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Abstract

Generative artificial intelligence in music has made
significant strides, yet it still falls short of the
substantial achievements seen in natural language
processing, primarily due to the limited avail-
ability of music data. Knowledge-informed ap-
proaches have been shown to enhance the perfor-
mance of music generation models, even when
only a few pieces of musical knowledge are inte-
grated. This paper seeks to leverage comprehensive
music theory in Al-driven music generation tasks,
such as algorithmic composition and style trans-
fer, which traditionally require significant manual
effort with existing techniques. We introduce a
novel automatic music lexicon construction model
that generates a lexicon, named CompLex, com-
prising 37,432 items derived from just 9 manually
input category keywords and 5 sentence prompt
templates. A new multi-agent algorithm is pro-
posed to automatically detect and mitigate hallu-
cinations. CompLex demonstrates impressive per-
formance improvements across three state-of-the-
art text-to-music generation models, encompassing
both symbolic and audio-based methods. Further-
more, we evaluate CompLex in terms of complete-
ness, accuracy, non-redundancy, and executability,
confirming that it possesses the key characteristics
of an effective lexicon.

1 Introduction

Generative artificial intelligence in music has seen remark-
able progress in both academia [Copet et al., 2024; Bhandari
etal., 2025; Hu et al., 2025] and industry such as Suno [Suno,
2025] and Udio [Udio, 2025]. These advancements highlight
the growing potential of artificial intelligence in the arts and
creative industries [Wei er al., 2023; Karystinaios et al., 2023;
Han er al., 2024], offering transformative capabilities for mu-
sic creation, production, and consumption.

Despite significant progress, the development of gener-
ative artificial intelligence in music still falls short of the
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significant achievements seen in natural language process-
ing (NLP) [Wei et al., 2022; Farquhar ef al., 2024]. This
gap is mainly due to the limited availability of music data,
especially compared to the super large-scale datasets used
to train large language models (LLMs) [Briot et al., 2017,
Ji et al., 2023]. For example, while LLMs can ensure gram-
matical accuracy through data-driven pre-training and prompt
tuning, large music models (LMMs) face challenges in ad-
hering to music theory using data alone. This discrepancy
stems from the vast difference in data availability between
language and music models. Billions of new text data points
are generated daily, whereas only tens of thousands of new
pieces of music, both original and adapted, are created. The
limited quantity of music data remains a challenge, as the to-
tal number of musical pieces from various periods and styles
throughout history amounts to only millions !, starkly con-
trasting the trillion-level text corpora used to train LLMs
[Achiam et al., 2023]. This limited quantity of music data
remains a key bottleneck in the progress of generative music
models.

Data augmentation has been proposed as a way to expand
music datasets and has achieved significant performance im-
provements [Shorten and Khoshgoftaar, 2019]. However, we
observe a challenging cycle: effective data augmentation re-
lies on high-performing models, but improving these models
depends on high-quality data, which is difficult to generate.
Specifically, high-quality music data requires efficient gener-
ative models, and if these models perform poorly, the aug-
mented data may introduce noise, undermining further train-
ing [Shorten and Khoshgoftaar, 2019]. Additionally, human
auditory perception is highly sensitive to small changes in
timing, pitch, and volume [McDermott and Oxenham, 2008],
leading to low tolerance for suboptimal augmented samples.
This cycle affects not only music but also many other do-
mains, such as medical imaging [Shamshad et al., 2023] and
finance [Cao, 2022], which also struggle with limited data
availability.

In this context, knowledge-informed approaches are essen-
tial for enhancing the performance of music generation mod-
els. Music theory can significantly improve various aspects of
music, including musicality [Akama, 2019], melody smooth-
ness [Wu et al., 20201, and overall structure [Dai et al., 2020].
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Figure 1: An illustration of CompLex, which contains 9 lexical categories and 37,432 lexical items, each associated with lexical properties

and values. The figure displays one item from each category.

Several components of music theory have already been incor-
porated into generative models, such as music themes [Shih
et al., 2022], motif-level repetitions [Hu et al., 2023], and
phrase-level call-and-response structures [Hu er al., 2024].
These works highlight that music theory can indeed boost
music performance, even when only a few pieces of musical
knowledge are integrated.

In this paper, we aim to leverage comprehensive music the-
ory in Al-driven music generation tasks, such as algorithmic
composition and style transfer, which have traditionally de-
manded considerable manual effort using existing methods.
Specifically, we introduce a novel automatic approach to mu-
sic lexicon construction that generates the music composi-
tional lexicon, CompLex (Figure 1). CompLex is a compre-
hensive lexicon consisting of 9 categories, 90 properties, and
37,432 lexical items, all derived from just 9 manually input
lexical category keywords and 5 prompt templates, signifi-
cantly reducing reliance on human labor. To facilitate this
process, we present LexConstructor, a new multi-agent algo-
rithm designed to automatically detect and mitigate hallucina-
tions during the generation of property-value pairs in the lexi-
con. CompLex shows impressive performance improvements
across three state-of-the-art text-to-music generation models,
covering both symbolic and audio-based methods. We also
evaluate CompLex in terms of completeness, accuracy, non-
redundancy, and executability, confirming that it satisfies the
essential characteristics of an effective lexicon.

2 Related Work

2.1 Automatic Music Generation

Automatic music generation has seen significant advance-
ments in recent years, particularly with the development
of systems like Suno [Suno, 2025], which generates high-
quality audio-based music from user-provided text input. In
academia, models such as MusicGen [Copet et al., 2024]

are capable of generating high-quality audio-based music,
while Text2Midi [Bhandari et al., 2025] specializes in cre-
ating symbolic-based music using textual descriptions. De-
spite these advances, the challenge of limited data in the mu-
sic domain remains a significant obstacle. To address this,
knowledge-informed approaches have proven to be highly
beneficial, as they integrate specific aspects of music theory to
enhance generation performance, even with limited data sam-
ples. Notable works such as Transformer VAE [Jiang et al.,
20201, Melons [Wu et al., 20201, MusicFrameworks [Dai et
al., 2021], and MeloForm [Lu et al., 2022] have demonstrated
the impact of incorporating music knowledge into generative
models. In this paper, we aim to further advance Al-driven
music generation by leveraging comprehensive music theory,
specifically through the construction of a detailed music the-
ory lexicon.

2.2 Autonomous Agents

Recently, autonomous agents have garnered significant in-
terest, with notable success achieved by LLMs [Wang et
al., 2024; Durante ef al., 2024]. The applications of au-
tonomous agents have quickly diversified into various tasks,
such as software development [Qian et al., 2024], biomedi-
cal discoveries [Gao ef al., 2024] and science debates [Cobbe
et al., 2021], and fields such as music [Tatar and Pasquier,
2019], psychology [Kovaé er al., 2023], and finance [Mayo
et al., 2024]. The strengths of the autonomous agent ap-
proach—specialization, and robust collaboration—make it
particularly suitable for scenarios that require the integration
of diverse expertise and coordination of multiple processes.
To enable effective collaboration among agents, researchers
have developed various communication strategies. For exam-
ple, arole-reversal strategy is employed to mitigate hallucina-
tions during direct agent communication [Qian et al., 2024].
To enhance performance in open-ended discussion scenarios,
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Figure 2: Overview of the LexConstructor algorithm, which includes two stages: Lexicon Outline Creation and Lexicon Content Generation.
Stage 1 focuses on determining the structure of the lexicon, while Stage II populates it by assigning property-value pairs to items in all
categories. The user provides the input request, and then five types of autonomous agents collaborate to create the lexicon.

a debating strategy allows agents to brainstorm and refine
ideas through structured debate [Chan er al., 2024]. The use
of autonomous agents for automatically creating a compre-
hensive and compact lexicon remains underexplored. Tradi-
tional lexicon development relies on manual curation, which
is time-consuming. To address this, we propose an automated
music lexicon construction algorithm using multiple agents,
reducing the need for costly human labor.

3 Problem Formulation

We introduce a structured lexicon to organize the vast, un-
structured body of music-theory knowledge based on four
key components: Lexical Category, Lexical Item, Lexical
Property, and Lexical Value.

Lexical Category. A lexical category is a high-level con-
cept in music theory that groups related items. Let C denote
the set of all categories in our framework. Formally, we de-
fine:

C:{Cl,CQ,...}, (1)

where each ¢; € C represents a distinct music-theory concept.
Example categories include “Chord”, “Key”, and “ChordPro-
gression”, among others.

Lexical Item. A lexical item is a specific instance of a cate-
gory. For each category ¢ € C, let Z(c) denote the set of items
within that category. Formally, we define:

I(C):{ilvi%"'}7 (2)

where each i; € Z(c) represents a unique item under the con-
cept c. For instance, under the “Chord” category, we might
have “C Major”, “A Minor”, etc.

Lexical Property. A lexical property is a named attribute or
feature that describes an item within a category. For each cat-
egory ¢ € C, let P(c) denote the set of properties associated
with items in that category. Formally, we have:

P(C):{p17p27"'}7 (3)

where each p; € P(c) represents a distinct property under the
concept c. For example, the “Chord” category might include
properties such as “Name”, “Type”, and “Quality”.

Property-Value Pair. Each lexical property p; of a lexi-
cal item can have a corresponding value, forming a property-
value pair. For an item ¢ € Z(c¢) within category ¢, we define
the set of property-value pairs as:

V(LC) y— {(pl,U1),(p2,’U2>7~.-}, (4)

where v; is the value associated with the property p;. For
example, for the item “C Major” in the “Chord” category, we
might have:

V(C Major, Chord) = { (Name, C Major), (Type, Triad), . .. }.

Objective. Our objective is to design a model that can au-
tomatically identify and extract a comprehensive set of cat-
egories C, the items of each category Z(c), the properties of
each category P(c), and generate the corresponding property-
value pairs V(i, ¢) correctly from unstructured music-theory
knowledge, and finally construct CompLex D based on a user
request u.

4 LexConstructor

We propose LexConstructor, a multi-agent algorithm com-
posed of several specialized LLM-based agents. Specifi-
cally, LexConstructor includes five distinct agent roles, with
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each agent assigned specific roles and tasks, based on one
prompt template. LexConstructor operates in two stages,
as shown in Figure 2: Lexicon Outline Creation and Lex-
icon Content Generation. In the Lexicon Outline Creation
stage, three types of agents collaboratively develop the lexi-
con’s structural framework by determining the necessary cat-
egories, items, and properties. In the Lexicon Content Gen-
eration stage, two types of agents populate the lexicon by
assigning property-value pairs to each item within all cate-
gories.

4.1 Stage I: Lexicon Outline Creation

Inspired by how humans construct a lexicon from scratch,
we begin by creating an outline of the lexicon in Stage I. In
this stage, LexConstructor focuses on establishing the foun-
dational structure of the lexicon by completing three key sub-
tasks: Lexical Category Determination, Lexical Item Organi-
zation, and Lexical Property Creation.

Lexical Category Determination

We employ a specialized agent, the Category Architect
(Aurc), to perform this subtask. The main responsibility
of A, is to determine lexical categories based on user re-
quest u and to pre-process the reference MIDI dataset D!
into text-based structured information for future subtasks.
To facilitate this process, A, utilizes a predefined function
Extract_lexical_category(D™), which extracts lex-
ical categories from the MIDI dataset based on the predefined
categories. The agent analyzes the dataset, translating the
MIDI information into a structured, text-based format, which
will be used for the next subtask.

The output of A, is a set of categories C, formally de-
fined as: C = Auyc(D™, u), where u is the user request
and includes 9 category key words in the work, which are
mood, genre, key, instrument, tempo, time signature, chord,
and note. In addition the reference dataset D™ is translated
into structured, text-based information.

Lexical Item Organization

The Item Builder agent (Apyjger) iS responsible for orga-
nizing lexical items within each category identified by A,.
Due to the limitations of LLMs in generating large, unique
item lists efficiently, Apyiger leverages the pre-defined func-
tion Extract_lexical_item(c, D™) to assist in item ex-
traction. Given a reference dataset D' and a target category
¢, this function helps the agent identify and extract all rele-
vant items for that category. Formally, this step is represented
as: Z(c) = Apuiia(c, D).

Lexical Property Creation

The Property Designer agent (Ags) is tasked with defining
and creating lexical properties for each category and its cor-
responding items. Taking the generated categories and items
from earlier steps, Ajges defines a set of properties P(c) for
each category. The result is a comprehensive set of proper-
ties that describe each category’s items, formally expressed

as: P(c) = Ages(c,Z(c)).

To ensure that the lexicon outline is both compact and com-
prehensive, the aforementioned subtasks are executed itera-
tively until all agents determine that no further refinement is

needed. This iterative process allows the agents to refine their
outputs based on the results from subsequent stages.

4.2 Stage II: Lexicon Content Generation

While the outline of the lexicon can be determined through
tool usage and by utilizing information directly from the ref-
erence dataset, property-value pairs require the exploration
of complex knowledge relations that can’t be easily extracted
from the dataset or hard-coded into the function. This makes
value generation more susceptible to errors, such as inac-
curate values assigned to properties. Therefore, we use the
LLM’s expert knowledge to generate these values during this
stage. To further mitigate hallucinations and ensure accurate
results, we design a Question-Answering (QA) communica-
tion strategy among agents.

Lexical Property Value Creation

We design two different types of agents: the Supervisor
Agent (Ag,p), which oversees the property value genera-
tion process, ensures consistency, and manages quality con-
trol, and the Value Explorer Agents (A.,), which provide
detailed information and populate property values through
collaborative exploration. To handle the large number of
items to be populated into the lexicon, we define a func-
tion Process_One_Item(Z) that allows the agent to pro-
cess one item at a time, thus avoiding memory constraints of
LLMs.

Formally, for each item ¢ € Z(c), the value V(i, c) is gen-
erated as follows: V(i, ¢) = Agyp (¢, P(c)) , where A, takes
one item ¢ at a time and generates the value corresponding to
the property P(c).

The entire lexicon population process involves iterating
through all categories and items, which is represented as:

p=J U Vi.o). ©)

c€CieT(c)

Question Answering Communication

The Supervisor Agent formulates targeted questions, denoted
as @, and poses them to K Value Explorer Agents. These
agents then collaborate, brainstorming and providing answers
to the questions. The Supervisor Agent evaluates the re-
sponses and generates the final property-value pair V(i, ¢).
The process can be formalized as:

{1 {r 35,
-Asup ] . {Ag;(pj K J—J> Asup7
{9}, {ry 5%
K J J Jj=
{'Aexp J {Aexp 7
(6)
where:
* O ={qi1,qo,...} is the set of diverse questions generated

by the Supervisor Agent focus on item .
* Q; C Qis the subset of questions assigned to A ;.

* r; is the response from AT
iteration 7.

exp,j 10 its assigned questions at
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4.3 Text-to-Music Generation Application

The lexicon can be applied in text-to-music generation by
refining the user prompt. Given a user prompt u, the sys-
tem queries the lexicon D to retrieve related items Z(c,),
where ¢, is the category corresponding to u. For each item
ij in Z(c,), we extract its properties P(7;), which are then
used to find additional related items Z(cy) in other cate-
gories, expanding the context. The music is generated by us-
ing the related lexical items Z(c, ) U Z(c). For example, if
u = “happy mood”, items from the “Mood” category can be
quickly retrieved and then related information such as tempo
(120 bpm), key (C major), and chord progression (“I-IV-V-
V”), among others, can be further retrieved.

S Experiment

In this section, we provide the experimental setup used to
evaluate the performance of CompLex on text-to-music gen-
eration tasks and the performance of LexConstructor method.

5.1 Implementation Details

Reference Dataset: We select the MidiCaps dataset
[Melechovsky er al., 2024] as reference dataset, which is de-
rived from the Lakh MIDI dataset [Raffel, 2016], one of the
largest open-source collections of symbolic music data. Mid-
iCaps contains 168,385 MIDI samples.

CompLex Statistics: The Genre category has 42 items and
13 properties; Mood has 48 items and 9 properties; Key has
24 items and 13 properties; Tempo has 13 items and 10 prop-
erties; Time Signature has 86 items and 12 properties; Instru-
ment has 101 items and 8 properties; Chord has 193 items
and 8 properties; Chord Progression has 36,797 items and 12
properties; and Note has 128 items and 5 properties.

Language Models: We test two versions of LLMs: GPT-
3.5-turbo-0125 and GPT-40. For lexicon content generation,
we utilize GPT-40, selected for its superior efficiency and
larger context window, supporting up to 16,384 tokens.

Model Configurations: All agents in the system are con-
figured with a temperature setting of 0 [Chan er al., 2024].
The agents are assigned specific roles and tasks, with 5
prompt templates where each agent role corresponds to one
prompt template, as shown in the Appendix. The user inputs
9 specific lexical categories in the experiment for comparison.
The loop in T continues until the agents reach a consensus,
at which point no further information is added. For the QA
conversation strategy, we utilize K = 3 value explorers to
facilitate brainstorming, enabling a thorough evaluation and
refinement of the lexicon entries. For data analysis in the
function Ext ract_lexical_category(D™), we follow
implementations in [Melechovsky er al., 2024].

5.2 Baselines

For evaluating CompLex in text-to-music music generation
tasks, we assessed its performance using three models:

e Text2MIDI [Bhandari et al., 2025], a SOTA open-source
text-to-symbolic music generation model trained on the
MidiCaps dataset;

* MusicGen [Copet et al., 2024], a SOTA open-source text-
to-audio music generation model in academia (we used the
large version);

* Suno [Suno, 2025], a SOTA black-box text-to-audio music
generation model in industry.

These baselines represent the most advanced models in both
symbolic and audio music generation.

To validate LexConstructor, we compared it against sev-
eral baselines and state-of-the-art (SOTA) approaches [Islam
et al., 2024], including both single-agent and multi-agent
models:

* Direct Prompting, where language models generate the
music theory lexicon without explicit guidance.

 Chain of Thought Prompting (CoT) [Wei er al., 2022]
breaks down tasks into step-by-step subtasks, facilitating
the handling of more complex problems.

+ Analogical Reasoning Prompting [Yasunaga er al., 2024]
directs models to draw upon relevant past experiences to
solve similar issues.

* Multi-Agent Role Reverse [Qian er al., 2024], where
agents reverse roles to collaborate on problem-solving.

* Multi-Agent Debate [Chan ef al., 2024], where agents en-
gage in debate to find the optimal solution.

5.3 Evaluation Metrics

Objective Metrics

To assess the performance of CompLex on text-to-music
generation tasks, we evaluate the following aspects: Com-
pression Ratio (CR): Measures the structure of the music
[Chuan and Herremans, 2018; Bhandari et al., 2025]. Con-
trastive Language-Audio Pre-training (CLAP): Measures
how closely the music aligns with the corresponding text cap-
tion [Bhandari et al., 2025; Copet et al., 2024]. Mood Accu-
racy (MA): Measures how effectively the generated music
reflects the mood indicated in the textual description [Mele-
chovsky et al., 2024]. Genre Accuracy (GA): Measures how
effectively the generated music reflects the genre in the tex-
tual description [Melechovsky et al., 2024].

To assess the performance of LexConstructor and other
baselines, we evaluate the effectiveness of the generated lex-
icon based on the following aspects: Completeness: Mea-
sures how thoroughly the generated lexical items in each
category align with the actual items in music theory. The
completeness score is averaged across all categories, with
higher scores indicating a greater coverage of the relevant
items. Accuracy: Measures the alignment between the gen-
erated MIDI pitch values and frequency values relative to
their corresponding note names. Higher scores reflect better
accuracy and adherence to established music theory. Non-
Redundancy: Measures the level of non-duplication in the
generated lexical items, calculated as the ratio of unique items
to the total number of items. Higher scores indicate fewer re-
dundant entries. Executability: Measures the lexicon’s abil-
ity to be loaded error-free. Higher scores indicate greater re-
liability and functionality.
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Baseline Method Objective Metrics Subjective Metrics
CR? CLAPt MAT GAT REL? OVL?

Text2MIDI ‘W/o Enhancement 2.02 0.17 0.37 0.66 70.131+7.22 73.5445.14
[Bhandari ef al.. 2025] LLM-Enhanced 2.07 0.24 0.41 0.66 76.541+4.55 75.50+2.93
N CompLex-Enhanced 2.14 0.35 0.47 0.67 78.10+4.37 77.46+4.71
MusicGen W/o Enhancement - 0.22 0.19 0.46 75.831+4.43 78.17+3.57
[Copet e‘t al.. 2024] LLM-Enhanced - 0.25 0.26 0.47 80.174+7.72 81.20+7.96
P v CompLex-Enhanced - 0.33 0.28 0.51 82.671+4.29 82.17+4.45
Suno ‘W/o Enhancement - 0.39 0.44 0.67 82.794+3.79 86.754+4.63
[Suno. 2025] LLM-Enhanced - 0.39 0.43 0.52 83.8846.05 88.6743.93
’ CompLex-Enhanced - 0.46 0.57 0.79 91.381+3.84 93.58+4.13

Table 1: Performance of CompLex and other methods across different text-to-music generation models. CompLex-Enhanced method con-
sistently outperforms other methods, indicating the effectiveness of CompLex. The Compression Ratio (CR) metric can only be applied to
symbolic music representations (e.g., MIDI) and is not suitable for audio-based music.

Subjective Metrics

Human evaluators assess the generated music from the music
generation model based on Relevance to Text Input (REL)
and Overall Quality (OVL) [Kreuk et al., 2022; Copet et al.,
2024] from 1 to 100 where we emphasize musicality in OVL.

An online survey was distributed via social media, receiv-
ing 24 valid responses after excluding invalid ones (e.g., par-
ticipants selecting the same option for all questions or sub-
mitting incomplete responses). All participants were fully in-
formed about the purpose of the study and consented to the
use of their data for research purposes. Detailed information
on the design of the subjective experiment is provided in the
Appendix.

6 Results and Discussion

This section presents the results and discussion of our ex-
periments. First, we demonstrate the impact of CompLex
on text-to-music generation tasks by measuring the quality
of the output music. Next, we demonstrate the effectiveness
of LexConstructor by evaluating the quality of the generated
composition lexicon in terms of completeness, accuracy, non-
redundancy, and executability. Additionally, we conduct an
ablation analysis to validate the effectiveness of the multi-
agent design to reduce redundancy and the QA communica-
tion to mitigate hallucinations.

6.1 Effectiveness of CompLex

We evaluate the performance of CompLex by refining
the user text input on text-to-music generation models.
We compare three different knowledge enhancement meth-
ods: W/o Enhancement, LLM-Enhanced, and CompLex-
Enhanced, which use raw input without any refinement,
LLMs, and CompLex to refine the user input. In these meth-
ods, the user specifies mood or genre requests.

Table 1 summarizes the performance of the three baseline
models across these methods. The metrics include Compres-
sion Ratio (measuring structural compactness), CLAP (mea-
suring alignment between text and audio), Mood Accuracy,
Genre Accuracy, Relevance to Input, and Overall Musicality.
Across all baseline models, the CompLex-Enhanced method
consistently achieves higher performance in all metrics, high-
lighting the benefits of integrating a music theory lexicon for

generating high-quality music. These improvements are pri-
marily driven by the lexicon’s ability to provide specific and
structured guidance during the generation process.

The LLM-Enhanced method generally underperforms
compared to the CompLex-Enhanced method, primarily due
to the lack of domain-specific music theory integration. Addi-
tionally, Suno’s performance shows improvements when the
lexicon is incorporated, underscoring the importance of lever-
aging structured music knowledge to achieve improvement in
both objective and subjective metrics. These findings demon-
strate the critical role of CompLex in advancing Al-driven
music generation.

6.2 Effectiveness of LexConstructor

Table 2 compares the performance of LexConstructor with
other baseline models across two different backbones. The
evaluation metrics include completeness, accuracy, non-
redundancy, and executability. LexConstructor outperforms
all baseline models in every metric, highlighting its supe-
rior efficiency in generating a music theory lexicon. In ad-
dition, the improvements demonstrate LexConstructor’s abil-
ity to mitigate hallucinations. These gains are largely due to
the multi-agent role-playing system, where each agent spe-
cializes in specific tasks, and the Question-Answering (QA)
communication strategy, which effectively mitigates halluci-
nations during value generation. The multi-agent approach
consistently outperforms single-agent models, underscoring
the effectiveness of using multiple agents for complex tasks.
Overall, LexConstructor shows strong potential for automati-
cally constructing high-quality lexicons, with applications ex-
tending to other domains in the future.

6.3 Ablation Analysis

Ablation Analysis of Multi-Agent: Figure 3 illustrates our
model’s efficiency in terms of non-redundancy, showing its
performance while generating 1000 lexical items with prop-
erty values. Single-agent models begin to produce redundant
outputs after generating about 50 unique items, with the issue
being even more pronounced in the GPT-3.5-Turbo model.
The superior performance of our approach can be attributed
to its unique design, which incorporates specialized tool us-
age and task-specific subtasks. By focusing on generating
one lexical item at a time, our method avoids referencing pre-
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Backbone Method Completeness{ Accuracyt Non-Redundancy{ Executability 1
Single-Agent:
Direct Prompting 0.54 0.22 0.05 0.53
CoT Prompting [Wei et al., 2022] 0.59 0.35 0.11 0.58
GPT-3.5 Analogical Prompting [Yasunaga er al., 2024] 0.59 0.38 0.13 0.60
-Turbo Multi-Agent:
Role Reverse [Qian et al., 2024] 0.65 0.64 0.19 0.66
Debate [Chan et al., 2024] 0.72 0.68 0.21 0.68
LexConstructor (Ours) 0.80 0.78 0.84 0.75
Single-Agent:
Direct Prompting 0.60 0.32 0.21 0.55
CoT Prompting [Wei et al., 2022] 0.64 0.47 0.24 0.64
Analogical Prompting [Yasunaga et al., 2024] 0.65 0.48 0.28 0.63
GPT-40 .
Multi-Agent:
Role Reverse [Qian er al., 2024] 0.72 0.72 0.31 0.72
Debate [Chan et al., 2024] 0.76 0.75 0.30 0.74
LexConstructor (Ours) 0.83 0.88 0.95 0.82

Table 2: LexConstructor outperforms all baseline models across four key metrics—completeness, accuracy, non-redundancy, and executabil-

ity—demonstrating its superior capability in generating a high-quality music theory lexicon.

Strategy Accuracy
Pitch Value? Pitch Frequency
w/o Communication 0.28 0.34
w/ Role Reverse 0.72 0.72
w/ Debating 0.75 0.74
w/ QA 0.85 0.91

Table 3: Ablation Analysis of the QA Communication Strategy: It
generates property values with higher accuracy, effectively mitigat-
ing hallucinations.

viously produced content. While a few duplicates still occur,
this is due to the probabilistic nature of GPT models, which
sometimes generate content similar to prior outputs.

—— Multi-Agent (Ours) —— Single-Agent
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Figure 3: Ablation Analysis of the Multi-Agent Model: Our
multi-agent approach generates lexical items with a higher non-
redundancy rate, indicating a better performance.

Ablation Analysis of QA Communication Strategy: Ta-
ble 3 shows different communication strategies among
agents. It indicates that the QA strategy outperforms other
communication strategies, achieving the best performance
in mitigating hallucinations that occur during property-value
creation. This is because the diverse questions cover different
aspects of the concept, and the value explorers collaboratively
exchange and refine their answers until reaching a consensus,
leading to more accurate and coherent results.

6.4 Case Study on Hallucination Mitigation

Figure 4 presents a case study illustrating how LexConstruc-
tor effectively mitigates harmonic hallucinations. The note

information in CompLex is correct and complete while gen-
erated from LLM-generated lexicon is incorrect and incom-

plete.
Category | Item Property Value
Note C#6 MIDIValue 73
Frequency 554.37

(a) Content of LLM-generated lexicon: Contains incomplete and incorrect
entries. Red indicates incorrect values.

Category | Item Property Value

Note C#6 MIDIValue 85
Frequency 1108.73
More Properties ...

(b) Content of MusicLex: complete and accurate items with structured
representation. Green indicates correct values.

Figure 4: A case study demonstrating LexConstructor mitigate hal-
lucinations.

7 Conclusion

In this work, we introduce a novel automatic music lexi-
con construction model that generates CompLex, a compre-
hensive lexicon containing 9 lexical categories, 90 lexical
properties, and 37,432 lexical items, all derived from just 9
manually input category keywords and 5 prompt templates.
We also propose a new multi-agent algorithm, LexConstruc-
tor, that generates the lexicon and automatically detects and
mitigates hallucinations during the generation of property-
value pairs for each lexical item. CompLex demonstrates
significant performance improvements across three state-of-
the-art text-to-music generation models, encompassing both
symbolic and audio-based methods. Furthermore, we eval-
uate CompLex in terms of completeness, accuracy, non-
redundancy, and executability, confirming that it meets the
key characteristics of an effective lexicon. CompLex can be
applied to a broader range of tasks within the music domain,
including algorithmic composition, and style transfer. Cur-
rently, CompLex focuses on the structure of music composi-
tion, in the future, we plan to expand its scope to encompass
expressive elements of music performance.
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