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Abstract
Deep neural networks (DNNs) have become valu-
able assets due to their success in various tasks,
but their high training costs also make them tar-
gets for model theft. Fingerprinting techniques
are commonly used to verify model ownership,
but existing methods either require training many
additional models, leading to increased costs, or
rely on GANs to generate fingerprints near deci-
sion boundaries, which may compromise image
quality. To address these challenges, we propose
a GAN-based fingerprint generation method that
applies frequency-domain perturbations to normal
samples, effectively creating fingerprints. This ap-
proach not only resists intellectual property (IP)
threats, but also improves fingerprint acquisition
efficiency while maintaining high imperceptibil-
ity. Extensive experiments demonstrate that our
method achieves a state-of-the-art (SOTA) AUC of
0.98 on the Tiny-ImageNet dataset under IP re-
moval attacks, outperforming existing methods by
8%, and consistently achieves the best ABP for
three types of IP detection and erasure attacks on
the GTSRB dataset. Our source code is avail-
able at https://github.com/wason981/Frequency-
Fingerprinting.

1 Introduction
In recent years, DNNs have been successfully applied to a
wide range of tasks, including image classification [Zhu et
al., 2024], image generation [Huang et al., 2024], and object
recognition [Yuan et al., 2024]. However, high-performing
DNNs typically rely on substantial amounts of high-quality
data, computational resources, and expert knowledge, which
makes them critical and valuable assets. Malicious attackers
can exploit various stealing strategies, such as transfer learn-
ing [Zhuang et al., 2021], to illicitly acquire these models (re-
ferred to as source models) for personal or financial gain. To
protect the IP of the model owners, model IP protection tech-
nologies have been developed to enhance the trustworthiness
of models.

∗Corresponding author

Current IP protection methods can be broadly classified
into watermarking and fingerprinting techniques [Sun et al.,
2023]. Watermarking techniques involve embedding water-
mark information into the source model through training or
fine-tuning. However, they often face significant challenges
to achieve a balance between the robustness of the watermark
and the precision of the model [Jia et al., 2021]. Unlike water-
marking techniques, fingerprinting techniques extract unique
properties of a model as its ”fingerprint”, enabling the differ-
entiation of models based on the characters of the extracted
fingerprint.

Recent advances have focused on extracting fingerprints
from discrepancies in decision areas between a source model
and irrelevant models [Yang et al., 2022a; Lukas et al., 2019].
However, these approaches require training a large number
of post-processed versions of the source model and irrele-
vant models (commonly referred to as surrogate models), and
the number of fingerprints that can be extracted is limited.
Furthermore, some methods generate fingerprints near deci-
sion boundaries [Liu and Zhong, 2024; Yang and Lai, 2023],
but the quality of these fingerprints is often difficult to en-
sure. Therefore, current fingerprinting techniques remain in
their early stages and cannot meet the diverse requirements
of practical applications, such as efficiency, imperceptibility,
and robustness.

To address the issues discussed above, we propose a fin-
gerprint generation method based on generative adversarial
networks (GANs). This approach generates fingerprints by
applying frequency-domain perturbations to the defender’s
datasets, effectively resisting IP threats while ensuring high
imperceptibility. The core idea of our method stems from the
observation that introducing perturbations in the frequency
domain can change the representation of an image and sub-
sequently influence the classifier’s decision-making process,
but without producing a noticeable change in the image that
can be observed. Building on this insight, we utilize a
frequency-aware GAN to generate perturbations that induce
the misclassification of normal samples, which can effec-
tively serve as fingerprints to verify the model ownership.

Our main contributions are summarized as follows.

1. We propose using the generated misclassified samples
as fingerprints, addressing the scarcity of misclassified
samples, and avoiding unnecessary model training over-
head.
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2. We propose to generate fingerprints by applying
frequency-domain perturbations on the original dataset,
and those perturbations can change the representation
and subsequently influence the classifier’s decision for
the image, but without producing a noticeable change
that can be observed. Thus, this approach effectively
improves the robustness of fingerprints while maintain-
ing strong imperceptibility. This is the first fingerprint-
ing model protection method based on the frequency do-
main.

3. Extensive experiments demonstrate the robustness of
our method against IP threats. Specifically, our method
achieves an SOTA AUC of 0.98 in the complex Tiny-
ImageNet dataset under IP removal attacks, exceeding
current methods by 8%, and consistently achieves the
best ABP in three types of IP detection and erasure at-
tacks on the GTSRB dataset.

2 Related Work
In this section, we first briefly review the existing literature on
model IP protection methods, which can be broadly catego-
rized as watermarking and fingerprinting [Sun et al., 2023].
Next, we review frequency-based GAN for different applica-
tions.

2.1 Deep IP Protection
Inspired by digital image copyright protection techniques,
watermarking and fingerprinting are the main methods for
deep model IP protection [Sun et al., 2023].

Model Watermarking
Watermarking embeds unique identification information into
DNNs via fine-tuning or retraining. Parameter-based water-
marking is a white-box approach that embeds watermarks in
the DNN original components using a regularizer as proposed
by [Uchida et al., 2017]. Parameter-based verification neces-
sitates full local access to the model. Label-based watermark-
ing is a black-box method that embeds watermarks by fine-
tuning or retraining the source model on trigger sets, creating
a backdoor that enables verification through model predic-
tions alone. Some methods [Sun et al., 2021; Adi et al., 2018;
Zhang et al., 2018; Lao et al., 2022] used specific sam-
ples from the original training set as the trigger set, while
others attached trigger patterns to natural images [Zhang et
al., 2018; Guo and Potkonjak, 2018], and yet others syn-
thesized trigger sets through generation [Li et al., 2019] or
gradient optimization techniques [Le Merrer et al., 2020;
Li et al., 2022]. However, recent studies [Jia et al., 2021]
suggested that watermarking can potentially compromise the
accuracy of the model due to its impact on the training pro-
cess.

Model Fingerprinting
Fingerprinting is a non-invasive method that extracts model
representations to compare the similarities between different
DNNs. Techniques such as IPGuard [Cao et al., 2021] and
DFA [Wang and Chang, 2021] focused on extracting finger-
print samples near the decision boundary of the source model.
This is based on the idea that a DNN classifier’s unique traits

lie within this boundary. However, these methods are vul-
nerable to model extraction attacks that modify the boundary.
CAE [Lukas et al., 2019] proposed extracting conferrable ad-
versarial samples that are transferable only to stolen models
and not to independently trained irrelevant models. This ap-
proach effectively enhanced robustness against model extrac-
tion attacks, but required significant training overhead. De-
spite these advancements, transfer learning remains a chal-
lenge. ModelDiff [Li et al., 2021] proposed using the co-
sine similarity of the decision distance vectors (DDVs) be-
tween models on the same inputs to detect transfer learn-
ing and model compression attacks. However, it struggled
with model extraction detection. Zest [Jia et al., 2022] ad-
dressed this shortcoming by using the Local Interpretable
Model-Agnostic Explanations (LIME) algorithm [Ribeiro et
al., 2016] to generate linear models that approximate local
behavior, thus forming a global approximation. By compar-
ing the cosine distances of the linear models’ weights, Zest
more accurately captured model similarities than direct pre-
diction comparisons. Furthermore, SAC [Guan et al., 2022]
introduced a metric to assess the correlation of pairwise sam-
ples within the model to defend against adversarial training.
In order to mitigate the impact of accuracy degradation, we
propose a fingerprinting framework and design a method that
avoids the dependence on a significant amount of additional
model training. This approach can also effectively resist
transfer learning and adversarial training.

2.2 Frequency-Based Generative Adversarial
Networks

GANs have demonstrated considerable success in various
computer vision tasks, such as quality enhancement [Zhang
et al., 2019], image inpainting [Yu et al., 2021], few-shot im-
age generation [Yang et al., 2022b] and image reconstruc-
tion [Jiang et al., 2021]. However, studies [Schwarz et al.,
2021] have shown that GANs exhibit a spectral bias in the
fitting of frequency signals, often failing to capture high-
frequency details, which can result in blur and noticeable arti-
facts. To address this issue, several methods have been devel-
oped to incorporate frequency information into GANs. For
example, SSD-GAN [Chen et al., 2021] addressed spectral
information loss by incorporating a frequency-aware classi-
fier into the discriminator, guiding the generator to learn high-
frequency content and improve detail generation. Zhang et al.
proposed a super-resolution reconstruction algorithm [Zhang
et al., 2019] that combined wavelet transform with GANs
to enrich high-frequency details in low-resolution images by
predicting wavelet coefficients. Furthermore, Huang et al.
applied this technique to face hallucination, capturing rich
contextual information from low-resolution face images cap-
tured in the wild [Huang et al., 2019]. Their method achieved
better PSNR and SSIM while significantly improving the ac-
curacy of the identification. Jiang et al. introduced a focal
frequency loss that improved image reconstruction by adap-
tively focusing on hard-to-synthesize frequencies [Jiang et
al., 2021], complementing spatial losses. Meanwhile, Wave-
Fill et al. enhanced image inpainting by filling corrupted
areas with decomposed frequency components [Yu et al.,
2021]. Additionally, Yang et al. introduced WaveGAN [Yang
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Figure 1: The illustration of our framework: We first generate misclassified set using a frequency-aware GAN. Then, we calculate the
matching rate between the predicted labels of the source model MD and the suspect model Msuspect. Any model with a matching rate
greater than the threshold T will be considered a stolen model.

et al., 2022b], a frequency-aware model for the generation of
few-shot images, which employed low-frequency skip con-
nections to preserve outline and structural information, and
high-frequency skip connections to enhance fine detail syn-
thesis. The success of these methods lies in the fact that im-
ages consist of frequency components with different physical
meanings and information. The presented methods demon-
strate that frequency domain-based adversarial generation can
achieve favorable generation results in a variety of tasks.
However, related exploration in the domain of model pro-
tection is limited. Only Liu et al.’s approach [Liu et al.,
2024] has discussed the impact of different frequency bands
on model protection, arguing that embedding information in
mid-low frequency bands strikes a balance between water-
mark robustness and imperceptibility. However, the poten-
tial of frequency-aware techniques for modifying the image
representation to obtain fingerprints for the model protection
task has remained underexplored. In this paper, we propose
a frequency-aware GAN to generate adversarially perturbed
fingerprint samples that induce misclassifications, which ex-
hibit strong robustness for model protection and high imper-
ceptibility.

3 Proposed Method
3.1 Problem Definition
This study considers the scenario in which a legitimate de-
veloper (defender) invests considerable resources in training
a high-performance DNN model, referred to as the source
model MD. The model is typically deployed as a paid ser-
vice through cloud platforms or client software for user ac-
cess. However, malicious attackers can use various methods
to steal MD and create stolen versions MA for unauthorized
use or resale. To protect the IP of their model, defenders of-
ten use fingerprinting or watermarking techniques to verify if

a suspect model Msuspect is stolen.
The general pipeline of the proposed Deep IP Fingerprint-

ing Protection model, as illustrated in Figure 1, consists of
two stages: fingerprint construction and fingerprint verifica-
tion. We will describe these two stages as follows.

3.2 Fingerprint Construction
Existing research emphasizes the role of misclassified sam-
ples in improving adversarial robustness of a model [Wang
et al., 2020]. Inspired by this, we propose using misclassi-
fied samples and their predicted labels from the source model
as a unique fingerprint for model IP protection. For high-
performance classifiers, the limited number of misclassified
samples is insufficient for IP verification. To address this
limitation, we propose a GAN-based method to produce the
misclassified samples. Such an approach allows us to gener-
ate an unconstrained number of misclassified samples and is
more flexible for model protection.

Misclassified Samples
Given the source model MD and a training dataset D =
{(xi, yi)}ni=1, we divide D according to the predictions of hθ

into two subsets: one containing correctly classified samples
and the other containing misclassified samples, as shown in
Eq. (1) and (2):

S+
MD

= {xi : xi ∈ D,MD(xi) = yi} (1)

S−
MD

= {xi : xi ∈ D : MD(xi) ̸= yi} (2)

For each misclassified sample xi ∈ S−
MD

, xi and its pre-
diction MD(xi) can be recorded as the unique fingerprint
of the model for subsequent verification. However, for high-
performance classifiers, the limited number of misclassified
samples is insufficient to enable effective IP verification. To
overcome this limitation, we adopt a GAN-based approach
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to augment the fingerprint set Df by generating misclassified
samples.

We design a GAN framework where the generator G gen-
erates adversarial perturbations ϵ, which, when added to the
original training sample xclean (clean samples), form xmis

and induce misclassifications in the source model. Mean-
while, the discriminator D is designed to distinguish between
xclean and xmis. Notably, for a given input sample, the gener-
ator is capable of generating diverse perturbations that result
in misclassification, thereby enabling the creation of a virtu-
ally unlimited Df .

Frequency-Aware Generative Adversarial Network
According to research [Liu et al., 2024], as a watermarking
method, perturbations in the frequency domain of clean sam-
ples are effective in generating trigger samples. But the wa-
termarking method embeds unique identifiers in the model
which may affect the performance or fidelity of the model. In
contrast, model fingerprinting is a non-invasive technique. By
avoiding model modifications, fingerprinting maintains opti-
mal fidelity and reliability. However, there is no fingerprint-
ing model protection method based on the frequency domain.

The idea of our method comes from the observation that in-
troducing perturbations in the frequency domain can change
the representation of an image, thereby affecting the classi-
fier’s decision, but without producing a noticeable change in
the image that can be observed. Building on these insights,
we propose a Frequency-Aware GAN to generate frequency-
domain perturbations that induce misclassifications in the
source model.

Wavelet Transform Generator: Inspired by [Fu et al.,
2021], we use a Discrete Wavelet Transform (DWT) branch
as the foundation of our frequency-aware generator and mod-
ify its loss function, where the generator loss LG consists of
adversarial loss Ladv and misclassification loss Lmis:

LG = Ladv + Lmis (3)

The adversarial loss ensures that the perturbed sample
xpert = xclean + ϵ deceives the discriminator D, thus pro-
ducing realistic adversarial samples.

Ladv = Exclean∼pdata(x)[log(1−D(xclean + ϵ))] (4)

The misclassification loss maximizes the predictive diver-
gence between the clean images from the real data distri-
bution pdata and their perturbed counterparts on the source
model.

Lmis = Exclean∼pdata(x)CE(ϕ(xclean), ϕ(xclean + ϵ)) (5)

Here, ϕ represents the soft output of MD , and CE denotes
the cross-entropy loss function.

Fourier Spectrum Discriminator: To enhance the dis-
criminator’s ability to distinguish perturbed images, we lever-
age the discriminator architecture proposed in [Chen et al.,
2021]. The Fourier spectrum discriminator focuses on ana-
lyzing frequency-domain features, enabling more robust dif-
ferentiation by capturing fine-grained spectral variations. The
discriminator’s loss function is formulated as:

LD =Exclean∼pdata(x) − [logD(xclean)]

+Exclean∼pdata(x) − [log(1−D(xclean + ϵ))] (6)

D is a discriminator consisting of a spatial discriminator
Dsp, which measures spatial realness, and a spectral discrim-
inator Dspec, which measures spectral realness. The overall
realness of a sample x is represented as:

D(x) = λDspec(x) + (1− λ)Dsp(x), (7)

where λ is a hyperparameter that controls the relative impor-
tance of spatial realness and spectral realness.

3.3 Fingerprint Verification
For a suspect model Msuspect, (referred to as query samples)
in Df . Let M be the number of query samples with predicted
labels that match those of MD. The matching rate is M/N .
If the matching rate exceeds or equals a predefined threshold
T ∈ [0, 1], the model is considered stolen.

4 Experiments and Results
In this section, we first introduce the various IP threats that
our approach aims to address. Next, we provide a detailed
description of the experiments. Finally, we compare the ex-
perimental results of our method with existing baselines to
demonstrate its effectiveness in defending against the afore-
mentioned attacks.

4.1 IP Threats
IP Removal Attack
The attacker removes or forges IP identifiers in the source
model to hinder ownership verification while minimizing per-
formance degradation.

• Probability-based Model Extraction (MEP) [Jagielski et
al., 2020]: A black-box attack where the attacker queries
the source model for probabilistic outputs to train a copy
version.

• Label-based Model Extraction (MEL) [Jagielski et al.,
2020]: A black-box attack where the attacker queries
the source model for hard labels to train a copy version.

• Adversarial Model Extraction (MEA) [Guan et al.,
2022]: A black-box attack where the attacker applies ad-
versarial training to the label-based extraction model.

• Weight Pruning (WP) [Blalock et al., 2020]: A white-
box attack where the attacker prunes neurons based on
their weight to simplify the model.

• Model Fine-tuning (FT) [Uchida et al., 2017]: The at-
tacker fine-tunes (FT) or retrains (RT) the final layer or
the entire model to create a stolen version.

• Transfer Learning (TL) [Zhuang et al., 2021]: The at-
tacker transfers knowledge from source model to a re-
lated task by retraining.

IP Detection and Erasure Attack
The defender uploads query samples to the attacker’s model
prediction API for verification, while the attacker actively dis-
rupts the verification process.

• Query Modification [Namba and Sakuma, 2019]: The
attacker trains an autoencoder to reconstruct query sam-
ples, erasing embedded information.
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• Input Smoothing [Xu et al., 2018]: The attacker ap-
plies smoothing techniques to reduce adversarial pertur-
bations.

• Feature Squeezing [Xu et al., 2018]: Reduces the pixel
color bit depth to minimize the detection of adversarial
perturbations.

4.2 Experiment Setup
Datasets and Model Architectures

For better comparison with other works, we adopt the data-
split method and model architectures used in [Guan et al.,
2022]. To validate the effectiveness and robustness of our
method, we conduct experiments on CIFAR-10, GTSRB, and
Tiny-ImageNet. The training dataset is split into two parts:
DDefender for the defender and DAttacker for the attacker, simu-
lating model IP attack defense scenarios.

• CIFAR-10: consists of 60K 32 × 32 color images in 10
distinct classes, with a training set of 50K images and a
test set of 10K images.

• GTSRB: contains over 50K images of German traffic
signs in 43 classes, with 39K images for training and
12K images for test. The images are resized to 32 × 32
pixels for evaluation.

• Tiny-ImageNet: contains 110K 64 × 64 images of 200
different object classes, with 100K images for training
and 10K images for test.

Similar to the settings in [Guan et al., 2022; Lukas et
al., 2019; Cao et al., 2021], we select the commonly used
model VGG16 as the source model; VGG13, ResNet18,
DenseNet121, MobileNetV2 as irrelevant models. For each
setting, we train five models under each stealing attack and
average the results across these models to mitigate the impact
of randomness.

Comparison Approaches and Evaluation Metrics
We compare our proposed method with nine state-of-the-art
fingerprint protection schemes: IPGuard [Cao et al., 2021],
ModelDiff [Li et al., 2021], DI [Maini et al., 2021], SAC-
w [Guan et al., 2022], SAC-m [Guan et al., 2022], Zest [Jia
et al., 2022], IBSF [Bai et al., 2024], MarginFinger [Liu and
Zhong, 2024], and MetaFinger [Yang et al., 2022a].

Based on previous research, we choose AUC (Area Under
the Curve) as the metric to evaluate model protection meth-
ods. The AUC value ranges from 0 to 1, with higher val-
ues indicating a stronger ability to distinguish between stolen
models and irrelevant models.

4.3 Robustness Against Model IP Removal Attack
As illustrated in Table 1, we evaluate our method on CI-
FAR10, GTSRB, and Tiny-ImageNet. The experimental re-
sults demonstrate that our method is highly robust against the
aforementioned stealing techniques, achieving the highest or
second highest AUC values. In particular, in the complex
classification task on the Tiny-ImageNet dataset, the average
AUC of our method reaches 0.98, significantly outperform-
ing other compared methods. This can be attributed to the
fact that in complex datasets, the classification boundaries be-
tween models vary greatly. The stolen model’s classification

Dataset Methods MEP MEL MEA WP FT TL AVG

CIFAR-10

IPGuard 0.60 0.55 0.52 1.00 1.00 1.00 0.78
SAC-w 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SAC-m 1.00 0.81 0.76 1.00 1.00 1.00 0.93
MarginFinger 1.00 1.00 1.00 0.87 1.00 1.00 0.98
zest 1.00 0.81 0.80 1.00 1.00 1.00 0.94
ModelDiff 0.44 0.55 0.38 1.00 1.00 1.00 0.73
DI 0.84 0.64 0.54 1.00 1.00 1.00 0.84
IBSF 1.00 0.46 0.10 1.00 1.00 0.62 0.70
MetaFinger 0.84 1.00 0.99 1.00 1.00 0.48 0.89
Proposed 0.98 0.89 0.68 1.00 1.00 1.00 0.93

GTSRB

IPGuard 0.61 0.41 0.31 1.00 0.68 0.12 0.52
SAC-w 0.40 0.56 0.30 0.85 0.40 0.13 0.44
SAC-m 1.00 0.29 0.02 1.00 0.41 1.00 0.62
MarginFinger 0.92 0.49 0.16 1.00 0.79 0.88 0.71
zest 1.00 0.32 0.18 1.00 0.87 0.01 0.56
ModelDiff 0.69 0.48 0.25 1.00 0.56 0.34 0.55
DI 0.27 0.74 0.34 1.00 1.00 0.00 0.55
IBSF 0.01 0.68 0.54 1.00 0.37 0.16 0.46
MetaFinger 0.92 0.31 0.31 1.00 1.00 0.43 0.66
Proposed 0.68 0.52 0.12 1.00 0.94 1.00 0.71

Tiny-ImageNet

IPGuard 0.45 0.45 0.45 1.00 1.00 0.35 0.62
SAC-w 0.18 0.53 0.21 1.00 1.00 0.04 0.50
SAC-m 0.54 0.94 0.37 1.00 1.00 0.00 0.64
MarginFinger 1.00 0.98 0.70 0.80 1.00 1.00 0.91
zest 0.93 0.96 0.81 1.00 1.00 0.51 0.87
ModelDiff 0.09 0.16 0.40 1.00 1.00 0.99 0.61
DI 0.61 0.75 0.78 1.00 1.00 0.00 0.69
IBSF 0.25 0.50 0.25 1.00 1.00 0.24 0.54
MetaFinger 0.84 1.00 0.99 1.00 1.00 0.48 0.89
Proposed 1.00 1.00 0.89 1.00 1.00 0.99 0.98

Table 1: The AUC of different IP protection methods when facing
six IP removal attacks on three datasets. (BOLD IS THE BEST)

boundary is typically closer to the source model than to irrel-
evant models, leading to similar classification results on mis-
classified samples. In contrast, for simple datasets, such as
GTSRB, the classification boundaries of the source and irrel-
evant models are also similar, thereby limiting the influence
of misclassified samples.

MarginFinger exhibits the greatest performance in CIFAR-
10 and ranks second on GTSRB and Tiny-ImageNet. This
is because MarginFinger generates fingerprints by control-
ling the distance between the fingerprint and the classifica-
tion boundary, effectively differentiating the classification re-
sults of the source and stolen models from those of irrelevant
models. However, its performance declines for more com-
plex tasks, as the GAN in MarginFinger is trained on the de-
fender’s dataset. Complex and small-scale datasets lead to
insufficient GAN training, preventing it from effectively con-
trolling the distance of the generated fingerprint relative to the
classification boundary. In contrast, although our method is
also trained on the defender dataset, it only requires GAN to
generate perturbations on samples that can trigger misclassi-
fications of the classifier. This simplicity allows us to main-
tain a strong fingerprint protection ability even in complex
tasks. SAC-m performs well overall; however, its reliance
on the correlation matrix of predicted labels between finger-
print samples makes it vulnerable to model extraction attacks
that affect classification boundaries. Even a single alteration
of the label of a fingerprint sample can significantly disrupt
the correlation matrix, weakening its ability to resist model
extraction attacks.
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Figure 2: Evaluation of different methods before (Normal) and after three types of IP detection and erasure attacks on CIFAR-10. We compare
the performance of different methods based on ABP (RED IS THE BEST).
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4.4 Robustness Against Model IP Detection and
Evasion Attack

As shown in Figure 2, we discuss the robustness of dif-
ferent methods on three datasets (CIFAR-10, GTSRB, and
Tiny-ImageNet) under three IP detection and erasure attacks.
We assume that the attacker, being aware of the process de-
scribed in Section 3.3, employs IP detection and erasure at-
tacks to corrupt query samples, preventing the model owner
from collecting evidence. Therefore, it is essential to ensure
the high quality and imperceptibility of the query samples.
For each method, we first evaluate the AUC values under six
IP removal attacks using unmodified query samples (normal).
These six AUC values serve as the vertices of a polygon to
construct a radar chart. Subsequently, we apply three types
of IP detection and erasure attacks on the query samples and
recalculated the AUC values under the six IP removal attacks.
The area bounded by the polygon (ABP) is used to compare
the performance of different methods against IP detection and
erasure attacks. A higher ABP value indicates stronger ro-
bustness.

In the CIFAR-10 dataset, SAC-w, Zest, and MarginFinger
exhibit strong robustness, while our method performs moder-
ately with an ABP of approximately 2. In contrast, IPGuard
and ModelDiff show weaker performance, scoring below 1.5.
In the GTSRB dataset, where all methods generally score be-
low 1.3, our method consistently outperforms others in ABP
and achieves SOTA performance. On the more complex Tiny-
ImageNet dataset, our method and Zest obtain the best results,
demonstrating strong adaptability. Across the three detection
and erasure attack types, SAC series and Zest remain stable
under query modification, while our method shows slight de-
clines. Under input smoothing and feature squeezing, both
Zest and our method maintain high ABP scores, outperform-
ing the SAC series. Notably, Zest’s query samples use a
masking technique, which causes parts of the main content to
be lost. After applying query modification and input smooth-
ing attacks, the image content is restored, leading to an in-
creased ABP value compared to the original query samples.

5 Conclusion
In this paper, we propose a robust and imperceptible finger-
print generation method. Inspired by the adversarial robust-
ness of misclassified samples, we utilize them as fingerprints
and address their scarcity by introducing a frequency-aware
GAN to generate frequency-domain perturbations for normal
samples, creating misclassified fingerprints. Our method of-
fers the following advantages: 1) Efficiency: Training a sin-
gle GAN enables the efficient generation of numerous fin-
gerprints. 2) Imperceptibility: The fingerprints are high-
quality images and achieve the best ABP across three IP de-
tection and erasure attacks on the GTSRB dataset. 3) Ro-
bustness: Achieves a SOTA AUC of 0.98 on Tiny-ImageNet
under IP removal attacks, outperforming existing methods by
8%. Therefore, our method provides an effective solution to
protect model IP.

In future work, we will apply frequency-domain perturba-
tion fingerprinting techniques to other fields, such as natural
language processing, brain-computer interfaces, etc.
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