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Abstract

In recent years, weakly supervised object detection
(WSOD) has attracted much attention due to its low
labeling cost. The success of recent WSOD mod-
els is often ascribed to the two-stage multi-class
classification (MCC) task, i.e., multiple instance
learning and online classification refinement. De-
spite achieving non-trivial progresses, these meth-
ods overlook potential classification ambiguities
between these two MCC tasks and fail to lever-
age their unique strengths. In this work, we in-
troduce a novel WSOD framework to ameliorate
these two issues. For one thing, we propose a
self-classification enhancement module that inte-
grates intra-class binary classification (ICBC) to
bridge the gap between the two distinct MCC tasks.
The ICBC task enhances the network’s discrimina-
tion between positive and mis-located samples in a
class-wise manner and forges a mutually reinforc-
ing relationship with the MCC task. For another,
we propose a self-classification correction algo-
rithm during inference, which combines the results
of both MCC tasks to effectively reduce the mis-
classified predictions. Extensive experiments on
the prevalent VOC 2007 & 2012 datasets demon-
strate the superior performance of our framework.

1 Introduction

Object detection aims to localize objects of interest and
classify them, which is a fundamental task in the field of
computer vision. The recent decade has witnessed rapid
progress [Girshick, 2015; Ren et al., 2015; Liu et al., 2016;
Redmon et al., 2016] in various object detection scenar-
ios [Nie et al., 2023; Wang et al., 2023; Jiao et al., 2024;
Wang et al., 2024b], benefiting from the development of con-
volutional neural networks (CNN). In spite of the remarkable
advances, current fine-grained instance-level annotations are
labor-intensive and time-consuming to obtain. This paper fo-
cuses on the domain of weakly supervised object detection
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Figure 1: Comparison between the two distinct MCC tasks.

(WSOD) [Su et al., 2022], which requires only image-level
annotations, i.e., existing object categories in a given image,
to achieve the object detection task.

Recent WSOD approaches [Tang et al., 2017; Wei er al.,
2018; Ren et al., 2020; Huang et al., 2020] generally con-
vert WSOD into a two-stage multi-class classification (MCC)
pipeline. In the first stage, a multiple instance detection
network (MIDN) [Bilen and Vedaldi, 2016] is constructed,
leveraging multiple instance learning to introduce competi-
tion both among object classes and proposals (denoted as
158 MCC). This process effectively identifies candidate re-
gions that contain significant class-specific patterns. How-
ever, MIDN often suffers from partial-located issues, wherein
high scores are assigned to the detections localizing only the
most discriminative parts. To overcome this challenge, in the
second stage, cascaded online multi-class classifiers [Tang et
al., 2017; Chen et al., 2020] are integrated to refine the clas-
sification scores of MIDN, and assorted strategies [Zeng et
al., 2019; Ren et al., 2020] are designed to generate pseudo
instance-level labels for training these classifiers (denoted as
274 MCC). Despite the promising results achieved by these
methods, as shown in Figure 1, they overlook the potential
classification ambiguities and the unique strengths of the two
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distinct multi-class classification tasks across the two stages:

(i) During the 1%* MCC task, some mis-located proposals,
especially those only containing discriminative parts of
an object, are classified as the corresponding object
class and leveraged to generate its class-specific fea-
tures. However, after multiple refinements in the ond
MCC task, these proposals will be classified as the
background class, whose features are instead pushed to-
ward those of mis-located proposals from other classes.
These ambiguities compromise the quality of the class-
specific features produced by the detector.

(i1) These two MCC tasks are guided by image-level and
pseudo-instance-level labels, respectively. As a result,
the first MCC task excels at identifying the classes
present in the image, while the second one focuses on
more accurate instance-level location. However, previ-
ous methods rely solely on the second MCC task during
inference, overlooking the classification benefits pro-
vided by the first task.

In this paper, We present a novel self-classification
enhancement and correction (SCEC) framework to overcome
these two limitations. To alleviate the classification ambi-
guities, we introduce a self-classification enhancement mod-
ule during the second stage, which integrates an extra intra-
class binary classification (ICBC) task to bridge the gap be-
tween the two distinct MCC tasks. ICBC task aims to en-
hance the network’s discrimination between positive and mis-
located samples in a class-specific manner, rather than di-
rectly grouping them together with background samples into
a single ‘background’ class, as done in the 2""¢ MCC. To suf-
ficiently optimize the ICBC classifiers, we generate various
types of mis-located samples based on the 2" MCC results.
Furthermore, the ICBC results are utilized in reverse to re-
fine the pseudo labels for the 2"¢ MCC task, allowing the
two tasks to complement each other. To harness the unique
strengths of the two distinct MCC tasks, we introduce a self-
classification correction algorithm, which leverages the 15¢
MCC results to rectify mis-classifications in the detections
produced by the second one.

Our primary contributions are summarized as follows:

* We propose a self-classification enhancement module
that incorporates both the base multi-class classification
and an intra-class binary classification to alleviate the
classification ambiguities. These two tasks are carried
out in a mutually reinforcing manner.

* We introduce a self-classification correction algorithm
to alleviate the mis-classification problem of detections,
leveraging the image-level classification strength of the
first multi-class classification results during inference.

» Extensive experiments on the prevalent PASCAL VOC
2007 and 2012 datasets demonstrate the superior perfor-
mance of our framework.

2 Related Work

Weakly Supervised Object Detection. Weakly Supervised
Object Detection (WSOD) has been widely studied in recent
years. The pioneering work WSDDN [Bilen and Vedaldi,

2016] first integrates multiple instance learning into the CNN
architecture by designing a two-stream network, i.e. classi-
fication branch and detection branch. By combining the re-
sults from these two branches, WSDDN converts the WSOD
task into a multi-class classification problem for proposals.
However, such a solution often struggles to generate accu-
rate detections. To alleviate this problem, OICR [Tang et
al., 2017] proposes a two-stage pipeline where WSDDN is
utilized as a basic detector, and its results are utilized to
generate pseudo seed boxes for training several subsequent
online instance classifiers for further refinement. Most re-
cent WSOD approaches are developed based on this pipeline.
Some methods improve the detection capability of the ba-
sic detector, e.g., adding extra supplement modules for more
complete detections [Yan et al., 2019; Yin et al., 2021;
Yin er al., 2022], and enhancing the generated image or pro-
posal feature [Ren et al., 2020; Huang et al., 2020]. Some
other methods design various strategies to improve the quality
of pseudo seed boxes, e.g., constructing spatial graphs [Tang
et al., 2018] or appearance graphs [Lin ef al., 2020] for top-
scoring proposals, bringing top-down objectness [Zeng et al.,
2019], and applying spatial likelihood voting [Chen et al.,
2020]. Otherwise, [Yang et al., 2019] add online regression
branches to refine the initial proposals.

Different from them, our method extends the widely used
online classifier into a self-classification enhancement mod-
ule, which brings intra-class binary classification to enhance
the network’s discrimination between class-specific positive
and mis-located samples, thus improving the detection capa-
bility of the network.

3 Method

3.1 Overview

The overview of the proposed model is illustrated in Fig-
ure 2. First, an image and the generated region proposals
are fed to the Rol feature extractor, i.e., CNN backbone and
an Rol pooling layer followed by two FC layers, to obtain
proposal feature vectors. Next, the feature factors are fed
into MIDN module to produce instance-level scores, which
are summed for the training of MIDN with image-level la-
bels. Meanwhile, the feature factors are fed into several sub-
sequent self-classification enhancement (SCE) module to ob-
tain MCC and ICBC scores. For each SCE module, the ICBC
branch is trained using MCC scores, while the pseudo la-
bels of MCC branch are generated from ICBC Guided Seed
Mining (IGSM) algorithm. After that, an R-CNN head is
constructed to produce classification scores and regression
coordinates. During inference, self-classification correction
(SCC) algorithm is applied to generate prediction results.

3.2 Basic WSOD Framework

In the weakly supervised setting, distinguishing between pos-
itive and negative proposals directly during training becomes
challenging, given the absence of instance-level labels. To
overcome this problem, the pioneering work WSDDN [Bilen
and Vedaldi, 2016] adopts multiple instance learning into
the CNN architecture to convert the WSOD task into the
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Figure 2: An overview of our self-classification enhancement and correction (SCEC) framework.

multi-class classification task for proposals. Following re-
cent works [Tang er al., 2017; Ren et al., 2020], we apply
WSDDN as our basic detector, referred as Multiple Instance
Detector Network (MIDN).

Given an image I, its image-level labels Y =
[Y1,¥2, - ,yc] € RE*! is available according to the WSOD
setting, where y. € {0,1} indicates the presence or absence
of class c. Its proposals R = {Rj, Rg, -+, RN} are pre-
generated from Selective Search [Uijlings et al., 2013] be-
fore training. First, the proposal feature vectors are generated
through a CNN backbone, an Rol pooling layer [Girshick,
2015], and two FC layers. Next, these vectors are fed into two
parallel branches, i.e., classification and detection branches,
to obtain proposal scores. For each branch, a scoring ma-
trix z%(x%) € RE*IFl is first obtained by an FC layer,
where | R| and C represents the number of proposals and cat-
egories, respectively. The two scoring matrices are then nor-
malized by the softmax operation through orthogonal direc-
tions, i.e. (") for category direction and o (2%) for pro-
posal direction. After that, the proposal scores are generated
by the element-wise product of these two matrices: 2P =
o (%) ® o (2). Finally, the image-level scores are obtained
by aggregating over the proposal direction of 2°*: "¢ =
ZlRI b"?‘. In this way, the image-level labels can be utilized
for supervision through binary cross-entropy loss: Lyrrpy =

=5, [uetogsi™ + (1 - ye)tog (1 - 2.

Following OICR [Tang ef al., 2017], the basic WSOD
framework adds several online instance classification (OIC)
branches after the basic detector to generate more accu-
rate detections. Each branch contains an FC layer and
a softmax operation and outputs a scoring matrix z°¢ €
R(E+DXIEI " The top-scoring proposals from the C-th
branch are utilized to generate pseudo labels y°* to train the
C + 1-th branch, through the cross-entropy loss: Lorc =

‘R‘ Z‘R‘ chﬁl wiyd<loga?s. The loss weight w;, which
acts as a confidence score, is obtained from the score of the
seed box which has the highest overlaps with R;. Addi-
tionally, following [Yang et al., 2019; Yin et al., 2021], we
construct an R-CNN branch subsequently, which contains a
classification sub-branch and a regression sub-branch. The
weighted cross-entropy loss and smooth-L1 loss are applied
to train these two sub-branches, respectively.

3.3 Self-Classification Enhancement

The basic WSOD framework refines the initial detection re-
sults by applying OIC branches with multi-class classifica-
tion. However, as illustrated in Sec. 1, this approach lead to
classification ambiguities, where the features of mis-located
samples from all classes are pushed together, despite that they
are utilized to generate class-specific features during MIDN’s
training process. Furthermore, such a solution will weaken
the model’s ability to distinguish the mis-located samples
from their closed intra-class positive ones. To this end, we
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introduce Self-Classification Enhancement (SEC) module to
tackle this problem.

The SCE module comprises two parallel branches: one
for the base multi-class classification and the other for an
enhanced intra-class binary classification. These branches
work harmoniously during online training, supplementing
each other’s strengths.

Multi-Class Classification. The multi-class classification
(MCC) layer shares the same structure with the original OIC
layer, containing an FC layer followed by a softmax.

Intra-Class Binary Classification. We incorporate the intra-
class binary classification (ICBC) task to enhance the net-
work’s discrimination between intra-class positive and mis-
located samples. To maintain consistency with the MCC
layer, we adopt a simple yet effective design to achieve the
ICBC task. Specifically, given the proposal feature vector f,
the ICBC branch consists of an FC layer to generate score
matrices and a sigmoid function for normalization:

2 = o(FO(f)), a'™ e RO*IAL (1)
where a higher :c‘CbC indicates that the proposal R; is more
likely to be a positive sample for class ¢, while a lower value
suggests the opposite.

Sampling strategy for ICBC task. We adopt MCC results
to select training samples U for the ICBC task. Specifically,
we first choose a set of top-scoring proposals as the pseudo
seed boxes S = {51, 52, -+ , Sy} according to MCC results.
After that, we propose different strategies to select positive
and mis-located samples based on these seed boxes.

A straightforward way is to apply the loU sampling strat-
egy. Specifically, for each proposal, we calculate its Inter-
section over Union (IoU) with all seed boxes, and take the
maximum value IoU;. Next, we denote the positive samples
as Rpos = {R;|IoU; > 13,} and the mis-located samples as
Rnee = {Ri|n < IoU; < 74}, where IoUj; is the overlaps
between R; and its closest seed box S;. Correspondingly,
R; shares the same category C; with S;. Then, we generate
the pseudo label Y = [yibe, g% - .. 4] of proposal i
according to the divisions:

e [ B RmandCi=e
’ 0, else.

However, the samples selected from IoU sampling strategy
are insufficient for achieving the ICBC task. Given the lim-
ited number of training samples, we further apply a gridding
sampling strategy to generate additional mis-located samples
for augmentation. Specifically, for each seed box with class c,
we first apply box scaling by a scaling factor § = 0.5. In this
way, the width and height of the seed box are randomly sam-
pledin [(1 —6)w, (1 + 0)w] and [(1 — 8)h, (1 + 6)h], respec-
tively. The center of the box remains unchanged. Afterward,
we generate an n X n grid on the scaled seed box. We treat
each grid as a potential mis-located sample that may only
contain a part of an object. It is worth noting that although
some grids containing only background may inevitably be se-
lected, their impact is minimal due to their limited quantity.
These selected grids G = {G1,Ga,- -+ , G} are then fed to

Figure 3: Comparison between the seed boxes selected from MCC
scores (blue) and ICBC scores ( ).

the Rol pooling layer to generate region features, which are
subsequently passed to the ICBC layer. Their pseudo labels
are assigned as follows: yi% = 0,G; € G.

‘We denote all the selected samples asU = Ry UR e UG.
Considering the division of positive and mis-located samples
is class-specific, we utilize sample weight to ensure these
samples only participate in the losses of their corresponding
categories:

Di, Ui € Rpos U Ryeg and C; = ¢,
e =0q, UieGandC;=c, 3)
0, else,
where p; is the confidence of R;, obtained by the MCC score
of its closest seed box S;, and g; is set to 1.5. Finally, we

adopt weighted binary cross-entropy loss for training ICBC
layer:

Ul ¢

|U|ZZ 1cchCE g:t;c, 1cctl)c). (4)

i=1 c=1

LicBc =

ICBC Guided Seed Mining. Seed box mining plays a sig-
nificant role in training the MCC branch. Some methods pur-
sue the accuracy of seed boxes by using top-scoring strate-
gies [Tang et al., 2017], while some others focus on the re-
call of seed boxes by relaxing the top criteria and adopting
non-maximum suppression (NMS) algorithm to remove re-
dundant ones [Ren et al., 2020]. Different from them, we
adopt a soft scoring threshold to mine accurate seed boxes
and utilize ICBC results for further fine-tuning.

Specifically, for each existing class ¢ (y. = 1), we first
find the proposal Ry, with the top score z;". Here, we adopt

the scores from the previous MCC branch followmg [Tang et
al., 2017]. Next, instead of selecting top-K proposals, we
set a soft scoring threshold according to the top score in this
class: Tgeore = ammcc We select the proposals whose MCC
scores are higher than the threshold 75..... After that, we
apply NMS algorithm on the selected proposals to remove
redundant boxes, obtaining the base seed boxes Spse-
Compared to the MCC, ICBC demonstrates superior pro-
ficiency in discerning the positive samples from their closed
but mis-located ones in a class-specific manner. To this end,
we apply ICBC results to fine-tune the obtained base seed
boxes Spyse. Briefly, for each seed box S; in Spqse, We first
obtain its surrounding proposals by setting an overlap thresh-
old (75, = 0.5). Next, among all the surrounding proposals,
we select the one S; that has the maximum ICBC score in
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Figure 4: Comparison between image-level classification (ILC) ac-
curacy of detections from the common pipeline (green), MIDN
(blue) and SCC algorithm (red) under different training iterations.

the class of S;, and add it to the seed boxes. According to
the previous comparison between ICBC and MCC, S; can be
regarded as a potential refinement of .S; in location, which is
shown in Figure 3.

Finally, the fine-tuned seed boxes S, along with the base
seed boxes Spqse, are utilized to train the MCC layer. We
generate pseudo labels of all the proposals according to their
max overlaps with seed boxes. The overlap thresholds are set
the same with those in ICBC training, while the mis-located
samples are labeled as C'+ 1. After that, we use these pseudo
labels to train MCC layer with weighted cross-entropy loss:

1 |R| C+1
Latco =~ g D0 D wlilogalls, ()
i=1 c=1
where y¢i© and x5 represent the pseudo labels and MCC
score of proposal F; in class c, respectively. The loss weight
wj™¢ is the score of the seed box which has the highest over-
laps with R;.

Finally, we replace the original OIC branches with our SEC
modules, and we train the network end-to-end by combining
all the losses mentioned before:

T

Liotar = Laripn + ¥ _(Larce +vL1c0) + Lr-cnN,

t=1

(6)
where Lr_ oy n is the loss for R-CNN branch, 7" is the num-
ber of online enhanced instance classification modules, and ~y
keeps the balance between Ly;cc and Licpe.

3.4 Self-Classification Correction

A common pipeline for WSOD inference involves two main
steps: 1) aggregating the online MCC scores (e.g., OICs &
classification scores in R-CNN branch) as the final results; 2)
refining the boxes through the regression outputs. In contrast,
the MIDN result is empirically discarded due to its inade-
quate detection performance. We often observe a common
flaw in such a solution: Some non-exist categories are in-
correctly assigned high scores in the final results, leading to
many mis-classification samples. We conduct a toy experi-
ment to empirically show the suboptimal classification of fi-
nal results. We perform statistical analysis on the occurrences

of all detected boxes’ predicted categories within the image.
In other words, if the category appears in the image, the box
will be considered a positive sample; otherwise, it is deemed
a negative sample. This methodology allows us to calculate
the image-level classification (ILC) accuracy of the bound-
ing boxes. We evaluate multiple models at different training
iterations, as shown in Figure 4, and compare the detection
results from the conventional pipeline (green line) with those
from MIDN (blue line).

Intrigued, two observations stand out: 1) the ILC accu-
racy of pipeline result falls short of the 50% mark, and 2) the
MIDN result exhibits notably higher ILC accuracy compared
to the pipeline one. We ascribe this disparity to two main
factors. On one hand, only parts of confident proposals par-
ticipate in the training of the OICs, thus the penalty for non-
existent categories has been attenuated. On the other hand,
MIDN employs binary cross-entropy loss for the summation
of the instance-level scores, which exerts stronger constraints
on the image-level classification.

Based on this observation, we propose a simple yet effec-
tive strategy to refine the pipeline results with MIDN, termed
as Self-Classification Correction (SCC). Briefly, we first pre-
dict the existing image-level categories according to MIDN
results through confident proposal selection and an argmax
operation, and then obtain the absent categories Cy:

IND + {z[ max M; . > Tmidn} )
Cp arngaXMIND,C, 7

Cr + unique(Cp),

CN «—C— CI,

where M is MIDN results, C is the set of classes, and 7,,,;4n
is the scoring threshold for MIDN. Subsequently, we reduce
the pipeline scores of these absent categories by multiplying
a scoring factor \.

As shown in Figure 4, SCC algorithm (red line) brings
about substantial enhancements in ILC accuracy compared to
the pipeline (green line), showcasing improvements ranging
from 20% to 35%. Remarkably, pipeline utilizing SCC even
achieves superior ILC accuracy when compared to MIDN.
Consequently, this refinement strategy contributes to a no-
table reduction in instances of mis-classification, thus en-
hancing detector performance without introducing additional
training parameters.

Additionally, to make the SCC algorithm more effective,
we adopt the misclassification tolerance (MCT) strategy [Wu
et al., 2024] to further improve the classification ability of
MIDN. The motivation behind the MCT strategy is to intro-
duce tolerance for unrepresentative samples with high seman-
tic similarity to an incorrect class, thereby preventing these
samples from dominating the training process and forcing the
model to memorize them. Suppose N, classes are present
in the image, we identify the misclassified classes contain-
ing unrepresentative samples when their score rankings fall
within the range of [N,, N, + T,,], and assign their class
weights to a when calculating L,;7p. Similarly, the corre-
sponding incorrect classes, whose score rankings fall within
the range of [0, IV, ], are also assigned the same class weight.
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Methods VOC 2007 | VOC 2012
OICR [Tang et al., 2017] 41.2 37.9
WS-JDS [Shen et al., 2019] 45.6 39.1
C-MIL [Wan et al., 2019] 50.5 46.7
Yang et al. [Yang et al., 2019] 51.5 46.8
C-MIDN [Yan et al., 2019] 52.6 50.2
Pred Net [Arun et al., 2019] 529 484
SLV [Chen et al., 2020] 53.5 49.2
WSOD? [Zeng et al., 2019] 53.6 472
CASD [Huang et al., 2020] 56.8 53.6
MIST [Ren e al., 2020] 54.9 52.1
IM-CFB [Yin et al., 2021] 543 49.4
SPE [Liao et al., 2022] 51.0 -
ODCL [Seo et al., 2022] 56.1 54.6
CBL [Yin er al., 2023] 57.4 53.5
NDI-MIL [Wang et al., 2024al 56.8 53.9
Ours 58.2 55.5

Table 1: Performance comparison among the state-of-the-art meth-
ods on PASCAL VOC 2007 and 2012. These models are evaluated
in terms of mAP (%). We highlight the best and second best perfor-
mance in the red and blue colors.

4 Experiments and Analysis
4.1 Datasets

Following previous works, we evaluate our proposed method
on two popular object detection datasets Pascal VOC 2007
and Pascal VOC 2012 [Everingham et al., 2010], which con-
tain 20 categories. For both two datasets, we train on trainval
splits (5,011 images in VOC 2007 and 11,540 images in VOC
2012) and applies two kinds of metrics for evaluation: (1) The
mean of average precision (mAP) on the fest split (4,951 im-
ages in VOC 2007 and 10,991 images in VOC 2012); 2) Cor-
rect localization (CorLoc) on the frainval split. Only image-
level labels are utilized during training.

4.2 Implementation Details

Following a widely-used setting, we adopt VGG16 [Si-
monyan and Zisserman, 2014] pre-trained on ImageNet
[Deng er al., 2009] as the backbone and Selective Search
[Uijlings ef al., 2013] for proposal generation. The whole
framework is end-to-end optimized using stochastic gradient
descent (SGD), and the momentum, weight decay, and batch
size are set as 0.9, 5 x 1074, and 4, respectively. The ini-
tial learning rate is set as 1 X 1073 for the first 70k, 170k
iterations, and it is dropped by a factor of 10 for the follow-
ing 20k, 40k iterations for VOC 2007 and VOC 2012, re-
spectively. We set « to 0.9 and the NMS threshold 7,5 to
0.1 in the SEC module. A and 7,54, in SCC algorithm are
set to 0.01 and 0.001, respectively. The hyperparameters of
MCT strategy are set as the same with [Wu et al., 2024], i.e.,
T, = 1,a = 0.4. The loss weight v is set to 0.1 for the
training balance. Following the previous WSOD works, 7,
Th, and T are set to 0.1, 0.5, and 3, and the images are multi-
scaled to {480, 576, 688, 864, 1000, 1200} for both training
and inference.

Methods VOC 2007 | VOC 2012
OICR [Tang et al., 2017] 60.6 52.1
C-MIL [Wan ez al., 2019] 65.0 67.4
Yang et al. [Yang et al., 2019] 68.0 69.5
C-MIDN [Yan et al., 2019] 68.7 71.2
WSOD? [Zeng et al., 2019] 69.5 71.9
SLV [Chen er al., 2020] 71.0 69.2
MIST [Ren et al., 2020] 68.8 70.9
CASD [Huang et al., 2020] 70.4 72.3
IM-CFB [Yin et al., 2021] 70.7 69.6
SPE [Liao et al., 2022] 70.4 -
ODCL [Seo er al., 2022] 69.8 71.2
CBL [Yin et al., 2023] 71.8 72.6
NDI-MIL [Wang er al., 2024a] 71.0 722
Ours 71.9 73.4

Table 2: Performance comparison among the state-of-the-art meth-
ods on PASCAL VOC 2007 and 2012. These models are evaluated
in terms of CorLoc (%). We highlight the best and second best per-
formance in the red and blue colors.

4.3 Comparison with State-of-the-art Methods

In Table 1, we compare the performance of the state-of-art
methods with single model on Pascal VOC 2007 and VOC
2012 datasets in terms of mAP. Our method achieves state-
of-the-art performance with 58.2% mAP on VOC 2007 and
55.5% mAP on VOC 2012, surpassing other methods by at
least 0.8% and 0.9%, respectively. Our method also achieves
outstanding performance in terms of CorLoc, setting new
state-of-the-art benchmarks with 71.9% on VOC 2007 and
73.4% on VOC 2012. Our method outperforms recent works
[Ren et al., 2020] and [Chen et al., 2020] that improve the
seed-box mining but remain reliant on the multi-class classifi-
cation scores. On one hand, our method considers the scoring
variance among different categories and images, thus mak-
ing a reasonable balance between the accuracy and recall of
seed boxes. On the other hand, we use the ICBC scores for
further refinement, thus improving the localization accuracy
of these seed boxes. Some other methods [Lin et al., 2020;
Zeng et al., 2019] also apply other information for assistance
to improve the seed-box mining, however, their improvement
limits on the online training procedure. Instead, our method
brings intra-class binary classification (ICBC) task to directly
enhances the network’s discrimination between intra-class
positive and negative samples, thus benefiting the feature rep-
resentation of the whole network.

4.4 Ablation Study

Effect of Each Component. We present experimental re-
sults on VOC 2007 to validate the effectiveness of each com-
ponent, as summarized in Table 3. Starting with the basic
WSOD framework, referred to as the “baseline”, we achieve
an initial mAP of 54.6%. Incorporating the ICBC task into
the WSOD framework leads to a notable improvement of
0.6%, underscoring the effectiveness of the ICBC branches in
enhancing the network’s ability to distinguish between posi-
tive and mislocated samples in a class-wise manner. Sub-
sequently, integrating the IGSM algorithm further improves
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Baseline

Ours
(Full)

(a) Localize discriminative parts

(b) Contain redundant areas

(d) Mis-classification

(c) Miss objects

Figure 5: Qualitative results of the baseline model (1st row), the model only adding SEC module (2nd row), and our whole framework (3rd
row) .We show the cases including four typical challenges in WSOD: (a) Localizing only discriminative parts; (b) Containing redundant

areas; (c) Missing objects; (d) Mis-classification.

Method mAP (%)
Baseline 54.6
Self-Classification Enhancement

+ Intra-class binary classification 55.210.6
+ ICBC guided seed mining 56.7+1.5
Self-Classification Correction

+ Self-classification correction 57.510.8
+ Misclassification tolerance 58.210.7

Table 3: Ablation study of different components of our method on
VOC 2007 in terms of mAP (%).

seed box quality, boosting performance to an mAP of 56.7%.
Overall, the self-classification enhancement module delivers
a significant mAP gain of 2.1%.

To evaluate the self-classification correction module, we
first apply the self-classification correction algorithm during
inference, resulting in a clear 0.8% mAP improvement. This
gain can be attributed to the algorithm’s capability to effec-
tively reduce high-scoring misclassified samples. By intro-
ducing the misclassification tolerance strategy, we achieve the
highest performance of 58.2% mAP. These results demon-
strate that enhancing the classification performance of MIDN
can further expand the potential upper limit of the self-
classification correction algorithm.

Figure 5 shows the detection results of different models on
VOC 2007 test set. Compared with the baseline model (1st
row), the integration of the OEIC module (2nd row) largely
alleviates the mis-location problem in different cases, includ-
ing localizing only discriminative parts (a) and containing re-
dundant areas (including background and other objects) (b).
Furthermore, more missing objects are detected (c) due to the
design of the IGSM algorithm in SEC module. Lastly, as
shown in (d), the utilization of the MSCR algorithm can fur-
ther alleviate the mis-classification problem.

Effect of ICBC sampling strategy. We conduct experiments
by employing different sampling strategies for the training of
ICBC task, as shown in the upper part of the Table 4. Among
all the settings, the combination of the IoU sampling strategy
and the gridding strategy achieves the best performance and

Method mAP (%)
Intra-class binary classification

only with IoU sampling 57.310.9
with gridding sampling (n=2) 58.2 0.0
with gridding sampling (n=3) 57.910.3
ICBC guided seed mining

without scoring strategy 57.211.0
without ICBC-guided finetuning 57.051.2

Table 4: Ablation study of self-classification enhancement module
for the ICBC task on VOC 2007 in terms of mAP (%).

is insensitive to variations in grid size.

Effect of IGSM algorithm. We conduct experiments to eval-
uate each component of IGSM algorithm, as shown in the
lower part of the Table 4. On one hand, we first replace our
scoring strategy with original top-1 strategy, which only se-
lects the proposals with highest scores as seed boxes, result-
ing in a 1.0% mAP drop, as our scoring strategy more effec-
tively locates various objects using class-wise soft thresholds.
Additionally, removing ICBC-guided fine-tuning causes a
1.2% mAP drop, highlighting the superior capability of ICBC
in distinguishing positive samples from closely related but
mislocated ones.

5 Conclusion

We propose a novel framework for weakly supervised ob-
ject detection to address the limitations of the two-stage
multi-class classification pipeline. On one hand, we in-
troduce a self-classification enhancement module that en-
hances the network’s discrimination between intra-class pos-
itive and mis-located samples, and leverage it to enhance the
quality of seed boxes. On the other hand, we introduce a
self-classification correction algorithm to fine-tune the online
classification scores, significantly reducing mis-classification
detections. Extensive experiments on the widely used VOC
datasets demonstrate the effectiveness of our framework.
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