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Abstract

Adaptive gradient methods, primarily based on
Adam, are prevalent in training neural networks,
adjusting step sizes via exponentially decaying av-
erages of gradients and squared gradients. Adam
assigns small weights to distant gradients, termed
long-tail gradients in this paper. However, these
gradients persistently influence update behavior,
potentially degrading generalization performance.
To address this issue, we incorporate a restart
mechanism into moment estimations, proposing
AdaR (ADAptive gradient methods via Restarting
moment estimations). Specifically, AdaR divides
a training epoch into fixed-iteration intervals, al-
ternating between two sets of moment estimations
for parameter updates and discarding prior mo-
ment estimations at the beginning of each inter-
val. Within each interval, one set updates param-
eters and will be discarded in the subsequent inter-
val, while the other is reset at the midpoint to esti-
mate moments for updates in the subsequent inter-
val. The restart mechanism cyclically discards dis-
tant gradients, initiates fresh moment estimations
for parameter updates, and stabilizes training. By
prioritizing recent gradients, the method increases
estimation accuracy and enhances step size adjust-
ment. Empirically, AdaR outperforms state-of-the-
art optimization algorithms on image classification
and language modeling tasks, demonstrating supe-
rior generalization and faster convergence.

1 Introduction

Gradient descent methods are effectiveness and simplicity in
neural network training [He et al., 2016; Huang et al., 2017;
Merity et al., 2018; Vaswani et al., 2017]. Stochastic gradi-
ent descent (SGD) selects a random subset of samples and
updates parameters in the opposite gradient direction with a
predefined step size [Robbins and Monro, 1951]. Despite its
superior efficiency and generalization, SGD faces a computa-
tional burden from trial-and-error tuning, particularly in deep
networks with error surfaces containing flat basins and sharp
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valleys. While small step sizes reduce oscillations in valleys
but slow training in flat basins, large step sizes accelerate con-
vergence in basins but potentially induce oscillations in sharp
valleys [Zeiler, 2012].

Neural network training requires varying step sizes across co-
ordinates, as error surfaces have dimension-specific proper-
ties. Recent studies propose various gradient methods with
adaptive step sizes [Duchi er al., 2011; Kingma and Ba,
2014]. AdaGrad scales per-dimension step sizes by average
of squared gradients [Duchi et al., 2011]. Although Ada-
Grad effectively captures rare features and performs well in
sparse settings, its step sizes rapidly decay due to the ac-
cumulation of all past gradients. Adam (Adaptive moment
estimation) adjusts per-dimension step sizes using exponen-
tial moving averages (EMA) of gradients and squared gra-
dients to estimate first- and second-order moments, accel-
erating convergence [Kingma and Ba, 2014]. Adam vari-
ants exponentially decay past gradients [Zhou et al., 2020;
Luo et al., 2019]. However, they assign non-trivial weights
to distant gradients, leading to heavy-tailed gradient noise.
Heavy-tailed distributions, with a higher likelihood of ex-
treme gradients, can skew statistical distributions by am-
plifying outliers, leading to biased estimations and extreme
step sizes in Adam-type algorithms [Zhang er al., 2020;
Das et al., 2024]. In this paper, distant gradients persistently
influence moment estimations and step size adjustment, re-
ferred to as long-tail gradients. This results in the distortion
of the gradient moments, thereby impairing the prioritization
of recent gradients and leading to suboptimal step size ad-
justments. Parameters with small gradients may receive inad-
equate updates, while those with large gradients may receive
excessive updates. This misalignment hinders convergence
performance, as biased moment estimations prevent precise
step size adjustments, potentially causing oscillations or di-
vergence. Most Adam variants fail to address this problem,
resulting in suboptimal performance.

This paper proposes AdaR (ADAptive gradient methods via
Restarting moment estimations), which cyclically restarts the
first- and second-order moments to discard outdated gradi-
ent information and mitigate long-tail gradients. Specifically,
each training epoch is divided into multiple fixed-iteration in-
tervals, with parameters updated alternately using two sets of
moment estimations. During each interval, one set updates
parameters and is discarded in the subsequent interval, while
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the other restarts and accumulates gradients for updates in
subsequent interval. In subsequent interval, the roles swap:
moment estimations used in previous intervals are discarded,
and the other updates parameters. The restart mechanism mit-
igates the influence of outdated gradients and assigns higher
weight to up-to-date gradients. AdaR periodically restarts
first- and second-order moment estimations to enhances step
size adaptation and stabilize training. The method offers an
orthogonal alternative to address long-tail gradients in exist-
ing Adam variants. Our contributions are threefold and sum-
marized below.

* We examine the adverse effects of long-tail gradients
on parameter updates. To address this, we partition the
training epoch into multiple fixed-iteration intervals and
incorporate a restart technique that discards distant gra-
dients and accumulates the most recent gradients.

* We propose a novel method AdaR, which cyclically
restarts moment estimations and discards distant gradi-
ents. The method effectively mitigates adverse impact
of long-tail gradients, emphasizes recent gradients, and
enhances step size adaptation, thereby improving gener-
alization performance.

* We conduct experiments on image classification and lan-
guage modeling tasks. Experiment results demonstrate
that AdaR generalizes significantly better than popular
Adam variants and SGD with fast convergence.

This study addresses long-tail gradients via a restart mecha-
nism and proposes AdaR. The remainder of this paper is or-
ganized as follows. Section 2 reviews related work. Section 3
details the approach. Section 4 presents experiments. Section
5 provides an ablation study. Section 6 concludes this paper.

2 Related Work

Adam variants estimate the first- and second-order moments
by exponentially decaying past gradients. However, the resid-
ual influence of remote gradients continues to affect step size
adjustment. Zhou et al. [2020] indicated that the gradient
noise in Adam follows a heavy-tailed symmetric a-stable
(SaS) distribution, resulting in step sizes that may poorly re-
flect the local landscape. To address this, AdaBound dynam-
ically applies clipping operation to impose upper and lower
bounds on step sizes, mitigating extreme values [Luo et al.,
2019]. It ensures a smooth transition from Adam to SGD as
adaptive step sizes converge to a fixed value. ACClip mit-
igates long-tail gradients through coordinate-wise clipping
[Zhang er al., 2020]; however, its heuristic threshold intro-
duces substantial computational cost. Since the influence of
gi—n, persists across time steps, AdaShift decorrelates mo-
ments by temporally shifting gradients to mitigate the expo-
nential moving effect of m; [Zhou et al., 2019]. However,
it suffers from poor empirical performance. Adam_Win min-
imizes a dynamic loss using a proximal point method (PPM)
regularizer, increasing optimization convexity [Zhou erf al.,
2023]. However, it adds substantial tuning complexity and
performs poorly in language modeling tasks, as shown in
Subection 4.5. AdaPlus [Guan, 2024] leverages the geom-
etry of the loss landscape to adjust step sizes, combining Ad-

aBelief [Zhuang et al., 2020], AdamW [Loshchilov and Hut-
ter, 20191, and Nesterov [Nesterov, 1983]. However, it strug-
gles with large-scale experiments, where increased computa-
tional complexity poses significant challenges.

AAdam incorporates a fraction of past updates into recent
updates to track parameter changes [Tato and Nkambou,
2018], but may introduce gradient noise from the sign op-
eration. AdamP projects the weight norm to control its
growth, thus slowing the decay of step sizes [Heo er al.,
2021]. However, the projection operation incurs non-trivial
computational overhead. HN_Adam adaptively switches be-
tween Adam and AMSGrad based on the dynamic thresh-
old, increasing computational complexity and memory us-
age [Reyad et al., 2023]. Moreover, AMSGrad perform-
ing second-moment maximization rapidly decays step sizes,
potentially slowing convergence. ACGB-Adam employs the
adaptive deviation-gradient coefficient and random block co-
ordinate to control update direction and magnitude, respec-
tively [Liu er al., 2023], but is evaluated solely on simple
MNIST and CIFAR-10 datasets.

The restart technique has been employed to schedule step
sizes [Loshchilov and Hutter, 2017]. To our best knowledge,
this is the first application of the restart in moment estima-
tions of Adam to address long-tail gradients. By periodically
restarting the first- and second-order moment estimations, the
method discards distant gradients, emphasizes recent gradi-
ents, and enhances step size adjustment.

3 Methodology

To address the long-tail gradient issue, this section provides
the detail of AdaR, with its pseudocode presented in Algo-
rithm 1. The method divides each training epoch into fixed-
iteration intervals, where it restarts moment estimations and
accumulates the most recent gradients. The method updates
parameters by alternately using two sets of moment estima-
tions. Within each interval, one set is active for updates
throughout the interval, while the other restarts at the mid-
point and remains inactive. The inactive set begins accumu-
lating gradients at the midpoint of the interval and will be
used for parameter updates in the subsequent interval. In
the subsequent interval, the previously inactive set with re-
cent gradients updates parameters throughout, while the pre-
viously active set restarts at the midpoint, then accumulating
gradients. The method ensures precise adaptation to the most
recent gradients, wisely adjusting step sizes.

As depicted in Figure 1, the method alternates between two
sets of moment estimations for parameter updates, repre-
sented by distinct colors. Bold arrows represent the active
set used for parameter updates, while narrow arrows repre-
sent the inactive set, preparing for updates in the subsequent
interval. Within each interval, a single set of moment esti-
mations is active for parameter updates. At the start of each
interval, the roles of two sets are swapped; the active set with
the most recent gradients is used to update parameter. At the
midpoint, the active set continues updating parameters, while
the inactive set restarts and accumulates recent gradients. In
the subsequent interval, the accumulated moments with re-
cent gradients update parameters, while the previously active
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set restarts at the midpoint of the interval and accumulates re-
cent gradients to estimate moments. This enhances step size
adaptation to recent gradients and stabilizes training.
Consider two sets of moment estimations, Set A and Set B.
In the first interval, both sets are initialized to zero, with Set
A updating parameters throughout the interval. At the mid-
point, Set B restarts and accumulates moment estimations for
updates in the subsequent interval, with Set A updating pa-
rameters. In the second interval, Set B with recent gradients
updates parameters throughout, while Set A restarts at the in-
terval midpoint and accumulates gradients. In the third inter-
val, Set A updates parameters throughout the interval, with
Set B is reset at the midpoint to prepare for updates in the
subsequent interval. The restart mechanism ensures contin-
uous adaptation to the most recent gradients throughout the
training.

In Algorithm 1, the length of interval is denoted as the num-
ber of iterations A, with the midpoint at \/2. As A — oo,
AdaR reduces to vanilla Adam. The method alternates be-
tween two sets of moment estimations at intervals. The flag
variable tells the active and inactive sets. The active set up-
dates parameters throughout the interval, while the inactive
set restarts at the midpoint and accumulates recent gradients
to estimate moments. In each interval, specifically, AdaR up-
dates parameters using the active set throughout the interval.
At the midpoint (\/2), the inactive set restarts and accumu-
lates recent gradients to estimate moments. In the subsequent
interval, these accumulated moments update parameter, while
previously active moments are discarded to ensure alignment
with recent gradients. Step size clipping, implemented as
clip(n¢, Qiow, Ahign ), works well in practice [Zhang et al.,
20191, and the step size of each update is limited within the
bound [aow,0thign ], say, [0.0001, 0.5].

The core innovation of AdaR is the moment restart, which pe-
riodically restarts moment estimations to discards distant gra-
dients and prioritize recent gradients. Note that AdaR is com-
patible with existing Adam variants. The interval length was
empirically selected via a coarse- then fine-grained search,
with 12 recommended as default. AdaR is robust to vary-
ing interval lengths, as demonstrated in the Subsection 5.1.
Except for the interval length, AdaR introduces no new pa-
rameters. Theoretically, AdaR only adjusts the sliding win-
dow size of gradient accumulation while preserving the up-
date rule of Adam. Thus, we conjecture that it retains the
same convergence guarantee as Adam. A theoretical analysis
is a promising avenue for future research.

Luo et al. [2019] noted that extreme step sizes impair the
generalization of adaptive gradient methods, proposing Ad-
aBound as a solution. AdaBound uses dynamic bounds to
truncate extreme step sizes. However, the heuristic bounds
may lack performance consistency across tasks. Figure 2 il-
lustrates that step sizes of AdaBound, Adam, and AdaR are
initially large due to limited samples, followed by a reduction.
As training progresses, the accumulation of past gradients ex-
acerbates the long-tail gradient issue, resulting in biased mo-
ment estimations and step size adjustments. The step sizes
exhibit significant oscillations in Adam. To mitigate oscilla-
tions, AdaBound adopts heuristic functions to truncate step
sizes, which gradually converge to a small value. However,
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Figure 1: The moment restart of AdaR. Without loss of generality,
orange arrows denote Set A and blue arrows denote Set B. AdaR
alternates between Set A and Set B at intervals. At the start of each
interval, the roles of Set A and Set B are swapped. At the midpoint
of interval, the Set not used for parameter updates is reset to zero.
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Figure 2: Step sizes of AdaBound, Adam, and AdaR with ResNet-
34 model on the CIFAR-10 dataset.

heuristic functions limit the adaptability of step sizes [Wang
et al., 2025]. Notely, AdaR initially exhibits large step sizes,
enabling rapid convergence, but gradually reduces step sizes
via restart mechanism to mitigate oscillations.

4 Experiment

We evaluate AdaR on image classification and language mod-
eling tasks. Image classification tasks involve convex and
non-convex problems. For convex optimization, we train
logistic regression model [LaValley, 2008] on the MNIST
dataset [LeCun et al., 1998]. For non-convex tasks, we
train VggNet-11 [Simonyan and Zisserman, 2015], ResNet-
34 [He et al., 2016], and DenseNet-121 [Huang et al., 20171
on the CIFAR-10 and CIFAR-100 datasets [Krizhevsky,
2009], as well as ResNet-18 [He et al., 2016] on the Tiny-
ImageNet dataset. In language modeling, we train 1-layer
LSTM [Merity et al., 2018] on the Penn Treebank (PTB)
dataset [Marcus et al., 1993] and Transformer [Vaswani
et al., 2017] on the Wikitext-2 dataset [Bojanowski et al.,
2017]. AdaR! is compared against Adam [Kingma and Ba,
2014], AdaBound [Luo et al., 2019], AdaShift [Zhou et al.,
2019], NosAdam [Huang et al., 20191, Adam_Win [Zhou
et al., 2023], AdaPlus [Guan, 2024], and SGD [Robbins
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Algorithm 1 ADAptive gradient methods via Restarting mo-
ment estimations (AdaR)

Input: x, € F, step size «, (31, B2, interval length A
1: Initialize time step: ¢ < 1

(1) (1)

2: Initialize first and second moments: my ~ < 0,v5 "
0,mP 0,0 0
3: Initialize flag: flag = True
4: fort =1to N do
5 gt < V fi(xt; ;)
1
6 mi « Bimiy + (1 - Bi)ge
7 m e« Bim?) + (1 - Bi)gy
1 1
8 o) e B+ (1- Bo)g?
2 2
90 v« By + (1 - Ba)g?
10: if flag = True then
m{D R oM
11: mteﬁandvte 1281
12: else
R 2 ) 0@
13: My < 1757 and O < 71757
14: end if
15: 7215 — ﬁ
16: 7y <= clip(1)t; Qiow, Ahigh)
17: 9t+1 < 9,5 — Nyt
18: if ¢t mod \/2 = 0 then
19: if ¢t mod A\ = 0 then
20: flag = —flag
21: end if
22: if ¢ mod A # 0 A flag = True then
23: m§2) + O and v§2> +—0
24: else if ¢ mod A # 0 A flag = False then
25: mgl) < Oand vgl) +—0
26: end if
27: end if
28: end for

and Monro, 1951]. Each method is run 3 times, with the
best result reported. All experiments are conducted on an
NVIDIA RTX A4000 GPU (16 GB) and an AMD EPYC
7551P CPU, using Python 3.8 and PyTorch library [Paszke,
2019]. Dataset details are provided below.

MNIST consists of 60,000 training and 10,000 test samples
of 28 x 28 grayscale images of handwritten digits.
CIFAR-10 comprises 50,000 training and 10,000 test 32 x 32
color images across 10 classes.

CIFAR-100 contains 50,000 training and 10,000 test 32 x 32
pixel images across 100 classes.

TinyImageNet contains 200 classes, each with 500 training,
25 validation, and 25 test images, resizing from 64 x 64 to
224 x 224 pixels.

Penn Treebank (PTB) comprises 0.93 million training,
0.073 million validation, and 0.082 million testing tokens.
Wikitext-2 includes 1.9 million training, 0.17 million valida-
tion, and 0.19 million testing tokens.

We conduct grid searches to select optimal parameters for
all algorithms across tasks. The base step sizes for all al-
gorithms and the final step size for AdaBound are selected
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Figure 3: Training loss and test accuracy of logistic regression model
on the MNIST dataset.

AdaR 92.61  AdaShift 92.13  AdaPlus  92.59
Adam 92.60 AdaBound 92.58 Adam_Win 92.60
SGD 92.68 NosAdam 92.59

Table 1: Test accuracy of logistic regression model on the MNIST
dataset.

from the range {1 x 107°,5 x 1072,1 x 107%,.-- | 1}. The
parameter 31 is selected from {0.9,0.99}, and 35 is cho-
sen from {0.99,0.999}. SGD tunes momentum from the set
{0.1,0.2,---,0.9}. For all image classification tasks, adap-
tive gradient methods use a step size of 0.001, 5; = 0.9,
and B2 = 0.999, while SGD employs a step size of 0.1 and
momentum of 0.9. For language modeling tasks, SGD uti-
lizes step sizes of 30 for LSTM and 0.1 for Transformer.
For LSTM, adaptive methods apply a step size of 0.01 with
e =10"1%, 8, = 0.9, and B2 = 0.999. For Transformer, a
step size of 0.001, with 51 = 0.9 and 32 = 0.999, is adopted
for all adaptive methods.

4.1 Logistic Regression on the MNIST Dataset

We train logistic regression model [LaValley, 2008] on the
MNIST dataset using a cross-entropy loss, providing a con-
vex condition. A weight decay of 5 x 10~* is applied to all
algorithms. Each optimizer is executed for 100 epochs with a
batch size of 128. Performance is evaluated by training loss
and test accuracy, the latter primarily measuring generaliza-
tion, as shown in Figure 3 and Table 1.

Figure 3 shows that AdaR achieves the highest test accu-
racy among adaptive methods, indicating superior general-
ization, although it slightly underperforms SGD. In contrast,
AdaShift performs poorly, as evidenced by low test accuracy
and slow convergence. In Table 1, AdaR outperforms Adam,
AdaBound, AdaShift, NosAdam, AdaPlus, and Adam_Win
in test accuracy by 0.01%, 0.03%, 0.48%, 0.02%, 0.02%, and
0.01%, respectively, while falling short of SGD by 0.07%. By
emphasizing recent gradients to enhance step size adaptation,
AdaR achieves superior generalization. The gap with SGD
may reflect its effectiveness in convex tasks.

4.2 CNNs on the CIFAR-10/100 Datasets

We train VggNet-11 [Simonyan and Zisserman, 2015],
ResNet-34 [He et al., 20161, and DenseNet-121 [Huang

! Code at https://github.com/tHappo/AdaR
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Optimizer = VggNet-11 ResNet-34  DenseNet-121
AdaR 89.43 94.52 94.71
Adam 87.98 93.62 93.57

AdaBound 87.85 92.49 93.24

AdaShift 84.33 92.06 93.84
SGD 89.20 93.24 94.11
NosAdam 86.02 93.83 93.93
AdaPlus 88.80 92.99 94.10
Adam_Win 87.36 93.73 93.76

Table 2: Test accuracy of VggNet-11, ResNet-34, and DenseNet-
121, on the CIFAR-10 dataset.

Optimizer = VggNet-11 ResNet-34  DenseNet-121
AdaR 64.15 75.85 77.38
Adam 57.20 74.37 74.36

AdaBound 59.19 71.45 73.67

AdaShift 52.43 70.92 74.22

SGD 61.40 74.70 75.60
NosAdam 47.77 73.08 74.87
AdaPlus 61.88 72.57 75.79
Adam_Win 57.97 74.77 74.45

Table 3: Test accuracy of VggNet-11, ResNet-34, and DenseNet-
121, on the CIFAR-100 dataset.

et al., 2017] on the CIFAR-10 and CIFAR-100 datasets.
VggNet-11 uses 3 x 3 convolutions with max pooling.
ResNet-34 adopts batch normalization and residual connec-
tions per layer. DenseNet-121 utilizes dense connections for
feature extraction. Training samples are normalized by the
mean (0.485, 0.456, 0.406) and standard deviation (0.229,
0.224, 0.225). AdaBound employs a final step size of 0.1.
All models use a batch size of 128 and weight decay of 104,
trained for 100 epochs with step size decay by a factor of 10
at epochs 45 and 75. Performance curves for CIFAR-10 and
CIFAR-100 are shown in Figures 4 and 5, with numerical re-
sults in Tables 2 and 3, respectively.

Figures 4 and 5 show AdaR achieving the highest test ac-
curacy across all neural networks on both CIFAR-10 and
CIFAR-100. Table 3 shows AdaR outperforming other meth-
ods on CIFAR-100 by 2.27%, 1.08%, and 1.59% for VggNet-
11, ResNet-34, and DenseNet-121, respectively. Table 2
shows AdaR outperforming Adam/SGD on CIFAR-10 by
1.45/0.23, 0.9/1.28, and 1.14/0.6 (%) for the corresponding
networks, respectively. AdaR performs on par with or even
surpass SGD. The improvement stems from the mitigation of
long-tail gradients and enhanced step size adaptation, better
aligning with recent landscape. In contrast, NosAdam shows
instability with VggNet-11 on CIFAR-10/100, probably due
to excessive weighting of past gradients.

4.3 ResNet-18 on the TinyImageNet Dataset

We train ResNet-18 [He er al., 2016] on the challenging
TinyImageNet data. Training samples are augmented via ran-
dom horizontal flips, random resized crops, and normaliza-
tion using mean and standard deviation. All optimizers use a

Optimizer  Training perplexity — Test perplexity
AdaR 58.74 83.32
Adam 84.41 94.73

AdaBound 63.02 85.82

SGD 64.13 85.53
NosAdam 78.69 85.64
AdaPlus 79.10 89.97
Adam_Win 80.69 86.36

Table 4: Training and test PPL of LSTM on the PTB dataset (lower
is better).

batch size of 256 and weight decay of 0.0005. We train all
models for 90 epochs with step size decay at epochs 70 and
80. AdaBound employs a final step size of 0.1.

In Figure 6, AdaR achieves the highest test accuracy
of 65.06%, outperforming Adam (57.96%), AdaBound
(57.24%), NosAdam (57.94%), AdaPlus (57.32%), and
Adam_Win (58.36%) by 7.10%, 7.82%, 7.12%, 7.74%, and
6.70%, respectively. Additionally, AdaR outperforms SGD
(61.18%), the canonical algorithm for this dataset, by 3.88%,
further demonstrating its superior generalization of this chal-
lenging benchmark.

4.4 Long Short-Term Memory Model on the Penn
TreeBank Dataset

We train LSTM model on the PTB dataset with default set-
tings from Merity et al. [2018]. The model has a single
layer with 1150 hidden units and 400-dimensional embed-
dings. Dropout is set as 0.3 for hidden layers, 0.65 for input
embeddings, and 0.1 for the embedding layer. All models use
a backpropagation through time (BPTT) length of 70, weight
decay of 1.2 x 1076, batch size of 80, and gradient clipping
at 0.25. We train all models for 200 epochs, with step size
decay at epochs 100 and 145.

Figure 7 shows AdaR converging quickly and achieving
the lowest training and test perplexities. Table 4 con-
firms that AdaR outperforms Adam, AdaBound, SGD,
NosAdam, AdaPlus, and Adam_Win in training/test per-
plexity by 25.67/11.41, 4.28/2.50, 5.39/2.21, 19.95/2.32,
20.36/6.65, and 21.95/2.04, respectively. AdaR mitigates the
long-tail gradient issue and improves generalization. In con-
trast, AdaShift stagnates after 100 epochs, probably due to
temporal shift failing to find solutions for loss minimization.

4.5 Transformer on the WikiText-2 Dataset

We train a small Transformer with 2 self-attention heads,
200-dimensional embeddings, and 2 layers from Vaswani et
al. [2017] on the WikiText-2 dataset. Dropout of 0.2 is ap-
plied, with a BPTT of 35, weight decay of 1075, batch size of
20, and gradient clipping at 0.25. Training spans 20 epochs,
with step size decay by a factor of 10 at epoch 10.

Figure 8 shows AdaR achieving the lowest test perplexity
with superior generalization, while Adam, NosAdam, and
Adam_Win exhibit overfitting with high test perplexity. Ta-
ble 5 shows that AdaR outperforms Adam, AdaBound, SGD,
NosAdam, AdaPlus, and Adam_Win in test perplexity by
91.53, 39.33, 28.94, 143.41, 16.9, and 129.42, respectively.
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Figure 4: Test accuracy of VggNet-11, ResNet-34, and DenseNet-121 on the CIFAR-10 dataset.
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Figure 5: Test accuracy of VggNet-11, ResNet-34, and DenseNet-121 on the CIFAR-100 dataset.
Optimizer ~ Training perplexity — Test perplexity ness to variations in interval length and step size parameters.
ResNet-18 is trained on CIFAR-10 dataset for 100 epochs,
igaR gggi ;Zgzg with step size decay by a factor of 10 at epochs 45 and 75,
Ad Bam d 62.21 195'27 using a batch size of 128 and weight decay of 10~*. All al-
agoun : y gorithms use default parameters: ¢ = 1078, By = 0.9, and
SGD 149.41 184.88 By = 0.999
NosAdam 33.78 299.35 2T
AdaPlus 108.42 172.84 5.1 The Effect of the Interval Length
Adam_Win 34.46 285.36

Table 5: Training and test PPL of Transformer on the WikiText-2
dataset (lower is better).

All results, across image classification and language model-
ing tasks, confirm the effectiveness of AdaR in mitigating
long-tail gradients and improving generalization via restart
mechanism.

5 Ablation Study

AdaR enhances efficacy and generalization through its restart
mechanism, with ablation studies demonstrating its robust-

We evaluate AdaR with interval lengths of 12, 50 and 100.
All methods employ a step size of 0.001. Figure 9 shows that
AdaR achieves favorable performance across varying inter-
vals, confirming the robustness to the interval length parame-
ter, with minimal need for manual tuning. An interval length
of 12 iterations is recommended.

5.2 The Effect of the Step Size

We evaluate AdaR with step sizes selected from the set
{5x107%,1073,5x 1073, 10~2}. All algorithms are trained
for 100 epochs. In Figure 10, AdaR shows favorable per-
formance across a large range of step sizes, highlighting its
robustness to the step size parameter.
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Figure 6: Test accuracy of ResNet-18 on the TinylmageNet dataset.
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Figure 7: Training and test PPL of LSTM on the PTB dataset.
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Figure 8: Training and test PPL of Transformer on the WikiText-2
dataset.

6 Conclusion

This paper presents AdaR, which mitigates long-tail gradi-
ents via a restart mechanism. By cyclically restarting moment
estimations, AdaR effectively mitigates the influence of dis-
tant gradients, enhancing step size adjustment and improving
convergence. Extensive experiments show that AdaR outper-
forms existing methods in generalization with strong robust-
ness. We hope these findings could provide useful insights
into adaptive gradient methods and develop more robust al-
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Figure 9: AdaR is applied to ResNet-18 on CIFAR-10 to ablate the
effect of interval length, evaluated by training loss and test accuracy.
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Figure 10: AdaR is applied to ResNet-18 on CIFAR-10 to ablate the
effects of step size, evaluated by training loss and test accuracy.

gorithms for the community.
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