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Abstract
Prior knowledge of category structure is essential in
medical image segmentation, especially with sig-
nificant organ structure differences. However, cur-
rent hybrid architectures primarily focus on en-
hancing pixel-level representation learning, often
neglecting or weakening the key prior knowledge
of categorical structures, which poses challenges
in capturing category relationships and accurate
segmenting. To address this concern, we pro-
pose a novel network using Explicit Class Embed-
dings and Feature Maps through Iterative Interac-
tion (CFII-Net) for boosting medical image seg-
mentation. CFII-Net effectively segments images
by exploring the relationship between explicit class
embeddings and pixels in images. Specifically,
we propose an Explicit Class Embedding Genera-
tor (ECEG) to obtain high-quality class semantic
embeddings, incorporating category structure pri-
ors, which are used to guide high-accuracy segmen-
tation. We then introduce an iterative Interactor,
which utilizes transformers to facilitate the interac-
tion between feature maps and class embeddings,
thereby exploring pixel-to-class relationships. Fur-
thermore, we propose updating strategies to refine
the class embeddings and feature maps during the
iteration process for achieving refined image seg-
mentation. Extensive empirical evidence shows
that any codec can be easily integrated into CFII-
Net and yields improvements over the state-of-the-
art methods in four public benchmarks.

1 Introduction
Medical image segmentation is a fundamental task in com-
puter vision, critical for diagnosis and preoperative planning.
Recently, CNN-based and Transformer-based models have
achieved significant progress in this domain. A classical
method U-Net [Ronneberger et al., 2015] uses an encoder-
decoder structure with skip connections for dense predictions.
Following this technical route, its derived variants in U-Net
with advanced network block techniques [Zhou et al., 2018;

∗Corresponding Author

Xiao et al., 2018; Oktay et al., 2018; Jin et al., 2019]. Vision
transformers [Dosovitskiy et al., 2020] highly focus on learn-
ing the relationships between different patch tokens, which
is an effective method for global context modeling. For ex-
ample, TransUNet [Chen et al., 2021] and SwinUNet [Liu
et al., 2021] both combine CNNs and transformers through
serial fusion, obtaining a better trade-off in accuracy and effi-
ciency. TransFuse [Zhang et al., 2021b] introduces the BiFu-
sion module to parallelly combine global dependencies and
spatial details. However, these methods focus on obtaining
better pixel representations while neglecting the structural
prior knowledge of the target classes implicit in the feature
maps. This can lead to semantic inconsistencies within the
same class and confusion between different classes.

Recently, the mask classification segmentation paradigm
has aroused the interest of many researchers in natural image
segmentation tasks. This approach typically involves feed-
ing class embeddings and feature maps into a transformer de-
coder to facilitate interaction, ultimately predicting a set of
binary masks, each linked to a specific class. For example,
SegVit [Zhang et al., 2022] leverages class embeddings and
attention maps to identify local patches with higher similarity,
improving inference efficiency. Maskformer [Cheng et al.,
2021] and Mask2former [Cheng et al., 2022] use the class
embeddings to generate class predictions per segment, ad-
dressing semantic and instance-level segmentation tasks. Al-
though class embeddings in the methods above are linked to
category information, they are typically initialized randomly,
meaning they are implicit and reliant on continuous training
to learn the structural information of the categories.

In general, medical images possess significant class struc-
tural prior knowledge (e.g., organ anatomy and spatial re-
lationships) compared to natural images, enabling the ex-
traction of explicit and meaningful class embeddings to as-
sist segmentation. Intuitively, shallow features capture fine-
grained details, while deeper features represent abstract se-
mantic information. In other words, each stage’s features thus
provide a comprehensive depiction of category-specific char-
acteristics. Consequently, class embeddings derived from
these feature maps inherit similar traits, guiding feature map
regions belonging to the same category to cluster cohesively.

In light of this promising attempt, we try to extract explicit
class embeddings with category structural prior in medical
images and consider a simple method for predicting segmen-
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tation maps using Explicit Class Embeddings and Feature
Maps through Iterative Interaction, called CFII-Net, which
consists of two parts: Explicit Class Embedding Generator
(ECEG) and Iterative Interactor. Specifically, the ECEG over-
comes the limitations of class-agnostic feature maps by re-
taining part of the original features and activating the class
attributes of other features, which effectively improves the
quality of class embeddings later. Subsequently, by aggregat-
ing the masks of the same class, we generate prototype class
vectors to obtain explicit class embeddings. To achieve more
refined class embeddings and segmentation maps, we intro-
duce iterative interactor based on an attention mechanism.
Employing this mechanism, class embeddings continuously
extract information from features to improve class discrim-
inability, and features continuously explore class prior knowl-
edge from embeddings to enhance class relations and seman-
tics. CFII-Net produces better results than SOTA methods
with a significantly lower parameters cost (as shown in Fig-
ure 1) on synapse dataset.

Our main contributions can be summarized as follows:

• We utilize category information of feature maps to gen-
erate explicit class embeddings with structural prior
knowledge to guide medical image segmentation, in-
stead of blindly relying on random initialization.

• We build a novel iterative interaction framework CFII-
Net, where the high-quality class embeddings are ob-
tained by ECEG module, and pixel-to-class relation-
ships between feature maps and class embeddings are
explored by the Iterative Interactor, progressively refin-
ing the results.

• Extensive experimental results on four public medical
datasets validate that CFII-Net outperforms state-of-the-
art methods in accuracy and parameters count.

2 Related Work
2.1 CNN and Transformer for Medical Image

Segmentation
Hybrid architectures based on convolutional neural network
and transformer have shown excellent performance in med-
ical image segmentation. Scaleformer [Huang et al., 2022]
from a scale-wise perspective to improve the segmentation
quality even for small objects. UDTransNet [Wang et al.,
2023] explores the skip connection between encoder-decoder
levels by exploring channel and spatial attention mechanisms.
DTMFormer [Wang et al., 2024] addresses the potential at-
tention collapse in hybrid frameworks by proposing a plug-
and-play module with dynamic token merging. EMCAD
[Rahman et al., 2024] proposes a new and efficient multi-
scale convolutional attention decoder to obtain a better trade-
off in accuracy and efficiency.

2.2 Class Embeddings for Image Segmentation
DETR [Carion et al., 2020] builds an end-to-end detector by
introducing learnable object queries in the transformer de-
coder to correspond to each object instance, which has given
a lot of food for thought to image segmentation. Segmenter

Figure 1: Parameters count vs. Dice coefficient for different meth-
ods on Synapse dataset. The green bars represent model parameters
while the yellow dots show the dice coefficient for each architecture.
As shown, our proposed approach (CFII-Net) has the fewest param-
eters, yet the highest Dice value.

[Strudel et al., 2021] uses a mask transformer to process im-
age patches and class embeddings jointly and applies sev-
eral self-attention layers to produce prediction maps. Mask-
former [Cheng et al., 2021] first realizes the importance of
class embeddings and uses it to predict N class labels and
N corresponding mask embeddings. Then the Mask2former
[Cheng et al., 2022] further advances this by introducing
a new transformer decoder and employing an optimization
strategy to reduce training memory. OMG-Seg [Li et al.,
2024] follows the Mask2Former architecture and proposes
a new encoder-decoder to handle all segmentation tasks ef-
ficiently. SegViTv2 [Zhang et al., 2024] transfers the simi-
larity mapping between a set of learnable class embeddings
and feature maps to the ATM modules to obtain segmenta-
tion masks. ECENet [Liu et al., 2023] improves segmentation
performance using roughly predicted segmentation masks for
generating class embeddings.

However, since medical images contain richer category
structural prior knowledge compared to natural images, ran-
domly initialized class embeddings lead to the loss of valu-
able prior knowledge. Based on this, we attempt to extract
meaningful explicit class embeddings from the feature maps,
which are then used to iteratively interact with the features to
boost medical image segmentation.

3 Method
The proposed CFII-Net framework tailored for explicit class
embedding for medical image segmentation consists of
two modules, i.e., 1) Explicit Class Embedding Generator
(ECEG), and 2) Iterative Interactor. As shown in Figure 2,
given an input image of size H×W , we first use a backbone
(such as ResUNet) to generate multi-stage features F . Sub-
sequently, we use chunk (a simple tensor operation) on F
along the channel dimension to form dual branches multi-
stage features F1 and F2, which are used for obtaining class
embeddings and refined feature maps respectively. These
are defined as F1,i ∈ RHi×Wi×Ci and F2,i ∈ RHi×Wi×Ci ,
∀i = 1, 2, 3, 4, 5, 6, where Hi = H / 2i−1 and Wi = W / 2i−1

, represents the i-th stage feature whose scale is 1/2i−1 of
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Figure 2: Overview of CFII-Net. It has two modules: (a) Explicit Class Embedding Generator (ECEG), and (b) Interactive Iterators. By
extracting class prior information from feature maps into embeddings, we obtain clear and meaningful class embeddings. The illustration
of the proposed Interactive Iterator module has some slight differences, deep/shallow stage features and corresponding class embeddings
are sequentially fed into the SIT/CIT modules for interaction. FEU and CEU modules update feature maps and class embeddings from the
previous stage, respectively. Finally, with the help of class embeddings, the updated multi-stage features are sent to the decoder.

the input image, Ci is the channel dimensions of stage i. For
clarity of representation, we replace F2 with F throughout the
paper. One branch F1 is used to generate the corresponding
prototype explicit class embeddings E by the designed ECEG
module. Then, the class embeddings and the other branch F
are fed into multi-stages of Interactors to interact and update
them iteratively. Finally, we send feature maps of each stage
after interaction to the downstream block for prediction. Each
module of our CFII-Net is described in detail below.

3.1 Explicit Class Embedding Generator (ECEG)
Initial multi-layer feature maps are often class agnostic, so
directly mapping the feature maps to class embeddings is
imprecise. To this end, we introduce a simple but effective
method to obtain high-quality class semantic embeddings,
dubbed Explicit Class Embedding Generator (ECEG), based
on the decomposition of prediction masks.

Since the diversity and intrinsicity in features are impor-
tant for obtaining high-quality category embeddings [Woo et
al., 2018; Han et al., 2020], as observed in Figure 2, we ran-
domly choose a branch of multi-stage features F1 and con-
tend that the feature maps F1,i ∈ RHi×Wi×Ci produced in
each stage contain intrinsic features. Hence, we employ lin-
ear transformations ϕ(·) implemented by 1 × 1 convolutional
without activation to extract these features in each stage.

F ′ = ϕ(F1,i) ∈ RHi×Wi×Ci/2 (1)
To enhance the model’s response to the focal points, we in-
troduce Channel Spacial Attention (CSA) to generate atten-
tion feature maps information sequentially in both channel
and spatial dimensions. These are then multiplied with the
original input feature maps for adaptive feature correction,
resulting in an enhanced feature maps.

F∗ = Mc(F ′)⊗F ′ (2)

F ′′ = Ms(F∗)⊗F∗ (3)

X = [F ′;F ′′] (4)

where CSA sequentially infer a 1D channel attention map
Mc ∈ RCi×1×1 and a 2D spatial attention map Ms ∈
R1×Hi×Wi . ⊗ denotes element-wise multiplication and [·]
denotes concatenation. Finally, the intrinsic properties branch
F ′ and category properties branch F ′′ are concated together
and projected to the initial shape. In this way, we obtain en-
hanced features X for helping to get high-quality semantic
embeddings.

Generally, convolution and attention-based operations do
not explicitly decouple the category cues, so extracting cate-
gory information is non-trivial. Mask classification is the as-
signment of a mask to each class, ideally the region in which
the class is located is 1 and the background is 0. Based on
this, it is logical to consider using prediction masks as the
most natural raw material for extracting explicitly defined
class embeddings. As shown in Figure 2, after obtaining the
enhanced features Xi ∈ RHi×Wi×Ci , we first apply linear
transformations to predict a coarse segmentation probability
map Yi, which can be written as follows:

Yi = ϕ2(ϕ1(Xi)) ∈ RHi×Wi×N (5)
where ϕ1 and ϕ2 are linear transformations implemented by
1 × 1 convolutional layers without activation, N equals to the
number of classes. Then we disassemble Yi by category, with
each class corresponding to a class mask, and use the sigmoid
function to highlight the category features and generate the
category gate maps Yn

i ∈ RHi×Wi , n ∈ {1, . . . ,N}. We
then apply both Yn

i and category gate map inversion Y
n

i for
weighted fusion of the enhanced features Xi.

The key insights are two folds. First, sharing the same
gates can better highlight category regions. Second, the use of
a subtracted gate technique supplements the missing details in
the nonsalient parts. Such process is shown as follows:

Zn
i = ϕ3([Xi ⊗Yn

i ;Xi ⊗Y
n

i ]) ∈ RHi×Wi×Ci (6)
Finally, we aggregate the representations of all pixels, com-
pute their average as the prototype vector for a category, and
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Figure 3: Iterator: including interaction and updating modules.

concatenate all the category prototype vectors as explicit class
embeddings E.

En
i = Pooling(Zn

i ) ∈ R1×Ci (7)

E = [E1
i ,E

2
i ; . . . ;E

N
i ] ∈ RN×Ci (8)

where Pooling is the adaptive average pooling. A set of cat-
egory prototype vectors is integrated by a prediction mask
obtained from the enhanced feature maps, which in turn gen-
erates meaningful class embeddings. Rather than randomly
initializing the class embeddings blindly, our approach ex-
plicitly extracts prior knowledge of the category structure hid-
den in the feature maps, which is important in the subsequent
segmentation process.

3.2 Interactive Iterator
After obtaining the multi-stage explicit class embeddings E,
we feed it together with the multi-stage features F into the
Interactive Iterator. As shown in Figure 2, we use Self-
Interactive Transforme (SIT) at the deeper stage of the net-
work and Cross-Interactive Transforme (CIT) at the shal-
lower stage, respectively. Meanwhile, we employ Class Em-
beddings Updater (CEU) and Feature Enhancement Updater
(FEU) to update the class embeddings and feature images
progressively, which obtains more fine-grained explicit class
embeddings and segmentation maps.

Self-Interactive Transformer (SIT)
As illustrated in Figure 3(a), we reshape the image fea-
tures Fi ∈ RHi×Wi×Ci into a sequence of patche tokens
F̃i ∈ RHiWi×Ci , where i ∈ {3, 4, 5, 6}, then concatenate
them with the class embeddings Ei ∈ RN×Ci to obtain
Gi ∈ R(N+HiWi)×Ci , and perform self-attention on Gi to
ensure that the image features can explicitly recognize the
class dependencies from the class embeddings. Specifically,
linear transformations are applied to Gi to form query (Q),

key (K) and value (V ),

Q = ϕq(Gi),K = ϕk(Gi), V = ϕv(Gi) (9)

G′
i = Softmax(

QKT

√
D

)V +Gi (10)

G′′
i = FFN(G′

i) +G′
i (11)

where ϕα∈{q,k,v} are the linear transformations,
√
D serves

as a scaling factor while D equals to the dimension of key.
Subsequently, we pass through the feed-forward networks
(FFN) and split the class embeddings and patche tokens along
the channel dimension. And then reshape the patch tokens
into feature maps,

E′
i, F̃

′
i = Split(G′′

i ) (12)

F′
i = Reshape(F̃′

i) (13)

where E′
i ∈ RN×Ci and F′

i ∈ RHi×Wi×Ci are the interacted
class embeddings and interacted features obtained by revers-
ing the order of the concatenated sequence, and are used in
the iterative update in the next part.

Cross-Interactive Transformer (CIT)
The problem of quadratic complexity becomes increasingly
obvious when the feature map resolution is large, so up-
dating the feature maps sensibly is non-trivial. We aim to
use class embeddings as category structural prior knowledge
to help feature maps obtain clearer segmentation results, so
the feature maps fed into the decoder are of utmost impor-
tance. We can effectively solve this problem by using cross-
attention. As illustrated in Figure 3(b), it reshapes the image
features Fi ∈ RHi×Wi×Ci into a sequence of patche tokens
F̃i ∈ RHiWi×Ci , where i ∈ {1, 2}, which are then used as
a query (Q) with the class embedding as key (K) and value
(V ), and the rest of the operations are similar to those in SIT.

Q = ϕq(F̃i),K = ϕk(Ei), V = ϕv(Ei) (14)
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It is worth noting that, in addition to obtaining unidirectional
(E→F) interacted of the feature maps F′

i through the re-
shape operation, we also obtain interacted class embeddings
E′

i through matrix multiplication by the mid-product atten-
tion map associated with the query.

Compared with the conventional self-attention with the
complexity of O(CH2W 2), the cost of cross-attention is de-
creased and can be summarized as O(2CNHW ), where C
is the number of channels, H ,W are the height and width of
the feature maps, respectively, and N is the number of seg-
mentation categories. Even though multiple categories N are
considered, the cost of cross-attention is relatively small com-
pared to self-attention (2N ≪ HW ).

Class Embeddings Updater (CEU)
At each stage, there are unique prototype class embeddings
with varying prior knowledge of class structure. Therefore,
we need to continuously enrich the class embeddings.

As illustrated in Figure 3(c), after obtaining the interacted
class embeddings E′

i ∈ RN×Ci of the i-th layer, we re-
fresh the previous class embeddings Ei−1 ∈ RN×Ci−1 of
the (i − 1)-th layer through CEU. We first concatenate E′

i
and Ei−1 along the channel dimension for each category, and
then apply LayerNorm (LN) [Ba et al., 2016] to standardize
the features of each sample:

En = {chunk(ϕ4(E
′
i));ϕ5(Ei−1)},En ∈ R1×2Ci−1

E = ϕ6([LN(E1); . . . , LN(EN )]);E ∈ RN×Ci−1 (15)
where chunk(·) indicates separation along the channel di-
mension. {·} represents concatenation by category, so n ∈
{1, . . . ,N}, N is the number of categories. Since the class
features from different sources may have different distribu-
tions, this operation helps the model distinguish between dif-
ferent categories, thereby improving the class distinguisha-
bility. Inspired by [Zhang et al., 2021a], we use a gating
mechanism to refresh the previous class embeddings further.
Finally, we obtain the updated class embeddings.

Êi−1 = Ψ(σ(E)⊙ LN(chunk(ϕ4(E
′
i))) +Ei−1) (16)

where σ is the sigmoid function and Ψ is a fully connected
(FC) layer followed by LayerNorm. This iterative update
gradually repeats on multi-stage features, producing high-
quality class embeddings.

Feature Enhancement Updater (FEU)
Multi-scale information is particularly important for segmen-
tation tasks. Therefore, we need to enhance the multi-scale
feature information continuously. As illustrated in Figure
3(d), where the feature maps of each level are compressed
to the same channel dimension by two 1 × 1 convolutional
layers before entering the next level. Given an interacted fea-
ture maps F′

i and a previous-level feature maps Fi−1, both of
which have the same channel dimension, we upsample F′

i to
the same size as Fi−1 by a bilinear interpolation layer. Then,
inspired by [Li et al., 2019], we attempt to adapt the mecha-
nism of automatic selection between different maps. Specifi-
cally, we first integrate the information of two branch feature
maps.

As = [ϕ(F′
i);ϕ(Fi−1)],

Ac = ϕ(F′
i) + ϕ(Fi−1)

(17)

Then, we embed the global information through simple max-
imum pooling and average pooling and generate channel and
spatial feature descriptors. To allow the interaction of differ-
ent feature descriptors, we use a simple fully connected layer
and a sigmoid activation function to obtain compact features
Aspa and Acpa for accurate and adaptive selection guidance.

Aspa = σ(ϕ([Pmax(As);Pavg(As]))),

Acpa = σ(ϕ(Pmax(Ac) + Pmax(Ac)))
(18)

where Pmax(·) and Pavg(·) are the maximum and average
pooling. Finally, F′

i and Fi−1 are matched with spatial fea-
ture descriptor and channel feature descriptor, respectively,
to maximally preserve semantic information, and we get the
updated outcomes F̂i−1 :

F̂i−1 = Aspa · Fi−1 +Acpa · F′
i (19)

In brief, CEU and FEU units are reused in multi-stages, re-
sulting in highly informative class embeddings and feature
maps. The class distinguishability of the class embeddings is
progressively enhanced, and valuable semantic details in the
feature maps are extracted while reducing irrelevant contex-
tual information.

Decoder and Loss
Finally, the interacted multi-level feature maps from Interac-
tive Iterator are sent to a series of decoder blocks, including
two 3×3 convolutions and a skip connection. In the train-
ing phase, we use the combined Cross-Entropy loss LCE and
Dice loss LDice as the primary loss. Moreover, we introduce
an auxiliary Euclidean distance loss LEU [Li et al., 2022] to
maximize the distance between the interacted class embed-
dings, which can further enhance class distinguishability.

Ltotal = LDice + LCE + λEULEU (20)

where LEU is balanced by λEU , which is further shown in
ablation experiments.

4 Experiments
4.1 Datasets
Synapse (9 classes) consists of 30 abdominal CT scans. Fol-
lowing [Chen et al., 2021], we split 18 cases for training and
12 cases for testing. We report the Dice Coefficient (Dice)
and 95% Hausdorff Distance (HD95) on 9 different organs.
ACDC (4 classes) contains 100 MRI scans involving three
organs. Consistent with [You et al., 2022], we present the
Dice results using a random split of 70 training cases, and 30
testing cases. MoNuSeg (2 classes) contains 44 images, with
30 images for training, and 14 for testing. Following [Ku-
mar et al., 2017], we report Dice and Intersection over Union
(IoU) as the evaluation metrics. GlaS (2 classes) [Sirinukun-
wattana et al., 2017] consists of 85 training samples and 80
testing samples. we report Dice as the evaluation metrics.

4.2 Implementation Details
We implement our model with PyTorch on a single NVIDIA
4090 GPU card with 24 GB of memory. To avoid overfitting,
we also perform two data augmentations including random
rotation and flipping. We use ResUNet as the backbone and
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Method Params (↓) Dice (↑) HD95 (↓) Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach

V-Net
U-Net

AttUNet
R50 ViT

TransUNet
SwinUNet

UCTransNet
MTUnet

AFTerUNet
MissFormer
ScaleFormer

EMCAD

45.60M
31.04M
34.88M
103.77M
105.28M
27.17M
66.43M
79.08M
41.50M
42.46M
111.58M
26.76M

68.81
76.85
77.77
71.29
77.48
79.12
78.23
78.59
81.02
81.96
82.86
83.63

-
39.70
36.02
32.87
31.69
21.55
26.75
26.59

-
18.20
16.81
15.68

75.34
89.07
89.55
73.73
87.23
85.47
88.86
87.92
90.91
86.99
88.73
88.14

51.87
69.72
68.88
55.13
63.13
66.53
66.97
64.99
64.81
68.65
74.97
68.87

77.10
77.77
77.98
75.80
81.87
83.28
80.19
81.47
87.90
85.21
86.36
88.08

80.75
68.60
71.11
72.20
77.02
79.61
73.18
77.29
85.30
82.00
83.31
84.10

87.84
93.43
93.57
91.51
94.08
94.29
93.17
93.06
92.20
94.41
95.12
95.26

40.05
53.98
58.04
45.99
55.86
56.58
56.22
59.46
63.54
65.67
64.85
68.51

80.56
86.67
87.30
81.99
85.08
90.66
87.84
87.75
90.99
91.92
89.40
92.17

56.98
75.58
75.75
73.95
75.62
76.60
79.43
76.81
72.48
80.81
80.14
83.92

CFII-Net (Ours) 23.49M 84.58 16.59 89.26 73.66 87.19 85.55 95.37 70.88 91.21 83.51

Table 1: Results on Synapse dataset. The best and second-best results are bolded and underlined, respectively.
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Figure 4: Qualitative results on multi-category segmentation datasets. The red arrows highlight the regions where CFII-Net performs better
than the others

do not use any pre-trained weights to train the proposed CFII-
Net. For all four datasets, we set the input resolution to 224 ×
224 and generally train for 600 epochs.

For Synapse and ACDC, we use the SGD optimizer to train
our model with a batch size of 8, where the initial learning
rates are set to 0.006 and 0.04, respectively, with momen-
tum of 0.9 and weight decay of 1e − 4. For MoNuSeg and
GlaS, we train our model using the Adam optimizer, where
the initial learning rates are set to 0.001 and 0.004, respec-
tively, with a batch size of 4, and use CosineAnnealingWarm-
Restarts as a scheduler, with a maximum number of iterations
of 10, and a minimum learning rate of 1e− 4.

4.3 Comparison with the State-of-the-Arts
Quantitative Comparison
We compare it with 12 state-of-the-art (SOTA) networks on
the Synapse dataset, including V-Net [Milletari et al., 2016],
U-Net, AttUNet, ViT, TransUNet, SwinUNet, UCTransNet
[Wang et al., 2022a], MTUnet [Wang et al., 2022b], AF-
TerUNet [Yan et al., 2022], MissFormer [Huang et al., 2021],
ScaleFormer, and EMCAD. As shown in Table 1, although
CFII-Net achieves sub-optimal results in HD95 (slightly in-
ferior to EMCAD), it outperforms all others in the Dice met-
ric at 84.58%. In particular, compared to ScaleFormer which
only aims at extracting feature representations at different
scales, we utilize the paradigm of explicit class embedding
to guide the segmentation process, which maintains a bet-
ter Dice metric (Dice: +1.72%) and a drastic reduction in
model parameters (Params: -88.09M). Table 2 shows the
Dice scores on the ACDC dataset, where CFII-Net obtains

Method Dice(%) RV Myo LV
U-Net

AttUNet
TransUNet
SwinUNet

UCTransNet
MissFormer
ScaleFormer

EMCAD

87.55
86.75
89.71
88.07
90.42
90.86
90.17
92.12

87.10
87.58
88.86
85.77
87.28
89.55
87.33
90.65

80.63
79.20
84.53
84.42
88.54
88.04
88.16
89.68

94.92
93.47
95.73
94.03
95.44
94.99
95.04
96.02

CFII-Net (Ours) 92.37 90.93 90.12 96.05

Table 2: Results on the ACDC dataset.

Method GlaS MoNuSeg
Dice (%) Dice (%) IoU (%)

U-Net 86.76 73.97 59.48
UNet++ 88.79 75.28 60.89
MedT 87.61 79.24 65.73

AttUNet 89.37 76.20 62.64
TransUNet 88.93 79.20 65.68
SwinUNet 89.67 78.49 64.72

UCTransNet 90.02 79.87 66.68
MissFormer 85.37 76.04 61.68
ScaleFormer 90.58 80.06 66.87

EMCAD 91.95 72.06 56.40
CFII-Net (Ours) 92.25 81.33 68.63

Table 3: Results on the GlaS and MoNuSeg datasets.

the highest average Dice score of 92.37% and outperforms
other methods in all three organ segmentations.

In addition to multi-category organ segmentation, we also
validate the effectiveness of CFII-Net on two binary medi-
cal image datasets. The experimental results on GlaS and
MoNuSeg are reported in Table 3, where our method achieves
significant advantages over others.
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Figure 5: Qualitative results on binary segmentation datasets. The red boxes highlight areas where CFII-Net performs better than other
methods.

W/CLS FEU CEU Dice (%) HD (mm) Params (M)
✓ ✓ ✓ 84.58 16.59 23.49
✓ ✓ 82.61 18.29 23.49
✓ ✓ 82.68 22.62 23.49

78.82 33.15 44.45
✓ 81.57 22.63 22.93

initialize ✓ ✓ 81.83 21.25 23.49

Table 4: Ablation results on the components in CFII-Net.

Backbone W/CLS Dice (%) HD95 (mm) Params (M)

UNet × 76.85 39.70 31.04
✓ 81.84 20.61 29.97

TransUNet × 77.48 31.69 105.28
✓ 81.12 21.49 104.40

SwinUNet × 79.12 21.55 27.17
✓ 80.31 19.74 26.75

Table 5: Performance of CFII-Net on various backbones.

Qualitative Comparison
Figure 5 presents qualitative results for two binary segmen-
tation datasets, demonstrating that CFII-Net produces out-
puts closer to the ground truth with fewer false segmenta-
tions. Figure 4 showcases results for multi-category segmen-
tation datasets, highlighting the limitations of existing meth-
ods. For the ACDC dataset, EMCAD under-segments RV or-
gans, while ScaleFormer, MissFormer, and TransUNet under-
segment Myo organs. In the Synapse dataset, other methods
exhibit various segmentation errors: EMCAD confuses KL
and KR due to insufficient class guidance, ScaleFormer and
MissFormer misidentify the background as pancreas, UC-
TransNet segments the background as left kidney, TransUNet
misidentifies the background as liver and stomach, SwinUNet
under-segments the aorta, and UNet mistakenly segments the
background as gallbladder and left kidney, while confusing
the right kidney with the left kidney. In contrast, CFII-Net
achieves superior segmentation by leveraging explicit class
embeddings enriched with structural prior knowledge. These
results underscore the potential of explicit class embeddings
as a promising paradigm for medical image segmentation.

4.4 Ablation Studies
Components in CFII-Net
Table 4 highlights the contributions of different components
in CFII-Net. The introduction of explicit class embeddings
(W/CLS), a core element of our method, significantly im-
proves segmentation performance (Dice: +2.75%) compared

λEU 0 0.3 0.5 0.7 1.0

Dice (%) 84.36 84.58 84.48 84.53 84.38

HD (mm) 17.26 16.59 16.59 16.65 17.33

Table 6: Ablation results on loss coefficient.

to the baseline. Moreover, incorporating FEU (Dice:+1.97%)
and CEU (Dice:+1.90%) modules to iteratively update feature
maps and class embeddings further enhances performance
with negligible additional parameters. Unlike blind randomly
initialized class embeddings, we introduce explicit class
embeddings with prior knowledge of the category structure to
aid segmentation, which largely improves segmentation per-
formance (Dice:+2.75%). These demonstrate that guided by
explicitly defined class embeddings, feature maps can yield
refined class cues, thus improving segmentation performance.

Different Backbones
We integrate the class embeddings with three other represen-
tative medical image segmentation architectures, including
CNN-based U-Net, transformer-based TransUNet, and Swi-
nUNet, i.e., using our CFII-Net except for the backbone and
decoder parts. As shown in Table 5, we find that CFII-Net
achieves consistent improvements in both Dice and HD95,
and also slightly reduces the model parameters.

Loss Coefficient
Finally, we evaluate the impact of different loss coefficients
on performance using the Synapse dataset. The choice of loss
coefficient λEU is entirely result-driven. Table 6 shows that
our CFII-Net achieves an optimal 84.58% Dice when λEU =
0.3. Therefore, we use this setting in all experiments.

5 Conclusion
We present CFII-Net which uses explicit class embeddings
to boost the medical image segmentation. Compared with
the traditional random initialization, explicit class embed-
ding possesses category structural prior knowledge, so re-
gions of same category in the feature maps are more in-
clined to be clustered together and different categories are
more distinguishable under the guidance of explicitly de-
fined class embedding. In addition, we gradually refine fea-
ture maps and class embeddings during the iterative process,
which improves the performance of the network. CFII-Net
achieves state-of-the-art performance on four publicly avail-
able datasets.
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