing
the input images, which does not assist the model
in distinguishing objects, resulting in suboptimal
object-centric representations. This flaw limits
current object-centric models to relatively simple
downstream tasks. To address this issue, we draw
on humans’ top-down vision pathway and pro-
pose Top-Down Guided Network (TDGNet), which
includes a top-down pathway to improve object-
centric representations. During training, the top-
down pathway constructs guidance with high-level
object-centric representations to optimize low-level
grid features output by the backbone. While during
inference, it refines object-centric representations
by detecting and solving conflicts between low-
and high-level features. We show that TDGNet
outperforms current object-centric models on mul-
tiple datasets of varying complexity. In addi-
tion, we expand the downstream task scope of
object-centric representations by applying TDGNet
to the field of robotics, validating its effective-
ness in downstream tasks including video predic-
tion and visual planning. Code will be available at
https://github.com/zoujunhong/RHGNet.

1 Introduction
Humans are skilled at decomposing visual scenes into the
compositions of objects [Kahneman et al., 1992], which is
crucial for humans’ efficient understanding, predicting, and
planning. Inspired by this property, Object-Centric Learn-
ing (OCL) seeks to achieve human-like representations in
neural networks. Specifically, models are trained in a self-
supervised manner to represent visual signals, such as images
or videos with a set of latent vectors which are referred to as

∗Corresponding author

‘slots’ [Greff et al., 2019; Locatello et al., 2020]. Ideally,
each slot corresponds to an object in the scene.

Previous methods [Locatello et al., 2020; Jia et al., 2023;
Singh et al., 2021; Jiang et al., 2023] have achieved consider-
able progress in OCL. However, we observe that the perfor-
mance of existing methods is highly unstable across differ-
ent scenarios. For example, in Figure 1, we present the cases
where current models show sup-optimal object understanding
and decompose scenes in an inferior manner: some objects
are missed or split into parts. This expresses a concern that
current models highly rely on the inductive biases of model
structures and visual scenes to learn object-centric represen-
tations, posing challenges for adapting to various scenarios
and tackling downstream tasks.

We attribute this issue to the fact that current OCL models
typically adopt an auto-encoding paradigm that learns object-
centric representations by encoding images into slots and us-
ing these slots to reconstruct images. However, reconstruc-
tion loss does not tell apart objects: models do not need to
decompose the scene according to objects. As a result, these
models fail to learn distinguishable features at the backbone.
For instance, in Figure 1 and 6, we visualize the output fea-
tures of the backbone when the object-centric models are
trained solely with reconstruction loss. It is observed that
these features are blurry and fail to align with the edges of
objects. Moreover, the features of small objects are particu-
larly challenging to distinguish from the background. Such
indistinguishable feature makes it difficult for the model to
decide how to assign features to slots, resulting in suboptimal
object-centric representations.

To address this issue, we propose to guide the model by
an additional top-down pathway. This coincides with hu-
mans’ perceptual learning process, where theories about hu-
man vision [Hochstein and Ahissar, 2002; Wolfe, 2021] argue
that humans first learn concepts at high-level consciousness
and then use the high-level perception to guide the learning
of low-level neurons. Drawing on this mechanism, we pro-
pose Top-Down Guided Network (TDGNet) that introduces
the top-down pathway to use the high-level representations
(i.e., the slots) to guide the low-level features output by the
backbone. Specifically, we obtain a high-level guidance by
weighted summing the slots according to their masks, and
then introduce a projection network to predict this guidance
signal using low-level features. In this way, the model tends
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Figure 1: Overview. Observing that existing object-centric models fail to learn distinguishable features, limiting the models’ object under-
standing ability, we propose TDGNet that introduces a top-down pathway to help optimize the low-level features output by the backbone and
refine object-centric representation. Furthermore, we apply the refined representations to the field of robotics to demonstrate that TDGNet
can adapt to a broad range of tasks and scenarios.

to cluster low-level features belonging to the same slots, and
otherwise keep them apart, thus making low-level features
more distinguishable. Moreover, we extend this concept to
the inference phase, introducing a conflict detection method
designed to refine object-centric representations during infer-
ence: when a feature’s prediction is far from all existing slots
or close to multiple slots, it may represent a suboptimal per-
ception such as missing objects or splitting objects into parts,
which we call a conflict. We detect and solve such conflicts
by adding or merging slots, thus refining the object-centric
representations.

We evaluate TDGNet and compare it with current SOTA
models on multiple tasks. We first introduce CLEVR-
Tex [Karazija et al., 2021], MOVi-C [Greff et al., 2022] and
COCO to evaluate the object-centric representations, where
TDGNet outperforms current SOTA models in terms of com-
mon object discovery metrics. Furthermore, we expand the
downstream task scope of TDGNet by applying it to the field
of robotics. We introduce RoboNet [Dasari et al., 2020] and
VP2 [Tian et al., 2023], to evaluate TDGNet with down-
stream tasks including video prediction and visual planning,
demonstrating that TDGNet adapts well to these tasks.

To sum up, our contributions are summarized as follows:

- Drawing on the top-down visual pathway of humans, we
propose TDGNet, which incorporates a top-down path-
way that constructs high-level guidance to optimize the
low-level features, thereby improving object-centric rep-
resentations.

- Based on the top-down pathway, we propose conflict de-
tection to discover perceptual errors and further refine
object-centric representations during inference.

- We demonstrate the SOTA performance of TDGNet in
object-centric representation tasks. Besides, we intro-
duce it into more complex robotic scenarios and verify

that it works effectively in the video prediction and vi-
sual planning task.

2 Related Work
Object-Centric Learning. Most current OCL methods fol-
low an auto-encoding paradigm that first encodes input sig-
nals into several slots and reconstructs the original signal with
these slots. Earlier works, including IODINE [Greff et al.,
2019], MONet [Burgess et al., 2019] and GENESIS [En-
gelcke et al., 2019], accomplish this task by using multi-
ple encoder-decoder structures. Slot-Attention [Locatello et
al., 2020] proposed an iterative attention method that allows
slots to compete for input image segments and conduct seg-
mentation. A critical issue of current OCL methods is how
to generalize to more complex scenes. BO-QSA [Jia et al.,
2023], I-SA [Chang et al., 2022] and InvariantSA [Biza et
al., 2023] focus on query optimization, which uses learnable
parameters to initialize slots. SLATE [Singh et al., 2021]
and LSD [Jiang et al., 2023] attempt to improve the decoder
structure, introducing transformer-based and diffusion-based
decoders to enhance the model’s reconstruction ability. DI-
NOSAUR [Seitzer et al., 2022] proposes that the simple re-
construction task is insufficient to distinguish objects and re-
places the reconstruction objective with the output feature of
DINO [Caron et al., 2021].
Top-down connections in human vision. Human brain
transmits high-level semantic information to low-level neu-
rons [Beck and Kastner, 2009], resulting in a biased compe-
tition between different objects to control attention. In ad-
dition, the brain can receive task-relevant information and
inhibit irrelevant neurons to improve the efficiency of com-
pleting tasks [Karimi-Rouzbahani et al., 2017]. Reverse hi-
erarchy theory [Hochstein and Ahissar, 2002; Ahissar and
Hochstein, 2004] generalizes neural connections in the hu-
man brain into two functional pathways: the bottom-up path-
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(a) Top-down Guidance (TDG) during training.

(b) Conflict detection (CD) for refining representations during inference.

Figure 2: Architecture of Top-Down Guided Network (TDGNet). The proposed TDGNet acquires the initial perception through the
bottom-up pathway (black arrow) and refines its object-centric representations with the top-down pathway (red arrow). (a) During training,
TDGNet uses slots and object masks to guide the backbone to produce distinguishable low-level features. (b) During Inference, TDGNet
refines the slots by detecting conflicts between its slots and the low-level features.

way works implicitly, acquiring the gist of the scene rapidly,
and the top-down pathway returns to lower-level neurons to
bring detailed information into consciousness.
Top-down connections in Neural Networks. It has long
been explored to incorporate top-down feedback connections
into neural networks. [Liang and Hu, 2015] introduce recur-
rent connections into convolutional networks. [Wen et al.,
2018] propose to achieve predictive coding through a net-
work with feedback connections. Recent works have utilized
a top-down pathway to solve different visual or multi-modal
tasks, including semantic segmentation [Yin et al., 2022;
Liu et al., 2024], visual saliency [Ramanishka et al., 2017]
and vision question & answering [Anderson et al., 2018].
Most of these models integrate features from multiple layers
through a parameterized network module, introducing addi-
tional depth into the network through feedback connections.
However, there is no evidence that they achieve the visual
functions of human feedback connections.

3 Method
3.1 Preliminary: Auto-encoding-based

Object-Centric Models
The architecture of TDGNet is shown in Figure 2. A typ-
ical auto-encoding-based object-centric model serves as our
bottom-up pathway: the backbone EB first extract the low-

level features F ∈ RCf×H/s×W/s from the input image
I ∈ R3×H×W . Then a slot encoder ES encodes F into K slots
S ∈ RK×Cs , which is regarded as the high-level representa-
tions. Finally, a slot decoder DS decodes slots into recon-
structions R ∈ R3×H×W and object masks M ∈ RK×H×W .
Formally, the bottom-up pathway is described as:

F = EB(I),
S = ES(F),
R,M = DS(S).

(1)

The bottom-up pathway is optimized by reconstructing input
images. Here we use a combination of L1 loss and percep-
tual loss (LPIPS) [Zhang et al., 2018] for optimization. The
reconstruction loss is written as:

Lrec := ∥R− I∥1 + LPIPS(R, I) (2)

3.2 Learning Object-Centric Representations with
Top-down Pathway

We introduce a top-down pathway to refine the object-centric
representations, which works in two ways: during training,
it constructs guidance with high-level slots to optimize low-
level features output by the backbone; during inference, it
refines the slots by detecting and solving conflicts between
slots and low-level features.
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Model CLEVRTex CAMO OOD MOVi-C

↑ARI-FG ↑mIoU ↓MSE ↑ARI-FG ↑mIoU ↓MSE ↑ARI-FG ↑mIoU ↓MSE ↑ARI-FG ↑mIoU ↑mBO ↓MSE
SLATE [Singh et al., 2021] 45.4 49.5 498 43.5 37.7 349 46.5 35.4 550 49.5 37.8 39.4 526
LSD [Jiang et al., 2023] 64.4 62.5 237 62.6 60.8 245 58.9 56.4 492 52.3 44.1 45.6 661
BO-QSA [Jia et al., 2023] 80.5 46.7 268 72.6 41.5 246 72.5 37.1 805 52.9 33.1 36.4 157
InvariantSA [Biza et al., 2023] 92.9 72.4 177 86.2 65.6 196 84.4 66.7 578 35.7 26.0 26.9 484
DINOSAUR [Seitzer et al., 2022] 88.9 52.6 - 83.5 51.3 - 83.1 51.9 - 67.8 31.2 38.2 -
TDGNet 94.2 80.3 65 88.9 76.3 82 84.1 69.6 302 61.2 52.9 53.5 151
+CD 94.8 80.5 63 89.5 77.0 74 84.8 71.9 291 68.5 55.6 57.1 148

Table 1: Model performance comparison on CLEVRTex and MOVi-C. CAMO and OOD represent CLEVRTex-CAMO and CLEVRTex-
OOD where models trained on CLEVRTex are directly evaluated without finetune.

COCO ARI-FG mBOi mIoU
MLP-based methods

SA [Locatello et al., 2020] 17.5 18.2 12.2
BO-QSA [Jia et al., 2023] 35.7 26.0 26.9
DINOSAUR-mlp [Seitzer et al., 2022] 40.5 27.7 26.4
DINOSAUR-mlp + DINOv2 42.9 28.9 27.3
TDGNet (ours) 45.0 29.6 28.5

Transformer/Diffusion-based methods
SLATE [Singh et al., 2021] 23.2 20.2 19.3
LSD [Jiang et al., 2023] 37.0 34.8 32.2
DINOSAUR-tf [Seitzer et al., 2022] 32.3 32.0 30.0
SPOT [Kakogeorgiou et al., 2024] 37.0 35.0 33.0
TDGNet (ours) 37.3 35.6 33.2

Table 2: Unsupervised object discovery result on COCO. Higher is
better for all the metrics.

Top-down Guidance during Training
We first introduce how the top-down pathway constructs the
Top-Down Guidance (TDG) to optimize low-level features
during training. As shown in Figure 2(a), the bottom-up path-
way provides initial object-centric representations with slots.
The top-down pathway utilizes these slots to construct guid-
ance for training. Ideally, it makes features from the same
slot more similar than those from different ones.

The guidance is constructed through high-level representa-
tions including object masks M and slots S. Formally, the
high-level guidance FH is obtained through the sum of S,
weighted by M at each spatial location:

FH = SG(Sum(S ∗M, axis = slots)). (3)

Here SG represents the stop-gradient operation. We stop the
gradient of high-level signals (namely M and S) so that the
guidance only works on the low-level features.

Subsequently, we introduce a projection network P that
uses low-level features to predict the high-level guidance FH.
In this way, the low-level features are required to predict their
corresponding slots. Considering that FH are produced with
the slots S, it provides more accurate object regions for the
reconstructed images R than the input images I. Therefore,
we let P project the low-level features extracted from R for
more accurate guidance. Formally, we re-input R into the
backbone EB to extract its low-level features F̂:

F̂ = EB(SG(R)). (4)

Finally, we use the projection network P to predict FH with
F̂. In our method, slots S are normalized to unit length, and
the distance is measured through cosine similarity CosSim.
The top-down guidance loss LTD is formulated as below:

LTD := 1− CosSim(P(F̂),FH). (5)

Overall, TDGNet is trained by L, the weighted sum of the
reconstruction loss and the top-down guidance loss:

L = Lrec + λTDLTD. (6)

Conflict Detection during Inference
During training, we require low-level features to predict their
corresponding slots with the projection network P , which
provides a method for the model to refine the slots during
inference, which we call conflict detection (CD): Ideally, the
prediction of a low-level feature should be close to its corre-
sponding slot. This indicates two facts: (i) When a feature’s
prediction is far away from all the slots, it represents a wrong
perception, such as an undiscovered object, and (ii) When a
feature’s prediction is close to multiple slots, these slots may
represent a single object divided into multiple parts. We re-
solve such conflicts by adding and merging slots, thereby im-
proving the object-centric representations.

Specifically, we first solve the first issue. After the model
extracts low-level features F and slots S from the images with
the bottom-up pathway, we use the projection network P(·) to
produce a prediction P(F) and computes the cosine distance
between S and P(F) and acquire the conflict C. Here we
define C as the distance from P(F) to their nearest slot:

C := min(1− CosSim(P(F),S)). (7)

We set a threshold th to determine whether a conflict is large
or not. Repetitively, we select f̂ from F that has the largest
conflict. If the conflict of f̂ exceeds th, we add P(f̂) to the
slot set. This process is repeated until all the conflicts are
lower than th. After that, we use an agglomerative clustering
algorithm to merge slots with less cosine distance than th,
thus mitigating the situation where an object is divided into
multiple parts. As for the choice of th, we propose a heuristic
method that for each trained model, we calculate the average
distance between slots and set th as half of this distance.
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4 Experiments
In this section, we first evaluate the object-centric representa-
tions with the object discovery task, demonstrating TDGNet’s
superior object discovery performance across multiple scenes
of varying complexity. We then evaluate the performance
of the learned object-centric representations in downstream
tasks such as unconditional/conditional video prediction and
video prediction for visual planning. Specifically, for con-
ditional video prediction and visual planning, we introduce
robotics benchmarks [Dasari et al., 2020; Tian et al., 2023]
to demonstrate that TDGNet’s object-centric representations
can be applied in a variety of scenarios.

4.1 Unsupervised Object Discovery
Setup. We first introduce the object discovery task for eval-
uating object-centric representations. We use three common
datasets: CLEVRTex [Karazija et al., 2021], MOVi-C [Greff
et al., 2022], and COCO [Caesar et al., 2018]. The model’s
generalization ability is also evaluated using CLEVRTex-
OOD and -CAMO, two out-of-distribution test sets. The
complexity of the datasets varies. Objects in CLEVRTex have
regular shapes, but the challenge is that it adds texture maps
to objects and backgrounds, increasing the appearance com-
plexity of objects. MOVi-C takes a further step to use real-
istic, richly textured objects from the GSO dataset [Downs
et al., 2022] to create multi-object scenes. COCO contains
a large number of natural scene images, and the variabil-
ity of object appearance has increased significantly. Follow-
ing previous works [Karazija et al., 2021], we use the fore-
ground adjusted rand index (ARI-FG) [Rand, 1971], mean
IoU (mIoU), and mean square error (MSE) to evaluate the
models’ ability to discover objects and reconstruct the im-
ages. For MOVi-C and COCO, we follow [Jiang et al., 2023;
Seitzer et al., 2022] to include mean best overlapping (mBO)
for evaluation.
Result. Table 1 displays quantitative comparison results
on CLEVRTex and MOVi-C. In the comparison, we adopt
two inference modes of TDGNet: one that only initiates
the bottom-up pathway and another that applies the con-
flict detection (CD) operation to acquire a refined perception.
TDGNet with only the bottom-up pathway, outperforms most
current models. Conflict detection provides a further perfor-
mance boost. TDGNet also generalizes well on CLEVRTex-
OOD and -CAMO, outperforming current SOTA models by
a large margin.

On MOVi-C, SOTA models, such as LSD and DI-
NOSAUR, rely on reconstructing features from pre-training
backbones to generalize to complex scenarios. However,
these models show significant biases in different evaluation
metrics. For instance, DINOSAUR offers an ARI-FG far su-
perior to other models but provides lower mIoU and mBO.
On the other hand, the performance of LSD is just the op-
posite, with lower ARI-FG and higher mIoU and mBO. Our
TDGNet, by contrast, outperforms previous models in all the
metrics, demonstrating a more comprehensive object discov-
ery capability. Figure 3 gives examples to illustrate the im-
provement. DINOSAUR fails to fit the edges and cannot seg-
ment the background holistically on MOVi-C. LSD tends to

Figure 3: Segmentation results on CLEVRTex and MOVi. TDGNet
successfully distinguishes the image’s background while segment-
ing objects with more correct boundaries.

divide objects into multiple parts as is circled. TDGNet, in-
stead, succeeds in segmenting backgrounds, as well as show-
ing better object understanding where the object masks fit the
outlines of objects well and do not divide objects into parts,
thus achieving higher scores on all metrics.

We further provide the comparison result on the COCO
dataset in Table 2. Following [Seitzer et al., 2022], we discuss
the situations when different types of decoders are used. For
the MLP-based decoder, we adopt DINOSAUR as the base-
line and use DINO v2 as the backbone. Compared with DI-
NOSAUR trained only through reconstruction, we have im-
proved by 2.1, 0.7, and 1.2 respectively, according to ARI-
FG, mBO, and mIoU. For the transformer-based decoder, we
choose SPOT as the baseline and combine it with TDGNet,
achieving performance improvements of 0.3, 0.6, and 0.2 in
terms of the three metrics.

4.2 Exploring Object-Centric Representation in
Predicting the World’s State

We believe that object-centric learning, which uses ”objects”
as the basic unit to represent visual scenes, is worth exploring
in world modeling. Here we explore the field of robotics, in-
troducing video prediction and visual planning tasks to evalu-
ate whether the object-centric representations from TDGNet
benefit the prediction of the world’s states. In video predic-
tion tasks, after training TDGNet, we additionally train an
auto-regressive Transformer to predict the future slots, and
then decode these slots to acquire future frames. Further-
more, the visual planning task evaluates the video prediction
model by using the prediction results in control tasks.

Video Prediction
Setup. We conduct video prediction on the MOVi-C and
RoboNet datasets. MOVi-C, a widely used multi-object
dataset, contains videos of the interactions of moving objects.
Following previous works [Song et al., 2024], the model pre-
dicts 8 future frames from 6 context frames with no condi-
tions. We primarily compare TDGNet to existing Object-
Centric models in MOVi-C to ensure that the slots provided
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MOVi-C ↑PSNR ↑SSIM ↓LPIPS
SlotFormer [Wu et al., 2023] 19.5 45.6 53.4
OCVP [Villar-Corrales et al., 2023] 19.9 50.2 45.0
OCK [Song et al., 2024] 21.0 59.3 37.0
TDGNet (ours) 22.6 66.3 25.9

Table 3: Unconditional video prediction on MOVi-C. LPIPS and
SSIM scores are scaled by 100 for convenient display.

RoboNet ↓FVD ↑PSNR ↑SSIM ↓LPIPS
MaskViT [Gupta et al., 2022] 211.7 20.4 67.1 17.0
iVideoGPT [Wu et al., 2024] 197.9 23.8 80.8 14.7
TDGNet (ours) 187.3 23.9 79.7 14.2

Table 4: Conditional video prediction results on RoboNet. LPIPS
and SSIM scores are scaled by 100 for convenient display.

Dataset Components Metrics

L1 LP TDG CD ARI-FG mBO mIoU

CLEVRTex

✓ 88.3 74.2 73.1
✓ ✓ 90.9 78.4 77.6
✓ ✓ ✓ 94.2 80.4 80.3
✓ ✓ ✓ ✓ 94.8 80.8 80.5

MOVi-C

✓ 52.9 36.4 33.1
✓ ✓ 58.6 46.8 44.9
✓ ✓ ✓ 61.2 53.5 52.9
✓ ✓ ✓ ✓ 68.5 57.1 55.6

Table 5: Ablation on the components of TDGNet. ‘L1’ and ‘LP’ rep-
resent the L1 and LPIPS loss used for reconstruction, while ‘TDG’
and ‘CD’ represent top-down guidance and conflict detection.

by TDGNet outperform existing models. RoboNet is a large-
scale robot dataset that contains a large number of videos of
object manipulation with robotic arms. The models are re-
quired to predict 10 future frames given 2 context frames and
the robotic arm’s action as conditions. We compare TDGNet
to existing conditional video prediction models on RoboNet.
Following previous work, we use SSIM, PSNR, and LPIPS
for evaluation on MOVi-C, and additionally introduce FVD
for RoboNet.
Result. We list the comparison results in Table 3 and 4. For
MOVi-C, using the slots extracted by TDGNet for prediction
significantly improves the performance, outperforming other
models by a large margin. For RoboNet, we provide results
on 256 resolution. We observe that our model outperforms
iVideoGPT, the current SOTA model, in three out of the four
evaluation metrics. In Figure 4, we provide the visualization
results on RoboNet, demonstrating that our model accurately
simulates the interaction between robots and objects.

Visual Planning
Setup. As is discussed in previous works [Tian et al., 2023],
the video prediction performance sometimes cannot reflect
whether models correctly predict the world’s state. Therefore,
we use their proposed VP2 benchmark [Tian et al., 2023] to
evaluate the performance of TDGNet in the visual planning

Figure 4: Video Prediction on RoboNet.

task. In VP2, a given agent uses the predicted frames from
video prediction models to complete various control tasks.
All elements are provided except the video prediction models,
thus comparing them under a standardized benchmark. We
use the RoboDesk environment in VP2 for evaluation, which
includes 7 kinds of control tasks. The agent’s success rate to
complete the tasks is used as the evaluation metric.
Result. In Figure 5, we present a comparison between
TDGNet and a set of baseline models [Wu et al., 2024;
Babaeizadeh et al., 2021; Villegas et al., 2019; Voleti et al.,
2022; Minderer et al., 2020; Gupta et al., 2022]. ‘Simulator’
is the success rate of the agent when it directly use the simu-
lator as the dynamics, representing an upper bound of model
performance. TDGNet attains performance that is compara-
ble or superior to existing SOTA models across the major-
ity of tasks. In addition, we compute the average success
rate, normalized by the simulator’s performance, demonstrat-
ing that TDGNet outperforms existing SOTA models.

4.3 Ablative Experiments
We conduct ablative experiments on the components of
TDGNet during training and inference, including the L1 and
LPIPS loss used for reconstruction, as well as the top-down
guidance (TDG) and conflict detection (CD) performed by
the top-down pathway during training and inference. Accord-
ing to the result in Table 5, the LPIPS loss improves the per-
formance of baseline models trained only with L1 loss, par-
ticularly for MOVi-C, with improvements of 5.7, 10.4, and
11.8, respectively, in terms of ARI-FG, mBO, and mIoU.
The top-down pathway further provides considerable perfor-
mance gains. TDG and CD bring about improvements of 3.9,
2.4, and 2.9 on CLEVRTex, as well as 9.9, 10.3, and 10.7
on MOVi-C. The top-down pathway offers greater improve-
ments on more complex multi-object scenes (i.e., MOVi-C),
indicating that the top-down pathway in TDGNet tends to
help the model overcome more challenging samples.

4.4 Analysis
Low-level Feature Optimization with TDG
We visualize the internal features of models in Figure 6(a) by
taking the low-level features from TDGNet and the baseline
model without TDG (i.e., BO-QSA [Jia et al., 2023]), using
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Figure 5: Visual planning on the VP2 benchmark. On the right, we show the mean scores for each model averaged across all tasks, normalized
by the performance of the simulator.

(a) (b)

Figure 6: (a) Feature visualization on CLEVRTex. We use PCA
to reduce dimensions to 3. (b) Comparison of object feature vari-
ance between TDGNet and BO-QSA. TDGNet has smaller intra-
and larger inter-object feature variance.

PCA [Abdi and Williams, 2010] to reduce the feature dimen-
sion to 3 for visualization. Feature maps from BO-QSA are
fuzzy. Some of the small objects are almost unseen in the
feature map. By contrast, the features extracted by TDGNet
are more conducive to identifying individual objects. The
features of the same objects are highly similar, while defi-
nite boundaries separate adjacent objects. Further in Figure
6(b), we calculate the intra- and inter-object feature variances,
which confirms that TDGNet achieves a higher inter-object
feature variance and a much lower intra-object feature vari-
ance, making objects more distinguishable in the low-level
features.

Iterative Refinement with CD
Compared with extracting objects directly through attention
competition, the process of detecting and resolving conflicts
provides a more explainable way of object discovery. We vi-
sualize the process of CD in Figure 7. The model repeat-
edly computes conflicts between low-level features and slots
and includes features with large conflicts into the slot set.
To clearly illustrate this process, we manually corrupt the

Figure 7: Refinement process of Conflict Detection. We remove all
slots except for the background and gradually incorporate objects
into the network through CD, and eventually discover all the objects.

bottom-up pathway, assuming that no object is detected and
only the background is given at first. In this extreme case, CD
repeatedly calculates the conflicts and includes objects. After
multiple iterations, all conflicts are solved, representing that
all objects are included.

5 Conclusion

Observing that OCL models provide suboptimal object-
centric representations such as missing objects or splitting ob-
jects into parts, we analyze existing models and propose that
OCL models trained solely with reconstruction loss cannot
learn distinguishable low-level features. To address this issue,
we refer to human vision and propose TDGNet, which intro-
duces a top-down pathway that guides low-level features with
the high-level representations (i.e., slots). We verify that the
top-down pathway makes objects more distinguishable in the
low-level features. Our experiment results show that TDGNet
outperforms existing SOTA models in the object discovery
task while also demonstrating its potential for downstream
tasks such as prediction and planning in the robotics field.
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