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Abstract
Probabilistic time series forecasting has attracted
an increasing attention in machine learning com-
munity for its potential applications in the fields
of renewable energy, traffic management, health-
care, etc. Previous research mainly focused on
extracting long-range dependencies for point-wise
prediction, which fail to capture complex tempo-
ral patterns and statistical characteristics for prob-
abilistic analysis. In this paper, we propose a
novel pattern-mixture decomposition method that
decomposes long-term series into quantile drift, di-
vergence patterns, and Gaussian mixture compo-
nents, which can effectively capture the intricate
temporal patterns and stochastic characteristics in
time series. Based on pattern-mixture decomposi-
tion, we propose a novel Transformer-based model
called QuantileFormer for probabilistic time series
forecasting. It takes the the comprehensive drift-
divergence mixture patterns as features, and de-
signs a variational inference based fusion Trans-
former architecture to generate quantile predic-
tion results. Extensive experiments show that the
proposed method consistently boosts the baseline
methods by a large margin and achieves state-of-
the-art performance on six real-world benchmarks.

1 Introduction
Recently, with an enhanced understanding of uncertainty,
probabilistic time series forecasting has garnered increasing
attention for its potential applications in the areas of renew-
able energy [Zheng et al., 2023; Huy et al., 2022], traffic
management [Zhang et al., 2022; Jiang et al., 2024], health-
care [Caldas and Soares, 2022], etc.

The primary objective of probabilistic time series forecast-
ing is to provide probability distribution information regard-
ing uncertainty for predicting values at future time points.
Unlike traditional time series forecasting, probabilistic fore-
casting aims to comprehensively describe the potential range
of future values, which is achieved by estimating various
quantiles (including median and percentiles) to offer a range

∗Corresponding author

Figure 1: Illustration of mixture patterns in the Electricity dataset.
It contains diverse patterns in different time period, with mixture
distribution parameters and various statistical characteristics.

of potential outcomes, thereby enhancing decision-making
under uncertainty.

Deep neural networks (DNNs) [Lin et al., 2022; Hong et
al., 2024; Hong et al., 2025] have been increasingly used
in probabilistic time series forecasting and demonstrated a
promising performance. For instance, DeepAR [Salinas et
al., 2020] proposed to train autoregressive recurrent neu-
ral networks on a large set of correlated time series. MQ-
R(C)N [Wen et al., 2017] explored the non-parametric na-
ture of quantile regression and introduced a framework for
general probabilistic multi-step time series regression with
direct multi-level predictions. Recently, Transformer-based
models are introduced for probabilistic time series forecast-
ing due to its great success in sequential learning. MQTrans-
former [Eisenach et al., 2020] proposed a novel decoder-
encoder attention for context-alignment to improve quantile
forecasting accuracy. TFT [Lim et al., 2019] used recurrent
layers for local processing and self-attention layers to capture
long-term dependencies for probabilistic forecasting.

However, these methods struggle to accurately capture the
intricate temporal dynamics and statistical properties of long-
term time series. Given the perpetual evolution of economic,
social, and environmental factors, time series data are prone
to concept drift, which can diminish the performance of pre-
viously effective models in new contexts. As depicted in Fig-
ure 1, real-world time series data commonly displays diverse
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patterns, mixture of distributions, as well as various statisti-
cal characteristics, posing challenges for conventional meth-
ods to precisely capture such features. First, it is difficult
to extract temporal patterns which are entangled and diver-
sified. Second, the mixed distribution of data exacerbates
the challenge of capturing probabilistic distribution informa-
tion. Third, the diverse statistical properties of data compli-
cate models’ ability to simultaneously capture quantile infor-
mation from multiple variates.

To tackle the aforementioned challenges, we propose a
novel framework called QuantileFormer based on a pattern-
mixture decomposition method for probabilistic time series
forecasting. To depict the intricate temporal patterns and
stochastic characteristics in time series data, we propose a
pattern-mixture decomposition approach to decompose the
long-term time series into different pattern components to fa-
cilitate analysis. Pattern-mixture decomposition is composed
of two key components: drift-divergence and Gaussian mix-
ture decomposition. The drift-divergence decomposition em-
ploys a quantile filter to break down the original time se-
ries into quantile drift and divergence pattern components,
thereby enhancing the model’s predictive power. Following
this, Gaussian mixture decomposition is utilized to further
decompose the divergence patterns into a blend of multiple
Gaussian distributions. This step assigns probabilities to each
data point, allowing the model to quantify the uncertainty as-
sociated with predictions by identifying which distribution
each point belongs to. The Gaussian distribution components
are then processed by a variational inference network, which
extracts information about the overall statistical properties of
the time series data. We further design a fusion Transformer
architecture that integrates these pattern components holisti-
cally to form the final quantile predictions for probabilistic
time series forecasting.

The contributions of this paper are summarized as follows.

• We propose a pattern-mixture decomposition method
that decomposes long-term time series into quantile
drift, divergence patterns, and Gaussian mixture compo-
nents, which can effectively capture the intricate tempo-
ral patterns and stochastic characteristics in time series
data.

• We propose a novel Transformer-based model called
QuantileFormer for probabilistic time series forecasting.
Based on pattern-mixture decomposition, the quantile
drift part is proceeded by a Transformer encoder and the
statistical patterns are captured by a Variational AutoEn-
coder (VAE) network, which are fed into a fusion Trans-
former to obtain the quantile prediction results.

• We conduct comprehensive experiments to rigorously
assess the efficacy of our proposed method. In addi-
tion to employing conventional metrics, we introduce
a new performance metric, cpaw (Coverage Probability
with Normalized Averaged Width), specifically designed
to quantify the precision of the predicted probabilistic
intervals. Experimental results show that the proposed
method consistently outperforms the baseline methods
by a large margin and achieves state-of-the-art perfor-
mance on six real-world benchmarks.

2 Related Work
2.1 Transformer-based Models
Transformer-based models were widely used in time series
forecasting. Pyraformer [Liu et al., 2022] proposed a novel
pyramidal attention based Transformer to bridge the gap be-
tween capturing the long-range dependencies and reducing
time and space complexity. PatchTST [Nie et al., 2022]
used patch to provide a longer sequence of inputs to ex-
tract meaningful temporal relationships and channel indepen-
dence to predict multivariate time series. iTransformer [Liu
et al., 2023] encoded each variable as an independent to-
ken, and used the feedforward network to model the tempo-
ral correlation of variable variables to obtain better sequen-
tial temporal representation. However, the above mentioned
works mainly focused on point-wise forecasting, and very
few works adopted Transformer for probabilistic forecast-
ing [Eisenach et al., 2020; Lim et al., 2019].

2.2 Decomposition of Time Series
In the realm of time series analysis, the standard method-
ology of time series decomposition [Cleveland et al., 1990;
Tukey, 1960; Hyndman and Khandakar, 2008; De Jong, 1980;
McCullough and Renfro, 1990] dissects a temporal sequence
into several components, each representing a more pre-
dictably discernible underlying pattern. When applied to
forecasting tasks, decomposition serves as an essential pre-
processing step for historical series prior to predicting fu-
ture sequences. Examples include the application of trend-
seasonality decomposition in models like Autoformer [Wu et
al., 2021] and FeDFormer [Zhou et al., 2022], period decom-
position in TimesNet [Wu et al., 2022], basis expansion in
N-BEATS [Oreshkin et al., 2019], and matrix decomposition
in DeepGLO [Sen et al., 2019]. TS3Net [Ma et al., 2024] ex-
panded the time series into a 2D temporal-frequency distribu-
tion and decoupled a long-term series into trend-part, regular-
part, and fluctuant-part. TimeMixer [Wang et al., 2024] ex-
tracted past information and blended seasonal and trend com-
ponents at different scales separately.

2.3 Probabilistic Time Series Forecasting Methods
To capture the parts of the sequence that reflect the probability
distribution, several methods have been applied to probabilis-
tic time series forecasting [Bontempi and Ben Taieb, 1999;
Hyndman and Athanasopoulos, 2018; Bergmeir and Hynd-
man, 2015; Salinas et al., 2018; Wang et al., 2021]. P-
TSE [Zhou et al., 2023] proposed a multi-model distribution
ensemble method which abstracts the transformation of the
model into Hidden Markov Model. Conformalized quantile
regression [Romano et al., 2019] involved regressing the re-
centered influence function (RIF) of the quantile functional
over input covariates to obtain unconditional quantile regres-
sion. TimeGrad [Rasul et al., 2021] proposed an autore-
gressive model for multivariate probabilistic forecasting that
leverages the exceptional performance of EBMs to learn from
the distribution of the next time step. TMDM [Li et al., 2024]
took into account the covariate dependence of forward and
reverse processes in the diffusion model to achieve highly ac-
curate distribution estimation of future time series.
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Figure 2: Architecture of QuantileFormer, it consists of a pattern-mixture decomposition, a quantile drift feature extraction, a variational
inference and a fusion Transformer components.

To the best of our knowledge, we are the first to propose
a pattern-mixture method that decomposes long-term series
into a mixture of quantile patterns, and design a fusion Trans-
former architecture for probabilistic time series forecasting.

3 Problem Formulation
Probabilistic time series forecasting focuses on predicting the
quantiles for each time point of a time series. Quantiles are
essential statistical measures that provide insights into the
distributional properties of a random variable. In the con-
text of probability distributions, a quantile represents a criti-
cal value below which a specified proportion of the distribu-
tion lies. For a given probability p, the p-quantile is defined
as the value xp such that P (X ≤ xp) = p, where X is a
random variable and P denotes the probability measure. The
quantile function, often denoted as Q(p), maps a probability
p to the corresponding quantile xp, which is expressed as:

Q(p) = inf{x : P (X ≤ xp) ≥ p}. (1)

Considering the rolling forecasting setting with a fixed size
window, we have the observations at T time points, repre-
sented by X = {xi|i = 1, 2, ...T}. The objective is to per-
form quantile regression for time series analysis, i.e., esti-
mating the conditional quantiles of the response variable y at
different percentiles τ , which can be expressed as:

Qτ (yt|Xt) = Xtβτ , (2)

where Xt denotes the vector of observed variables at time
t; yt is the predicted quantile at time t; βt is the vector of

coefficients for the τ -th quantile; and Qτ (yt|Xt) represents
the τ -th conditional quantile of yt given Xt.

The quantile regression problem can be formulated as the
following optimization problem:

minβt

T∑
t=1

ρτ (yt −Xtβτ ), (3)

where u = yt −Xtβτ is the residual for the t-th observation;
ρτ (u) is the loss function that penalizes the residuals with
respect to the τ -th quantile.

4 QuantileFormer Model
We propose a framework called QuantileFormer for proba-
bilistic time series forecasting, which is illustrated in Fig-
ure 2. It begins with a pattern-mixture decomposition
method, which meticulously breaks down long-term time se-
ries data into distinct pattern components to capture essential
temporal dynamics. This decomposition process is composed
of two main elements: a Drift-Divergence decomposition that
isolates quantile drift and divergence patterns, and a Gaussian
mixture decomposition that characterizes the global statistical
properties of the data. These components provide a detailed
description of the temporal and statistical features inherent in
the time series. To further refine the analysis, we incorporate
a quantile drift feature extraction module that adeptly extracts
meaningful features from the quantile drift. Concurrently, a
variational inference network is employed to deduce broader
distributional insights from the divergence patterns. Finally,
to synthesize the insights gained, we propose a fusion Trans-
former module, which fuses the pattern components to form
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the final quantile prediction results, thereby offering a com-
prehensive and robust approach for probabilistic time series
forecasting.

4.1 Pattern-Mixture Decomposition
The pattern-mixture decomposition consists of two submod-
ules: a drift-divergence decomposition and a Gaussian mix-
ture decomposition, which are introduced as follows.

Drift-Divergence Decomposition
Conventional methods for sequence decomposition roughly
separate the series into the trend-cyclical and seasonal parts.
However, these two parts contribute little to quantile regres-
sion due to their nature of statistics. To this end, we propose
a drift-divergence decomposition method to capture different
quantile levels and complex composite patterns within the se-
quence, referring to as Quantile Drift and Divergence Pat-
terns. For each quantile q in the quantile set Q, we extract
the drift component χq of the original series using a sliding
window. We use χQ to represent the set containing all the
drift components, i.e., χQ = {χq}q∈Q. Specifically, for each
q, we calculate the drift component χq and the divergence
component χd as follow:

χq = QuantileF ilt(Padding(χ), q),

χd = χ− χ0.5,
(4)

where χd denotes the divergence patterns obtained by sub-
tracting the median χ0.5 from the original series χ; and
QuantileF ilt(·, q) represents the moving q-th quantiles with
padding operation to keep the series length unchanged.

Gaussian Mixture Decomposition
After drift-divergence decomposition, the quantile drift χQ

represents smooth components of the time series, and the di-
vergence component χd contains complex periodic patterns
and distribution characteristics. We propose a Gaussian mix-
ture decomposition method to further capture statistical pat-
terns from the divergence component χd.

Gaussian Mixture Models (GMM) [Ng and Jordan, 2001]
is a probabilistic model that represents a mixture of multiple
Gaussian distributions. The probability density function for a
single Gaussian distribution is:

f(x|µ,Σ) = 1

(2π)d/2|Σ|1/2
exp−

1
2 (x−µ)TΣ−1(x−µ), (5)

where x is the data vector; µ is the mean vector; Σ is the
covariance matrix; and d is the dimensionality of the data.
We hope to find a set of Θ = {µk,Σk}k based on which
the Gaussian distribution ensemble can optimally fit the di-
vergence patterns χd. The probability of the set Θ given the
divergence patterns χd can be denoted as:

L(Θ|χd) = ΠN
i=1P (xi; Θ). (6)

GMM decomposition aims to maximize the above likelihood
function, which can be achieved by an iterative optimiza-
tion algorithm such as Expectation-Maximization. We use
GauDe(·) to summarize the above operations. Thus, we have

D = GauDe(χd), (7)
where D = {µk,Σk}Kk=1 represents the K Gaussian compo-
nents which optimally fits χd.

4.2 Distribution Mixture Inference with
Variational AutoEncoder (VAE)

Due to the intricate nature of data distribution, the local dis-
tributions do not linearly constitute the global distribution in
a straightforward manner, thereby complicating the deriva-
tion of the target distribution. The Gaussian components
D = {µk,Σk}Kk=1 conveys essential information about the
local distribution of the time series. We use D̂ to denote the
target global distribution which has K components:

D̂ =
K∑

k=1

πkDk, (8)

where Dk is the kth Gaussian component and πk ≥
0,
∑K

k=1 πk = 1. Note that each time step data can be al-
located into some of the K components [Ioffe and Szegedy,
2015]. We further introduce the following notations to de-
scribe the model.

• ct ∈ {0, 1}K is a binary vector representing the distri-
bution allocation, where ctk = 1 represents the distribu-
tion of the tth time step is allocated to the kthe Gaussian
component.

• bt = {btk ∈ [0, 1]|k = 1, ...K}, subject to∑K
k=1 btkctk = 1, represents the contribution of the

tth time step which are hyperparameters in the proposed
distribution inference network. Noted that the contri-
bution btk ̸= 0 only when the corresponding allocation
component ctk = 1.

Since the true distribution is unknown, we propose a Vari-
ational AutoEncoder (VAE) method to approximate the opti-
mal parameters πk, ct and bt of the global distribution.

Using the stick-breaking construction of the Indian Buffet
Process (IBP) [Griffiths and Ghahramani, 2011], we infer that
ct is sampled from a Bernoulli distribution parameterized by
λt = {λtk|k = 1, ...K}, where λt is sampled in i.i.d from a
Beta distribution Beta(ςk, κk) parameterized by ςk, κk. Sim-
ilarly, we infer that bt is sampled from a Gaussian prior dis-
tribution N (νk, ζk) which is parameterized by νk and ζk.

We denote zt =
∑K

k=1 btkżt, which is a latent variable
used by a variational decoder θ to reconstruct the given D.
In the expression, zt means the latent vector sampled from
every allocated distribution of tth time step from Gaussian
prior distribution N (ν′k, ζ

′
k), which can adaptively adjust the

latent posterior to a suitable probabilistic distribution [Duan
et al., 2023].

As illustrated in Figure 2, the parameters of Beta(ςk, κk),
N (νk, ζk) and N (ν′k, ζ

′
k) can be inferred with a varia-

tional encoder ϕ based on the Gaussian components D, i.e.,
{νk, ζk, ν′k, ζ ′k, ςk, κk} = ϕ(D). Meanwhile, bt and zk con-
tribute to the calculation of a latent variable zt, which is then
fed to a decoder θ.

In order to infer the latent vector zt, we should derive the
variational posterior qϕ(λt, ct, bt). From Figure 2 we know
that variables in variational posterior are conditionally inde-
pendent with the priori p(D). So we can decouple the vari-
ables as: qϕ(λ, c, b) =

∏K
k=1

∏M
m=1 qϕ(btk) · qϕ(ctk|λtk) ·
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qϕ(λtk), where the variational posterior distributions can be
derived as[Cote, 2016]:

bt ∼ N (νk, ζk), λt ∼ Beta(ςk, κk), ct ∼ Bernoulli(

K∏
k=1

λtk). (9)

Given the model structure, the component weights πk can
be inferred from the allocation vector ct and the contribu-
tion values bt. To derive the component weight πk, we use
a softmax function[Dempster et al., 1977] over the expected
contribution of each component across all time steps:

πk =
exp( 1

KSk)

Z
, where Sk =

T∑
t=1

qϕ(ctk) · btk, (10)

and Z is a normalization constant:

Z =
K∑

k=1

exp(
1

K

T∑
t=1

qϕ(ctk) · btk). (11)

By optimizing the parameters, the optimal bt and ct can be
derived, which can be further used to derived the distribution
weights πk.

We then introduce the algorithm to optimize the VAE based
on the derivation in the above section. For convenient, we
omit the latent variables {bt, ct, λt} and their priors in repre-
senting the encoder model ϕ.

The true posterior pθ(zt|D) is typically intractable, thus
we approximate it with qϕ(zt|D) .by minimizing their KL-
divergence:

ϕ∗, θ∗ = argmin
θ,ϕ

DKL(qϕ(zt|D)||pθ(zt|D), (12)

where

DKL(qϕ(zt|D)||pθ(zt|D) =
∫
qϕ(zt|D) log

qϕ(zt|D)
pθ(zt|D)dzt. (13)

Since directly computing pθ(zt|D) is difficult, we optimize
the ELBO (Evidence Lower BOund) [201, 2012].

Eqϕ(zt|D)[log
pθ(zt,D)

qϕ(zt|D)
] =

Eqϕ(zt|D)[log
p(zt)

qϕ(zt|D)
] + Eqϕ(zt|D)[log pθ(D|zt)].

(14)

According to the theory of variational inference [Kingma,
2013], the above problem can be solved with the SGD method
using a nonlinear deep neural network to optimize the mean
squared error loss function.

We summarize the above operation as V AE(·, ·). Thus,
we can obtain indications of the global distribution by

χd
out = V AE(χd,D), (15)

which linearly projects each time point in χd onto a Gaussian
distribution in D. The output χd

out contains rich global distri-
bution information providing insights into the shape, spread,
and central tendency of the time series, which can facilitate
the subsequent probabilistic time series forecasting task.

4.3 Quantile Drift Feature Extraction
The decomposed drift component χQ encapsulates a wealth
of drift information within the sequence. Recognizing the
heterogeneity in these drifts, we incorporate both cross-time
drift and cross-quantile drift into our considerations. Cross-
time drift captures temporal interactions between data at dif-
ferent time steps, while cross-quantile drift reveals disparities
in trends across quantile levels.

We apply Transformer encoder on χQ to capture the drift
features. The Transformer encoder consists of multiple iden-
tical layers (typically 6 layers). Each encoder layer con-
sists of two sub-layers: a Multi-Head Self-Attention Layer
and a Fully Connected Feedforward Layer. Residual con-
nections and layer normalization are also included between
these two sublayers. We use χeout = Encoder(χ) to rep-
resent the Transformer encoder. Thus we have χQ

eout =
{Encoder(χq)}q∈Q to denote the encoder output of the
quantile drift feature.

4.4 Fusion Transformer with Cross-Attention
To fuse the output features from different components to form
the final prediction, we design a Fusion Transformer with
cross-attention to establish a soft correspondence between the
drift-divergence (i.e., χQ

eout and χd
out) , as illustrated in the

right part of Figure 2. We first align χd
out with χQ

eout using a
linear projection W a. Then we adopt three linear projections
WK , WQ, WV to generate the Query-Key-Value triples as
follows.
Q = χd

out ·Wa ·WQ, K = χQ
eout ·WK , V = χQ

eout ·WV . (16)
We then apply cross-attention among Q, K, and V and fol-
lowing by a FeedForward Network (FFN) to enhance the ex-
pressive capability of the model. We highlight the core calcu-
lation process as:

Fusion = LayerNorm(SelfAtt(Q,Q,Q)

+ CrossAtt(Input,K,V)

+ FFN(Input)),

(17)

where Att(·, ·, ·) is the multi-head attention module.
The residual connections allow the network to retain the

original Gaussian mathematical implications, which contain
quantile drift and Gaussian components information to enrich
the final predictions. Thus the final output of prediction result
is

ŷ = W(Fusion), (18)
where W is the parameter of the linear prediction head.

4.5 Loss Function
In order to synthesize the information of the context vectors,
we train our model by combining the losses of three parts, and
each part of the loss is measured by a quantile loss function.
In line with previous works [Wen et al., 2017; Lim et al.,
2019; Zhou et al., 2023], we use a jointly quantile loss which
sums across all quantile outputs for horizons in the future,
i.e., τ ∈ 1..., τmax, to train our model:

L(Ω,W) =
∑

yt∈Ω

∑
q∈Q

∑τmax

τ=1
q(y−ŷ)++(1−q)(ŷ−y)+

Mτmax
, (19)

where Ω is the domain of training data containing M samples,
Q is the set of output quantiles, and (·)+ = max(0, ·).
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ELECTRICITY WIND
0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9

DEEPAR 1.0002 1.1177 1.9544 1.2077 1.0830 1.0205 0.9987 0.7805 1.0182 1.4419
MQRNN 1.1648 1.5772 1.6336 1.8193 0.8273 2.1937 4.4670 5.5987 5.9560 1.8574
TFT 1.5547 1.0037 1.0440 0.8772 0.7618 0.9526 0.8611 0.7978 0.6568 0.4658
TRANSFORMER 1.3703 0.8873 1.0098 0.9005 0.9439 1.0011 1.0585 0.9898 0.9006 0.9750
AUTOFORMER 1.0584 0.9191 1.0301 0.8786 0.6420 1.4353 1.6054 1.3345 0.9921 0.6361
FEDFORMER 1.9429 1.0447 0.9669 3.0007 1.0618 1.1361 1.0831 1.2615 0.6544 0.3876
PATCHTST 1.8354 1.3134 1.0657 0.8800 0.7567 1.4666 0.9831 1.1394 0.9008 0.3667
ITRANSFORMER 1.3430 1.0348 1.2174 0.9072 1.2742 1.5983 1.0314 0.8091 0.6814 0.9900
QUANTILEFORMER 0.7469 0.8136 0.3330 0.4340 0.5121 0.8403 0.9105 0.7346 0.5842 0.3369

ETTM1 ETTH1
0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9

DEEPAR 1.2026 1.1749 0.7901 1.0616 0.5388 2.3414 0.7631 1.2217 1.0815 1.9889
MQRNN 16.5845 21.9918 17.9190 12.0559 3.6909 1.4757 1.6722 1.0317 1.1949 1.2239
TFT 0.4930 0.7829 0.6769 0.4976 0.3513 1.4639 1.0443 0.9283 0.7382 0.3662
TRANSFORMER 1.0397 0.8740 0.7372 0.4998 0.3618 1.1989 0.8805 0.7284 0.4868 0.5546
AUTOFORMER 1.8463 1.3424 1.1008 0.8392 0.4774 1.7221 1.2556 1.1977 0.9091 0.4569
FEDFORMER 0.6619 0.8673 0.4927 0.5491 0.3865 0.9480 0.8875 0.8328 0.7208 0.4582
PATCHTST 1.4268 1.3088 1.0240 0.5100 0.2816 1.4719 1.4558 1.1307 0.4275 0.3166
ITRANSFORMER 0.7514 0.4112 0.8834 0.5824 0.1228 0.8850 0.9508 0.8607 0.4721 0.3129
QUANTILEFORMER 0.1536 0.1642 0.2689 0.4340 0.0596 0.3007 0.6130 0.2912 0.4273 0.3388

SOLAR TRAFFIC
0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9

DEEPAR 0.8666 1.1173 1.2854 1.4512 1.6117 1.0502 0.8813 1.2484 0.9394 1.1539
MQRNN 0.8994 1.3492 1.0459 1.1921 1.7157 1.8146 2.2111 2.5796 2.9482 0.9940
TFT 1.0039 1.1082 1.2493 1.3740 1.0015 1.1494 0.8900 0.8500 0.5862 1.0570
TRANSFORMER 1.0391 1.1617 1.1381 1.0794 1.0777 0.9664 0.9325 1.0574 0.8679 0.9247
AUTOFORMER 1.1641 1.2367 1.2088 1.0030 0.6167 0.9908 1.1109 0.8686 0.6064 0.4970
FEDFORMER 1.0363 1.1708 1.0261 1.5427 0.6414 2.4497 0.9188 2.3784 1.7356 0.8770
PATCHTST 1.0806 1.1242 1.2547 1.1935 0.5950 0.9775 1.6937 1.1269 0.5962 1.1450
ITRANSFORMER 1.0705 1.1843 1.1845 1.3705 1.6083 1.8998 1.3545 1.1941 0.8247 1.5621
QUANTILEFORMER 1.0641 1.0480 1.1832 1.0008 0.5883 0.8489 0.8291 0.8489 0.5998 0.4688

Table 1: Time series probabilistic forecasting results evaluated by q-risk (the lower the value, the better the performance), where predicted
quantiles of 0.5, 0.6, 0.7, 0.8, and 0.9 are illustrated.

DATASET RANGE FREQ SAMPLES FEATURES
ELECTRICITY 2016/7/1 TO 2019/7/1 1H 26304 321
ETTM1 2016/7/1 TO 2018/6/26 15MIN 69680 7
ETTH1 2016/7/1 TO 2018/6/26 1H 17420 7
WIND 2020/7/1 TO 2023/2/28 15MIN 93412 3
TRAFFIC 2016/7/1 TO 2018/7/2 1H 17544 861
SOLAR 2020/1/1 TO 2023/1/31 15MIN 108192 5

Table 2: Dataset Information.

ELEC. WIND ETTM1 ETTH1 TRAFFIC SOLAR
DEEPAR 5.2890 5.4470 3.8999 8.6446 4.8742 11.2021
MQRNN 3.8166 2.8071 8.4531 5.2274 1.6137 5.6390
TFT 2.0002 2.4662 2.6199 2.1166 3.0367 1.7246
TRANSFORMER - - 0.8988 - - 2.3645
AUTOFORMER 3.2389 3.2790 1.8055 1.8830 2.3327 4.2420
FEDFORMER 2.3841 2.1214 3.7312 1.1557 2.8512 2.1066
QUANTILEFORMER 1.9902 1.8435 5.0815 4.4471 1.5858 0.8335

Table 3: Time series probabilistic forecasting results evaluated by
cpaw (the lower the better).

5 Experiments
Datasets: We evaluate the performance of our proposed
model based on the following open datasets: (1) Electric-
ity, (2) ETT [Zhou et al., 2020], which contains four sub-
sets ETTm1, ETTm2, and ETTh1, and ETTh2, (3) Traffic,
(4) Solar, (5) Wind. Information are shown in Table 2.
Baselines We compare the proposed QuantileFormer with
three state-of-the-art probabilistic forecasting models, which
include TemporalFusionTransformer (TFT) [Lim et al.,
2019], DeepAR [Salinas et al., 2020] and MQRNN [Wen

et al., 2017]. We also compare our model with other
Transformer-based models, such as PatchTST [Nie et al.,
2022], iTransformer [Liu et al., 2023], Autofomer [Wu
et al., 2021], FeDformer [Zhou et al., 2022] and Trans-
former [Vaswani et al., 2017]. Note that the later five
Transformer-based models were designed for point-wise
forecasting and we adapt them to quantile prediction by train-
ing them with the proposed quantile loss.
Performance Metrics: Previous works [Salinas et al., 2020]
widely used the q-risk to quantify the accuracy of a q-th quan-
tile of the predictive distribution, which is defined as:

q-risk =
2
∑

yt∈Ω̂

∑τmax
τ=1 (q(y−ŷ)++(1−q)(ŷ−y)+)∑

yt∈Ω̂

∑τmax
τ=1 |yt| , (20)

where (·)+ = max(0, ·).
Since q-risk only considers the accuracy of quantiles, it

is lack of consideration to measure the probabilistic inter-
val (PI). To this end, we propose a new performance metric to
measure how the true value interact with the predicted prob-
abilistic interval. We combine the coverage probability with
normalized averaged width to form the metric called cpaw,
which is formulated by the PI coverage probability (PICP)
and PI normalized averaged width (PINAW) as

cpaw = PINAW (1 + γ · e−(PICP−µ)), (21)

where PICP = 1
n

∑n
i=1 I(yi ∈ [q̂i,l, q̂i,u]) calculates the

average probability of whether an observation is within the
prediction interval of corresponding quantile across all sam-
ples; PINAW = 1

n |q̂i,u − q̂i,l| calculates the average per-
centage of the prediction interval width relative to the range
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ELECTRICITY WIND
0.5 0.7 0.9 0.5 0.7 0.9

W/O D-D DECOMP. 0.7629 0.8890 0.6738 1.0746 1.2476 1.7182
W/O GMM DECOMP. 0.9890 0.9125 0.5570 0.9782 0.9575 0.4451
W/O FUSION TRANSFORMER. 0.9389 0.9104 0.9885 0.8954 0.8861 1.0460
QUANTILEFORMER 0.7546 0.3330 0.5121 0.8403 0.7346 0.3369

SOLAR TRAFFIC
0.5 0.7 0.9 0.5 0.7 0.9

W/O D-D DECOMP. 1.3440 1.2463 0.6142 0.9626 1.3814 0.5497
W/O GMM DECOMP. 1.0831 1.1991 0.7914 1.3995 0.8849 0.5837
W/O FUSION TRANSFORMER. 1.0708 1.1930 0.7289 1.5161 1.1245 0.8275
QUANTILEFORMER 1.0641 1.1832 0.5883 0.8489 0.8489 0.4688

Table 4: Ablation on the model architecture (evaluated by q-risk).

of observations across all samples; µ represents the difference
between the upper and lower quantiles; and γ is an indicative
function reflecting whether the PICP exceeds µ.

5.1 Main Results
Comprehensive forecasting results evaluated by q-risk are
listed in Table 1 with the best in bold. We compare the ex-
perimental results at various quantile levels. The results show
that QuantileFormer achieves the best performance in most
cases, with an average q-risk decrease of 24% for 0.5 quan-
tile, decrease of 15% for 0.6 quantile, decrease of 27%, 14%,
and 22% for 0.7, 0.8, and 0.9 quantile respectively, compared
to the second-place algorithm.

Performance evaluated by cpaw is shown in Table 3. By
analyzing the table, we make the following discussions and
conclusions. 1) Compared with methods which are based
on Transformer (i.e., TFT, Transformer, Autoformer, FeD-
former, PatchTST and iTransformer), our method achieves
20% and 51% improvement on Wind and Traffic dataset,
respectively. 2) Compared with methods which are based
on RNN (i.e., DeepAR, MQRNN), our method improves by
55%, 50% and 88% on Electricity, Wind and Traffic datasets
over other baselines, respectively.

5.2 Ablation Study
To explore the role of each module in our proposed frame-
work, we compare the prediction results obtained by differ-
ent sections as shown in Table 4. In the results, removing
each component results in performance drop in different lev-
els, showcasing the effectiveness of the proposed framework.
We conduct experiments without the drift-divergence decom-
position, the Gaussian mixture model decomposition and the
fusion Transformer module respectively.

5.3 Hyperparameters Analysis
We analysis the impact of hyperparameters. i.e., selection
of the number of Gaussian components k on the model’s fi-
nal performance, and the results are illustrated in Figure 3.
According to the figure, if k is too small (e.g., k ≤ 4), the
performance is relative poor due to no enough Gaussian com-
ponents to describe the mixture distribution. If k is too large
(e.g., k ≥ 12), the performance also degrade, probably due to
overfitting. A suitable k is within [8,10] for Electricity, within
[6,10] for Wind, and within [8,11] for ETTm1.

5.4 Visualization
We visualize the probabilistic forecasting results of different
models as in Figure 4 (the Electricity dataset). These visu-

Figure 3: Hyperparameter analysis on Gaussian components k is
performed to investigate its impact on q-risk for 0.5 and 0.9 quantile
on Electricity, Wind and ETTm1 dataset.
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(c) DeepAR
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(d) PatchTST
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1
0
1
2

(e) TFT
0 24 48 72 962
1
0
1
2

(f) Autoformer

Figure 4: Visualization of the probabilistic forecasting results of dif-
ferent models on the Electricity dataset. The dark lines stand for the
ground truth and the light shadow stand for the predicted probabilis-
tic intervals. The gray line represents the prediction upper bound,
and the yellow line represents the prediction lower bound. We set
the upper and lower bound quantile as 0.1 and 0.9.

alizations offer insights into how different models perform
in capturing the underlying uncertainty and predictive trends
within each respective dataset. It demonstrates that the Quan-
tileFormer is more in line with the ground truth, with a much
narrower probabilistic interval (PI) and a lower q-risk. This
verify the effectiveness of the pattern-mixture decomposed
Transformer model.

6 Conclusion
This paper introduced QuantileFormer, a novel Transformer-
based model that revolutionizes probabilistic time series fore-
casting through a meticulous pattern-mixture decomposition
approach. It decomposed complex time series data into quan-
tile drift and divergence patterns, capturing the nuanced tem-
poral dynamics and stochastic features. The quantile drift was
captured by an encoder, while the divergence patterns were
broken down into Gaussian mixture components. A Varia-
tional distribution inference network was introduced to ex-
tract the global statistical properties. These decomposed ele-
ments were then merged by a fusion Transformer, which syn-
thesizes the information to produce accurate quantile predic-
tions. Through extensive experimentation, the paper demon-
strated the efficacy of the proposed model, confirming its ef-
fectiveness in probabilistic time series forecasting.
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