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Abstract
Prompt learning is an effective way to exploit
the potential of large-scale pre-trained foundational
models. Continuous prompts parameterize con-
text tokens in prompts by turning them into dif-
ferentiable vectors. Deep continuous prompts in-
sert prompts not only in the input but also in
the intermediate hidden representations. Manu-
ally designed deep continuous prompts exhibit a
remarkable improvement compared to the zero-
shot pre-trained model on downstream tasks. How
to automate the continuous prompt design is an
underexplored area, and a fundamental question
arises, is manually designed deep prompt strat-
egy optimal? To answer this question, we pro-
pose a method dubbed differentiable prompt learn-
ing (DPL). The DPL method is formulated as an
optimization problem to automatically determine
the optimal context length of the prompt to be
added to each layer, where the objective is to max-
imize the performance. We test the DPL method
on the pre-trained CLIP. We empirically find that
by using only limited data, our DPL method can
find deep continuous prompt configuration with
high confidence. The performance on the down-
stream tasks exhibits the superiority of the au-
tomatic design: our method boosts the average
test accuracy by 2.60 % on 11 datasets compared
to baseline methods. Besides, our method fo-
cuses only on the prompt configuration (i.e. con-
text length for each layer), which means that our
method is compatible with the baseline methods
that have sophisticated designs to boost the perfor-
mance. We release our code in https://github.com/
Zhenhan-Huang/Differentiable-Prompt-Learn.

1 Introduction
Parameter-Efficient fine-tuning (PEFT) offers a paradigm to
adapt pretrained model to downstream tasks using a small
set of trainable parameters. Among the PEFT methods, the
prompt learning can perform few-shot learning or even zero-
shot learning to adapt the pre-trained models to new sce-
narios. Using appropriate prompts, both text prompts and

visual prompts, to query foundational models have shown
great potential. At the same time, the selection of context
tokens in prompts has a pronounced effect on the perfor-
mance of the prompt learning methods [Zhou et al., 2022b;
Schick and Schütze, 2021]. Continuous prompts use differ-
entiable vectors that are in the embedding space of the foun-
dation model. Continuous prompts use trainable parameters
that are learned during the fine-tuning process. It avoids the
time-consuming trial-and-error process using discrete context
tokens. Besides, the continuous prompts are not constrained
to be the embeddings of word tokens in the vocabulary. The
selection for the embeddings of context tokens becomes con-
tinuous.

Deep continuous prompts add prompts to multiple layers.
This method has shown superior performance compared to
only adding continuous prompts to the input in both vision
and language fields. There are two hyperparameters: the
context length of continuous prompts cp and prompt depth
ℓp. Let the hidden dimension be d, continuous prompts
E ∈ Rcp×d are inserted to the input to the neural net-
work layers up to ℓp layers. Since E are automatically de-
termined during the fine-tuning process, a natural question
is: can we automatically determine cp and ℓp? Recently,
it has been found that training merely part of deep neural
network layers can achieve a performance comparable to or
even better than training all layers. This line of work indi-
cates that there is a subset of layers in the pre-trained model,
depending on the distribution shift between the pre-training
dataset and fine-tuning dataset, whose parameters might be
close to a minima for downstream tasks [Lee et al., 2022;
Lodha et al., 2023].

In the prompt learning, we postulate that there might be
some layers that do not need deep continuous prompts or only
need continuous prompts with shorter context length com-
pared to rest of layers. In the existing prompt learning works,
however, a fixed number cp is used for each layer. To examine
our postulation, we design our method to insert continuous
prompts with different context lengths. The context lengths of
continuous prompts are determined using a differentiable for-
mulation. If a layer has the best context length found to be 0,
we do not add continuous prompts to this layer. We name the
proposed method differentiable prompt learning (DPL). The
few-shot learning experiments show that the DPL method can
find continuous prompt configurations, i.e., the context length
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and depth of continuous prompts inserted to the input of each
layer. The performance of downstream fine-tuning over 11
datasets shows the superiority of the proposed method.

In summary, our DPL method has the following contribu-
tions:

• The DPL method automates the continuous prompt
learning process. It automatically determines the contin-
uous prompts and associated hyperparameters including
the context length of the continuous prompt inserted for
each neural network layer and prompt depth.

• The DPL method removes the constraint in the manu-
ally designed continuous prompt methods that the con-
text length for each layer is fixed. The heterogeneous
design of inserting continuous prompts enables a more
flexible design for the prompt learning. The method is
simple and focuses only on continuous prompts, which
means it can be combined with sophisticated designs in
existing prompt learning methods.

• We find the optimal deep continuous prompt configura-
tion is dataset-dependent. By tailoring deep continuous
prompts for each dataset, the DPL method can achieve
the performance better than manually designed prompt
learning methods.

2 Background and Related Work
Prompt Learning. Prompt learning offers an efficient way
to adapt pre-trained foundational models to downstream
tasks. This technique is of great interest in both vision and
natural language. CoOp [Zhou et al., 2022b] inserts con-
tinuous prompts to the input of the vision-language model.
The visual prompt tuning [Jia et al., 2022] proposes the deep
continuous prompts to vision transformer [Dosovitskiy et al.,
2020]. MaPLe [Khattak et al., 2023] combines the ideas from
these two works by using deep continuous prompts in both
the text branch and the image branch. Similar to CoOp, Co-
CoOp, PLOT and ProGrad insert continuous prompts only in
the input. CoCoOp [Zhou et al., 2022a] inserts the continuous
prompts conditioning on the input images. PLOT [Chen et
al., 2022] uses the computationally costly iterative algorithm
to compute the transport plan for aligning word tokens and
image patches. ProGrad [Zhu et al., 2023] uses the gradient-
aligned knowledge distillation to avoid the overfitting prob-
lem. All of the above-mentioned methods use fixed context
length as opposed to our proposed DPL method which adapts
the context length for each layer dynamically based on the
dataset.

Neural Architecture Search. Neural architecture search
(NAS) automatically determines the architecture by minimiz-
ing the objective function. One-shot NAS is an efficient
way to search neural architectures. In the one-shot NAS,
a supernet [Saxena and Verbeek, 2016; Pham et al., 2018;
Liu et al., 2018] is introduced comprising all possible archi-
tecture in the search space. After training the supernet, a sub-
net is uniquely determined as the neural architecture deter-
mined by NAS.

2.1 Revisiting Differentiable NAS
Differentiable NAS [Liu et al., 2018; Yan et al., 2021] uses
a cell-based search space. A cell is represented by a directed
acyclic graph (DAG) G(V, E). Each node is a hidden repre-
sentation and each directed edge is an operation transform-
ing the hidden representation. The supernet incorporates all
the operations. Let O be a set of candidate operations. The
categorical choice of a particular operation is relaxed by the
softmax over all possible operations:

ō(i,j)(x) =
∑
o∈O

exp(α
(i,j)
o )∑

o′ exp(α
(i,j)
o′ )

o(x) , (1)

where α(i,j) are trainable parameters that determine the
searched operation between the latent representation i and j.
The goal of the search process is to replace ō(i,j) with the
most likely operation. The optimal neural architecture is ob-
tained after the search process.

Inspired by differentiable NAS methods, we relax the
categorical selection on the context lengths of continuous
prompts to make the search space continuous. We use the
search space to determine the optimal prompt configuration.
The continuous prompts are trained from scratch. Exist-
ing vision-language prompt learning methods use the deep
prompt method [Jia et al., 2022] where continuous prompts
are added to transformer blocks and removed after the self-
attention [Vaswani et al., 2017]:

[x(l),E(l)] = f (l)([x(l−1),E(l−1)]) . (2)

Here we denote l-th transformer block as f (l). Different op-
tions for adding continuous prompts cannot be mixed as the
dimension of the input [x(l−1),E(l−1)] is different due to dif-
ferent context lengths. We solve this problem by using cross-
attention. Details are reported in the following section.

3 Differentiable Prompt Learning
We use the pre-trained CLIP model [Radford et al., 2021] in
our experiments. The CLIP model is pre-trained on over 400
million image-text pairs. The DPL method has two stages:
the searching stage and the training stage. The goal of the
searching stage is to determine the context length of the con-
tinuous prompt to be added to each transformer block of the
CLIP model. The best prompt configuration is used in the
training stage. Figure 1 shows the proposed method.

3.1 Searching Stage
We prepend continuous prompts {E(l)} to inputs to trans-
former blocks {x(l)} in the text branch and image branch,
where 1 ≤ l ≤ ℓ, l ∈ N+. The concatenated inputs are fed
into transformer blocks f(·). w.l.o.g, for the l-th layer, there
are t options for adding continuous prompts of different con-
text length E

(l)
i ∈ Rci×d, where 1 ≤ i ≤ t, i ∈ N+, to the

input x(l) ∈ Rcl×d. ci is the context length for i-th option,
d is the hidden dimension. For the text branch, the hidden
dimension is d = dtxt. For the image branch, the hidden di-
mension is d = dimg. Continuous prompts in the text branch
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Text/Image
Transformer Block

Text/Image
Transformer Block

Text/Image
Transformer Block

Text/Image
Transformer Block

Search Stage

Train Stage

a) b)

c) 

D
ep

th

Matrix

Options

Figure 1: (a) In the searching stage, continuous prompts with dif-
ferent context lengths (shown in red color) are added to the origi-
nal context tokens (shown in blue color) as the input to transformer
blocks in the text branch or image branch. The outputs of trans-
former blocks are used as the original context tokens for the next
transformer blocks. {α(l)

i } are differentiable parameters to control
the contribution of different prompt options. (b) After the searching
stage, two α matrices are obtained to indicate the selection of the
search algorithm for differentiable context tokens in the language
branch and the image branch. (c) In the training stage, prompt learn-
ing is conducted using the differentiable context token setting deter-
mined by the search algorithm.

are independent of those in the image branch. The output h(l)

of the transformer block is:

h
(l)
i =

{
f (l)([x(l−1)]) , i = 1

f (l)([E
(l)
i ,x(l−1)]) . 1 < i ≤ t

(3)

i = 1 accounts for the case where no continuous prompt is
added. Different from the traditional transformer [Vaswani et
al., 2017] where self-attention mechanism is applied, we use
the cross-attention mechanism in transformer blocks:

Q = wT
q x, K = wT

k [E
(l)
i ,x(l−1)], V = wT

v [E
(l)
i ,x(l−1)] .

(4)

Cross Attention = Softmax(
QKT

√
d

)V,

where Q ∈ Rcl×d, K ∈ R(ci+cl)×d, V ∈ R(ci+cl)×d .
(5)

We use parameters {β(l)
i }ti=1 to control the contribution of

different options to the output. In other words, the mixing
weight for the hidden representation h(l) is parameterized by
β
(l)
i :

x(l) =
t∑

i=1

β
(l)
i h

(l)
i . (6)

The Equation 6 indicates that the output of each transformer
block is a combination of all possible context lengths, i.e.
[0, t]. {β(l)

i }ti=1 is computed by differentiable parameters
{α(l)

i }ti=1:

β
(l)
i =

exp(α
(l)
i )∑t

m=1 exp(α
(l)
m )

. (7)

Figure 1 (a) shows the illustration of the searching stage.
Same as conventional prompt learning methods, the param-
eters of the transformer blocks of the pre-trained model are
frozen. During the searching process, updated parameters
are continuous prompts and α parameters. The goal of up-
dating continuous prompts is to minimize the training loss
Ltrain while that of updating α parameters is to minimize the
validation loss Lval. This implies that the searching stage
is a bilevel optimization problem [Anandalingam and Friesz,
1992; Colson et al., 2007] with the upper level parameter α
and the lower level parameter E:

min
α

Lval(E
∗(α), α) (8)

s.t. E∗(α) = argmin
E

Ltrain(E, α). (9)

Algorithm 1 shows the searching stage. The input is the
pre-trained vision-language model and two α matrices (we
call them search spaces). Two α matrices are randomly ini-
tialized before training. After convergence, the α matrix
Aα ∈ Rℓ×t is obtained as shown in Figure 1 (b). The row
dimension is associated with the depth and the column dimen-
sion is related to t options. The column index of the highest
Aα

im (1 ≤ m ≤ t,m ∈ N+) for the i-th transformer block de-
termines the context length of the continuous prompts added
to that block.

Algorithm 1 Searching stage for vision-language models

1: Input: A pre-trained model and two α matrices Aα ∈
Rℓ×t with randomly initialized weights.

2: while not converged do
3: Update Aα by descending ∇AαLval(E,Aα).
4: Update continuous prompts in both text branch and im-

age branch by descending ∇ELtrain(E,Aα).
5: end while
6: for i = 1 to ℓ do
7: Aα

ik = maxm Aα
im, k determines the context length

of continuous prompts for the i-th block in the best
prompt configuration.

8: end for
9: Output: Prompt configuration for the image branch and

the text branch.

We use the term supprompt to represent the combination
of the continuous prompts added to the pre-trained model and
an α matrix in the searching stage. For vision-language mod-
els, there are two sets of supprompts for the image and text
branches. After the search, the best context length is iden-
tified for each layer and the resulting model is then trained
from scratch. We use the term subprompt to denote the fi-
nal best context length for each layer that is used in the final
model. Terminologies are summarized in Appendix A.2.

Similar to the differentiable NAS where the supernet in-
corporates all candidate operations, our method creates a sup-
prompt that contains all prompt configurations in the search
space. Incorporation of all possibilities inevitably leads to a
relatively large supprompt compared to the subprompt, which
can increase the computational cost in the searching stage.
After the optimal prompt configuration is determined, the
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computational complexity is small compared to the deep con-
tinuous prompt method such as MaPLe. The complete com-
parison is reported in the Appendix A.3.

Figure 2 shows the comparison between our method and
prevalent prompting methods for vision-language models.
After transformer blocks, the traditional methods have vary-
ing context lengths that depend on the number of inserted
context tokens. Our method results in a fixed context length.

Text/Im
age

Transform
er Block

Text/Im
age

Transform
er Block

Query

Key

Value

Query

Key

Value

Insert

Replace

Ours

Baselinesa)

b)

Figure 2: Illustration of the difference in inserting continuous
prompts between our method and commonly used prompting meth-
ods for vision-language models.

3.2 Training Stage

We denote Aα
txt for the α matrix of the text branch and Aα

img
for that of the image branch. The column index of the max-
imum value in each row of α matrix determines the con-
text length of the inserted continuous prompts, i.e. Aα

ik =
maxm Aα

im. After the context length of continuous prompts
is determined, we fine-tune the model on various downstream
datasets. Figure 1 (c) shows the training stage. The fine-
tuning process is the same as the conventional prompt learn-
ing method: model parameters are frozen and only continu-
ous prompts are differentiable.

In the image branch, the input x ∈ RC×H×W is patchified
and projected to produce patch token embeddings [Dosovit-
skiy et al., 2020]. A learnable classification token embed-
ding ucls ∈ R1×dtxt is added to the patch token embedding
x̃img = [ucls,u1, . . . ,unimg

]. In the text branch, a text tem-
plate such as a photo of a [class] is tokenized and
embedded to generate text token embeddings that are formu-
lated as x̃txt = [vSOS,v1, . . . ,vntxt ,vk,vEOS], where vSOS

is the start token embedding, vEOS is the end token embed-
ding, and vk is the embedding corresponding for the class
name. x̃txt and x̃img are combined with continuous prompts
and fed to transformer blocks in the text branch and image
branch for obtaining text embedding g̃ and image embedding
f̃ , respective. Within each transformer block, we use the cross
attention mechanism as shown in Equation 4 and 5. The out-

put logits are based on the similarity between g̃ and f̃ :

ŷ =
exp(sim(f̃ , g̃)/τ)∑

c∈C exp(sim(f̃ , g̃c)/τ)
, (10)

where τ is the temperature parameter. The loss Lde computes
the deviation of the prediction from the ground truth labels:

Lde = E(x,y)∼D F(ŷ, y) , (11)
where F(·) is the loss function. We use the cross entropy
loss for calculating Lde. Continuous prompts are updated by
descending the training loss ∇ELtrain(E).

In addition to the vanilla DPL, we add knowledge distil-
lation in the training stage. Specifically, we use Kullback-
Leibler (KL) divergence [Hinton et al., 2015] between the
model prediction ŷ = p(x) and the zero-shot pre-trained
model prediction pzs(x):

Lkl = −
∑
x∈X

pzs(x) log(
p(x)

pzs(x)
) . (12)

The total loss Ltotal is computed by:
Ltotal = Lde + λLkl , (13)

where λ is a hypereparameter. The gradient descent of con-
tinuous prompts uses Ltotal to update parameters.

4 Experiments
4.1 Datasets and Experiment Setup
Datasets. We evaluate the DPL method on 11 datasets:
Caltech101 [Fei-Fei et al., 2004] and ImageNet [Deng et
al., 2009] for the generic object classification, Describable-
Tectures [Cimpoi et al., 2014] for the texture classifica-
tion, EuroSAT [Helber et al., 2019] for the satellite image
classification, FGVCAircraft [Maji et al., 2013], Food101
[Bossard et al., 2014], OxfordFlowers [Nilsback and Zisser-
man, 2008], OxfordPets [Parkhi et al., 2012], and Stanford-
Cars [Krause et al., 2013] for the fine-grained image recogni-
tion, UCF101 [Soomro et al., 2012] for the action classifica-
tion, and SUN397 [Xiao et al., 2010] for the scene recogni-
tion.
Baselines. We compare the proposed method with CoCoOp
[Zhou et al., 2022a], PLOT [Chen et al., 2022], MaPLe
[Khattak et al., 2023] and ProGrad [Zhu et al., 2023]. The
original implementation of PLOT uses ResNet [He et al.,
2016] as the backbone model. For a fair comparison, we
replace the backbone model of ResNet with the transformer
model. In addition to the prompt learning methods, we ex-
amine the performance of the zero-shot CLIP (ZS CLIP) and
that of training a linear classifier given image and text repre-
sentations by CLIP (Linear probe) [Radford et al., 2021].
Experiment Details. We use the pretrained ViT-B/16 CLIP
model [Radford et al., 2021] in the few-shot learning. In both
training stage and searching stage, we use the same hyper-
parameters except for the number of epochs. The number of
epochs in the searching stage is 60 while that for the train-
ing stage is 40. The batch size is 4 and we use stochastic
gradient descent (SGD) to optimize continuous prompts. In
the searching stage, two α matrices are optimized using SGD
strategy. Learning rate is 3.5 × 10−3. Experiments are con-
ducted using a single NVIDIA A40 GPU.
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4.2 Determining Context Lengths of Continuous
Prompts

We use the few-shot learning setting in the searching stage.
The number of shots is the same for the searching and train-
ing stages. The number of shots is 16. The results of using
8/4/2/1 shots are shown in Appendix A.5. The evolution of
α matrices is visualized to examine the convergence process.
The evolution of α matrices using 11 different datasets is re-
ported in the Appendix A.1. We define special α matrices
formally:
Definition 4.1 (single-dominant). An α matrix Aα ∈ Rℓ×t is
single-dominant if ∀i ∈ N+, 1 ≤ i ≤ ℓ, ∃j ∈ N+, 1 ≤ j ≤ t
s.t. Aα

ij ≫ Aα
ik, where k ∈ N+, 1 ≤ k ≤ t, k ̸= j.

The single-dominant α matrix means that the searching al-
gorithm has a high confidence in the searched subprompts.
This is beneficial to the training stage as the determined α
matrix is robust against the fluctuation of the matrix in the
updating process. We use the alpha value at each row with
the largest value (i.e. argmaxjαij) to determine the con-
text length of continuous prompts added in the training stage.
Hence, the training stage does not require the α matrix to be
single-dominant. When α matrix is not single-dominant, the
decision on adding continuous prompts is not robust. For ex-
ample, in the case where two α values are close:

∃ϵ s.t. ϵ > 0, ϵ ≪ |Aα
im|, ϵ ≪ |Aα

in|, |Aα
im −Aα

in| < ϵ ,
(14)

the fluctuation can change the order in the comparison of α
values. At the epoch of 60, if we use a threshold value to
filter out small α values, α matrices become essentially sparse
matrices.

Figure 3 (a) and (b) shows α matrices at the epoch of 60 for
all 11 datasets. Compared to the image branch, there are con-
siderably more single-dominant α matrices in the text branch.
Although we use 16-shots learning, the searching results in-
dicate that the searching algorithm has pretty high confidence
for the searched prompt configuration. α matrices at the last
epoch are used in the training stage for the prompt learning.
To quantify the evolution process of α matrices, we firstly
define α difference:

α Difference :=
∑
i

∑
j

|Softmax(Aα
ij)− Softmax(Aα

ik)|,

where Aα
ik = max

m
(Aα

im) .

(15)

Apparently, single-dominant α matrix has a high α difference
value. Figure 3 (c) shows the variation of the α difference. At
the early training stage, the α difference increases drastically.
there is a fluctuation when the α difference is close to the
converged value. The fluctuation comes from two parts: the
first part is related to the variation of the largest α value in
each row. Even though the α matrix is single dominant, the
largest α value is subjected to the variation in the gradient
descent. Owing to the softmax operation, the contribution of
the largest α value and that of the rest α values in a row is not
independent, hence we call this intra factor. The second part
is the fluctuation of α values except the largest ones. We call
it inter factor.

The number of dominants describes the number of pairs
between the largest α values and the rest of α values in the
same row:

# Dominants :=
∣∣{(Aα

ij , A
α
ik) | 1 ≤ i ≤ ℓ, 1 ≤ j ≤ t,

j ̸= k,Aα
ik = max

m
(Aα

im), Aα
ik ≫ Aα

ij}
∣∣ (16)

The ideal converged α matrix has the number of dominants
# Dominants = ℓ(t− 1).

4.3 Prompt Learning Based on Alpha Matrix
After determining the context length of added continuous
prompts, we add them to the pre-trained CLIP model and
conduct the prompt learning in a supervised fashion. We
use the few-shot learning and the number of shots is 16.
The α matrix in the text branch might be different from
that in the image branch as shown in Appendix Figure 5,
and there is no coupling function [Khattak et al., 2023;
Zang et al., 2022] between added continuous prompts in the
two branches. Table 1 shows the performance comparison
on downstream datasets. Note that the direct comparison of
zero-sho CLIP with other methods is not fair as it does not
require any training.

Our proposed method shows a pronounced advantage com-
pared to baseline methods. It boosts the average accuracy
by 2.60% test accuracy. The proposed method shows unfa-
vorable performance on the Food101 dataset. When compar-
ing the zero-shot CLIP method with the linear probe method
which adds a linear classifier on top of pre-trained CLIP
model, there is a remarkable performance drop (77.30% →
70.13%). We postulate that the reason might be related to
the forgetting issue [Chen et al., 2019; Boschini et al., 2022]
in the fine-tuning process. ProGrad is designed to avoid
the forgetting issue by aligning the gradient descent direc-
tion of matching predictions and ground-truth labels to that
of knowledge distillation when there is a conflict. ProGrad
exhibits a good performance on that dataset.

We find that the performance difference between the DPL
method and baseline methods is largest on the EuroSAT
and Aircraft datasets. There is a large distribution shift
on EuroSAT and Aircraft datasets compared to the pre-train
datasets of the CLIP model. On the generic dataset such as
Caltech101, the distribution shift is small. Hence, the differ-
ence between the DPL method and baseline methods is mini-
mal.

We visualize the attention map on the downstream datasets
using different prompt learning methods as shown in Figure
4. The Grad-CAM visualization [Selvaraju et al., 2017] indi-
cates that our method is beneficial to focus on key elements
in the foreground. In the image of amphibious aircraft, the at-
tention of the model using the DPL method is localized on the
float and the window. The model’s attention focuses on the
vehicle’s logo in the car image. In the action classification,
the model focuses on riders and horses. Those elements are
important to differentiate the target class from the candidate
classes. The PLOT method [Chen et al., 2022] is designed
to align the prompts with image features using the optimal
transport theory [Peyré et al., 2019]. It also exhibits a good
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a) b)

Figure 3: (a) α matrices for the text branch. (b) α matrices for the image branch. α matrices are obtained at the epoch of 60. The row
dimension is related to the context length of added continuous prompts. The column dimension is related to model depth, i.e. the number of
transformer blocks. (c) The evolution of the α difference and the number of dominants. As the number of training epochs increases, the α
matrix gradually converges and the number of dominants increases to the converged value.

alignment. The DPL method only relies on the prompt con-
figuration, which means it is compatible with using the opti-
mal transport theory.

4.4 Ablation Studies
We examine the performance of the shallow prompt learning
method: continuous prompts with a context length of 16 are
added to the inputs of the text branch and the image branch
respectively. The equivalent prompt depth is 1. The way of
adding context prompts is illustrated in Equation 4 and Equa-
tion 5. The result is shown in the Table 2. Compared to the
DPL method, the shallow prompt learning method has a re-
markable performance drop. There is the largest performance
degradation in the EuroSAT and Aircraft datasets. These two
datasets also exhibit the advantage of the DPL method over
baseline methods shown in the Table 1.

5 Discussion
By using bi-level optimization, the DPL method is able to
automatically determine the context length of the continuous
prompt for each layer. It seems to indicate that the optimal
prompt configuration might be dataset-dependent. The deep

neural networks are found to be brittle to even small distribu-
tion shits between the pre-training and fine-tuning datasets
[Recht et al., 2019; Hendrycks and Dietterich, 2019]. A
dataset-dependent training scheme provides the flexibility to
the level of distribution shift. Our results show that the few-
shot learning with DPL can boost the downstream accuracy.

Existing deep prompt learning works hardly consider a
granular level of adding continuous prompts: each layer has
the same context length and a hyperarameter of prompt depth
is empirically determined. A prompt depth ℓp smaller than
the model depth ℓ indicates that the last few layers of the pre-
trained model might be close to a minima for the downstream
dataset. In the transfer learning, not all layer parameters are
responsible for the distribution shift. There are numerous re-
searches on training different layers differently to mitigate the
forgetting issue [Niu et al., 2022; Toneva et al., 2018] caused
by the distribution shift: fine-tuning on the target domain us-
ing gradual unfreezing [Howard and Ruder, 2018], using dif-
ferent learning rate for different layers [Ro and Choi, 2021;
Shen et al., 2021], and training part of layers [Lee et al., 2022;
Vettoruzzo et al., 2024].

If some layer parameters are close to optimal in down-
stream datasets, we believe there is no need to add continu-
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Method
Test Accuracy ↑

Caltech101 DTD EuroSAT Aircraft Food101 Flowers Pets Cars UCF SUN397 ImageNet Average
ZS CLIP 87.20 42.34 37.57 17.29 77.30 66.18 85.79 55.63 61.45 58.73 58.77 58.93

Linear Probe 90.44 64.02 82.68 36.36 70.13 95.01 76.36 70.13 73.70 65.17 54.33 70.76
CoCoOp 95.10 63.63 74.10 33.67 87.37 89.97 93.53 72.30 76.97 72.67 71.17 75.50

PLOT 93.70 70.90 84.03 34.93 78.13 97.27 88.20 68.10 72.23 69.40 72.23 75.37
ProGrad 95.63 66.27 82.03 41.30 86.70 95.33 93.10 81.23 81.60 75.13 72.27 79.14
MaPLe 95.10 67.27 86.40 37.07 87.43 94.27 93.63 74.87 80.37 74.73 72.03 78.47

DPL 95.80 71.50 92.30 48.57 82.57 96.63 92.03 82.70 84.10 79.83 72.80 81.71
DPL + KD 95.73 70.90 92.47 49.43 82.80 96.80 91.83 82.83 83.77 79.63 73.03 81.74

Table 1: Test accuracies of DPL and baseline methods on 11 datasets using few-shot learning. Results are averaged over 3 runs. The DPL
method shows a pronounced advantage compared to baseline methods. Combining the DPL method with knowledge distillation can further
boost the performance.

CoCoOp PLOT ProGrad MaPLe DPLOrigin

a photo of a SR-20

a photo of a 2012 Ford F-450 Super Duty Crew Cab

a photo of a Horse Race

Figure 4: Original image and Grad-CAM visualization [Selvaraju et
al., 2017] for various methods on FGVCAircraft, StanfordCars and
UCF101 datasets. Our method helps the pre-trained model focus on
key elements in the foreground and avoid distraction from the back-
ground. The text template a photo of a [class] is used in
the Grad-CAM calculation.

ous prompts to those layers. The deep prompt methods using
ℓp < ℓ avoid adding prompts to layers that are close to the
optimal. If we refine this strategy, a natural question is do
all ℓ layers require the same context length? Different lay-
ers might have a different level of deviation from the minima.
The extreme case is that a layer is very close to the minima
and no continuous prompts are needed, i.e. the context length
is 0 in this layer. For layers with different levels of devia-
tion, we might need to use different context lengths. This is
consistent with the result of using the DPL method. Overall,
the result reveals two things: (1) the optimal context length
depends on the distribution shift. (2) different layers of the
pre-trained model might require different context lengths.

6 Limitation
The searching stage of the DPL method, similar to NAS, has
higher computational costs than conventional soft prompting
methods due to the introduction of the supprompt. The com-
putational cost is determined by the size of the search space.
At each depth, DPL searches context lengths of {0, 2, 4, 6}.
The size of the search space is 2.81 × 1015. Decreasing the

Method Caltech101 DTD EuroSAT Aircraft
Shallow Prompting -0.37 -3.13 -7.27 -12.14

Method Food101 Flowers Pets Cars
Shallow Prompting -0.80 -1.06 -1.16 -3.27

Method UCF SUN397 ImageNet Average
Shallow Prompting -3.03 -3.40 -1.73 -3.40

Table 2: Ablation study on prompt configuration, i.e. the context
length and the depth of continuous prompts. The shallow prompting
uses a prompt depth of 1 and the context length of 16. Test accuracy
variation is reported compared to the optimal prompt configuration
found by the DPL method. A negative value indicates the perfor-
mance drop when using the shallow prompting method.

size of the search space can reduce computational costs. Us-
ing differentiable approach greatly accelerates the searching
process compared to exhaustive search, i.e. ta × |A| ≫ Tdpl,
where ta is the training time for prompting methods and Tdpl

is the total running time (training state + searching stage) for
the DPL method. The training stage of the DPL method is
lightweight as it relies completely on prompt configuration
without advanced technologies such as coupling functions.
Details regarding to the computational costs are discussed in
Appendix A.3.

7 Conclusion
In this work, we automate the prompt learning design by re-
laxing the categorical selection of context lengths to obtain a
continuous search space. Using limited data, our method is
able to find a prompt learning setting that is better than the
existing manually designed prompt learning methods. The
method is simple yet effective: it only focuses on determine
context lengths of continuous prompts. We empirically find
that our searching algorithm has a higher confidence in the
text branch compared to that in the image branch, and that
the prompt configuration shows a data-dependent behavior.
The data-dependent behavior and the asymmetric prompt in-
sertion in two branches demonstrate the strength of the au-
tomatic prompt learning design. In summary, our work pro-
poses a new paradigm of adding continuous prompts that re-
moves the restriction of the manually designed context length
fixed prompt learning method.
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